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What is a molecule?

A system of electrons and nuclei (Physicist picture)

Physical Information:

Hamiltonian, Wavefunction (density) Hermitian operators
(functionals) associated to observables and their expectation values

A system of bonded (interacting) atoms (Chemist picture)

Chemical Information:

Bonding interaction, steric repulsion, polarity, functional group,
aromaticity...

We aim to interpret the results of ab initio calculations in classical
chemical terms



The Atom in the Molecule

Atoms are the building blocks of chemistry

Not observables in Quantum Mechanics.

Is there a unique atom in molecule (AIM) definition?

Any AIM is a conceptual construct but with an irrefutable utility.

Taking advantage of AIM, quantum chemist have defined bond orders
indexes, atomic populations, bond orders descriptors, energy
partitioning, aromaticity indexes, among others.

Assigning physical quantities to the individual atoms

Any physical quantity is written as expectation value of one- or
two-electron operators

Which is the physical quantity that can be related to a given chemical
concept?



The Atom in the Molecule

The nucleus is always considered as part of the atom, so the
differences always arise in how the physical space (or the
Hilbert-space) is subdivided into atomic shares.

Within the LCAO approach, the atom may be identified with the
subspace of the basis functions attached to it. Such approaches are
the so-called Hilbert-space analyses.

A different strategy is to subdivide the physical 3D space into atomic
regions or domains, which represent the atom. They may be defined
disjoint, like in Bader’s “quantum theory of atoms in molecules”
(QTAIM), or may be allowed to overlap, like in the different variants
of the“fuzzy” atoms

In Hilbert-space analysis one deals with the AO matrix representation
of operators. In 3D-space analysis one usually manipulates density
functions



Hilbert-space analysis

Within the MO-LCAO framework, MO are expanded on a finite set of
atomic-centered one-electron functions {χµ(~r)} as

ϕi (~r) =
∑
µ

cµiχµ(~r)

The set of functions centered on a given atom conform an atomic Hilbert

subspace{χµ(~r)}µ∈A

In this context, the atom may be defined by its nucleus and the subspace
of one-electron basis set centered on it.

A molecular orbital can be rewritten as a sum of its atomic counterparts as

ϕi (~r) =
∑

A

∑
µ∈A

cµiχµ(~r)



Hilbert-space analysis

The electron density can be written as

ρ(~r) =
∑
µν

Dµνχ
∗
ν(~r)χµ(~r),

where D is the first-order density matrix in the atomic orbital basis representation.

By integrating the density one obtains the total number of electrons

N =

∫
ρ(~r)d~r =

∑
µν

Dµν

∫
χ∗ν(~r)χµ(~r)d~r =

∑
µν

DµνSνµ =
∑
µ

(DS)µµ,

where matrix S is the atomic overlap matrix in AO basis, with elements

Sνµ =

∫
χ∗ν(~r)χµ(~r)d~r

If the underlying AO basis is orthogonal Sij = δij and

N =

∫
ρ(~r)d~r =

∑
µν

Dµν

∫
χ∗ν(~r)χµ(~r)d~r =

∑
µν

Dµνδνµ =
∑
µ

Dµµ,



Hilbert-space analysis

N =

∫
ρ(~r)d~r =

∑
µν

Dµν

∫
χ∗ν(~r)χµ(~r)d~r =

∑
µν

DµνSνµ =
∑
µ

(DS)µµ,

Mulliken’s atomic gross populations NA

N =
∑

A

∑
µ∈A

(DS)µµ =
∑

A

NA.

Alternatively, one can also write

N =
∑

A

∑
B

∑
µ∈A

∑
ν∈B

DµνSνµ =
∑

A

NAA +
∑
A 6=B

NAB

where NAA and NAB + NBA are the Mulliken’s net and overlap
populations, respectively.
Notice that in orthogonal basis there is no overlap population.



Hilbert-space analysis

Pros

The integrations are analytical for Gaussian functions.

Straightforward implementation and low computational cost

The errors associated with any additional numerical integration are
avoided.

Cons

Basis set dependency.

It may show unphysical results for basis sets without marked atomic
character e.g. diffuse basis functions.

Ill-defined in the complete basis set limit (CBS).

Inapplicable beyond the LCAO-MO approximation e.g. if plane waves
are used to expand the MO of the system.



Hilbert-space analysis

Beyond Mulliken Analyses

Most of the problems associated with Mulliken analyses originate
from the overlap of the underlying atomic basis.

When basis set without marked atomic character are used:
Overlap populations or bond orders can be negative
Effective atomic orbitals with occupations not in the 0 ≤ λ ≤ 1 range

Use of orthogonal basis

The AO basis can be transformed to an orthogonal basis, and the MO
expanded into this orthonormalized basis set.

Symmetric orthogonalization of Lowdin (and a number of variants,
see e.g. Comput. Theor. Chem. 1008 (2013) 15)

Natural orbitals and Natural Population analysis of Weinhold

Quasi-atomic orbitals of Ruedenberg, etc..



Hilbert-space analysis

For instance, in Lowdin basis one has

χL
i (~r) =

∑
µ

S
−1/2
µi χµ(~r) χi (~r) =

∑
µ

S
1/2
µi χ

L
µ(~r) DL

µν = (S1/2DS1/2)µν

N =

∫
ρ(~r)d~r =

∑
µν

Dµν

∫
χ∗ν(~r)χµ(~r)d~r =

∑
µν

DL
µνδνµ =

∑
µ

DL
µµ

Alternatively, one could also write

N = tr(DS) = tr(DS1/2S1/2) = tr(S1/2DS1/2) =
∑
µ

(S1/2DS1/2)µµ,∑
µ

(S1/2DS1/2)µµ =
∑
µ

DL
µµ,



Real-space analysis

Disjoint domains

Voronoi cells

Quantum Theory of Atoms in Molecules (QTAIM)

Topological analysis of vector fields other than ρ(~r)

Overlapping domains (“fuzzy” atoms)

Hirshfeld, Hirshfeld-Iterative, Hirshfeld-X,...

Becke’s constructs, Becke-ρ, TFVC

Iterative stockholder Atoms (ISA), ISA-X,...

The aim is to decompose the integral of a density function f by performing
(numerical) individual integrations over each atomic domain ΩA∫

f (~r) d~r =
∑

A

∫
ΩA

f (~r) d~r



QTAIM

Topological analysis of ρ(~r)
Atomic basins from the zero-flux condition

∇ρ(~r) · ~n(~r) = ~0 ∀~r ∈ S(~r)

∫
f (~r) d~r =

∑
A

∫
ΩA

f (~r) d~r∫∫
f (~r , ~r ′) d~rd~r ′ =

∑
AB

∫
ΩA

∫
ΩB

f (~r , ~r ′) d~rd~r ′



QTAIM

Pros

Strong physical background (see notes from A.M. Pendás)

Only information from ρ(~r) is required.

Cons

Complex shape of the atomic domains leads to cumbersome
numerical integrations (but more and more efficients codes are being
developed, e.g. AIMAll)

Spurious non-nuclear attractors (e.g. C2H2 with a number of
conventional mid-size basis sets) difficult the analysis in chemical
terms.



Overlapping domains

One can define a weight function for each atom at each point of the space
satisfying

wA(~r) > 0 and
∑

A

wA(~r) = 1

Atoms can share the 3D-space (overlap) in general.

3D-space partitions makes results virtually basis set independent.

In QTAIM wA(~r) = 1 if ~r ∈ ΩA and wA(~r) = 0 otherwise.∫
f (~r) d~r =

∑
A

∫
wA(~r)f (~r) d~r

∫∫
f
(
~r , ~r ′

)
d~rd~r ′ =

∑
AB

∫∫
wA(~r)wB(~r ′)f

(
~r , ~r ′

)
d~rd~r ′



Different “fuzzy” atom approaches

Hirshfeld approach, TCA 44 129 (1977).

Makes use of reference (promolecular) spherically-averaged atomic
densities, ρ0

A(~r)

Superposition of promolecular atomic densities at the actual atomic
positions of the molecule defines the promolecular total density ,
ρ0(~r) =

∑
B ρ

0
B(~r)

Then, in the classical Hirshfeld method

wA(~r) =
ρ0

A(~r)∑
B ρ

0
B(~r)

In recent improvements,
∫
ρ0

A(~r)d~r = NA 6= ZA, e.g. Hirshfeld-Iterative,
JCP 126 144111 (2007).

ρ0,NA
A (~r) = αρ

0,int(NA)+1
A (~r) + (1− α)ρ

0,int(NA)
A (~r), α = NA − int(NA)



A not-so-well-known problem of Hirshfeld’s wA(~r)

 0

 0.2

 0.4

 0.6

 0.8

 1

−0.5  0  0.5  1  1.5

w
(x

)

x [Å]

C H

’Becke’
’Hirshfeld’



Becke’s constructs, JCP 88 2457 (1988)

Originally devised for effective numerical integration of
tree-dimensional functions of marked atomic character.

Makes use of the so-called Voronoi polyhedra

The sharp boundaries of the Voronoi cells are substituted by soft
functions that ultimately define the atomic weigths

By construction, wbecke
A (~RA ) = 1 and ∂wbecke

A (~r)/∂(r)|r=RA
= 0.



Becke’s constructs

The scheme can be formulated as follows for the simplest case of a two
nuclei system (A and B). For any point of the space one can define the
following quantity

µAB =
rB − rA
RAB

where RAB is the internuclear distance and rA and rB represent the
distance of that point to nucleus A and B.

  

A BRAB

  





Becke’s constructs

The simple step function

sA(µAB) =

{
1 −1 ≤ µAB ≤ 0
0 0 < µAB ≤ 1

can be used to define the sharp Voronoi cell of atom A in this case.

The step function can be replaced by a continuous, monotonically
decreasing function in the range [-1,1], and fulfilling the requirements
s(-1)=1 and s(+1)=0 in order to define fuzzy Voronoi cells

For that purpose Becke suggested the simple polynomial function

sk
A(µAB) =

1

2
[1− fk (µAB)]

where

f1(µ) =
3

2
µ− 1

2
µ3



Becke’s constructs

And devised an iterative process to obtain shaper cutoff profiles

fk (µ) = f [ fk−1(µ)]

The integer k is known as the stiffness parameter; the larger the steeper
the cutoff profile is.
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Becke constructs

In order to account for the different atomic sizes in heteronuclear systems,
one can use the same cutoff function but introduce a shifted coordinate.
Becke originally uses

νAB = µAB + aAB(1− µ2
AB) where aAB =

1− χ2
AB

4χAB

−1/2 ≤ aAB ≤ 1/2 to ensure that 0 ≤ wA(~r) ≤ 1 and
R0

A

R0
B

= χAB

For overlapping atoms the position of the interatomic boundaries
between all pairs of atoms must be specified.

A distance criterion is used, namely if RAB > 2(R0
A + R0

B) then

χAB = 1. Otherwise, the atoms are neighbors and χAB =
R0

A

R0
B



Becke constructs

Cutoff profile for k = 3 and RA = 2RB
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Becke constructs

The set of atomic radii R0
A determines the relative size of the atomic

Voronoi cells

The parameter k controls the shape of the cutoff profile.

Becke used Bragg-Slater radii and k=3 on the basis of more accurate
integrations.

Pros

Numerical integrations in the fuzzy domains are very efficient

Does not required the use of promolecular atomic densities

Cons

The use of a fixed atomic radii is a limitation of this AIM model
because the same atoms are treated on equal footing in different
chemical environments

Highly arbitrary definition of the atom in the molecule



Becke and QTAIM

Instead of using a set of fixed radii to define χAB one can use position
of the minimum of the density along the internuclear axis connecting
two neighbor atoms.

In Becke’s original formula the maximum shift of the interatomic
boundary of neighbor atoms occurs when the atomic radii differ by a
factor of ca. 2.4

The set of empirical atomic radii is still invoked for not neighbors

Distance criterion appears inadequate for intermolecular interactions



Becke and QTAIM

Topological fuzzy Voronoi cells (TFVC)

The following alternative transformation is monotonic for any value of
χAB .

ν
′
AB =

1 + µAB − χAB(1− µAB)

1 + µAB + χAB(1− µAB)

Two atoms are not considered neighbors if their midpoint is closer to
a third atom. Empirical set of radii no longer needed!



TFVC vs QTAIM

Partial atomic charges for a set of hydrides (LiH to HCl)
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Conditions for proper AIM definitions

An AIM should be able to account for complex bonding mechanisms
(e.g. harpoon effect on LiH)



Conditions for proper AIM definitions

In aromatic systems, the delocalization index (bond order) should be
larger in para- position than in meta-.

More conditions are necessary...



Effective atomic orbitals:

the atomic orbitals of the topological
atom



The effective atomic orbitals

One very useful tool to characterize the state of the atom within the
molecule are the so-called effective atomic orbitals (eff-AOs),
Mayer JCP 6249 (1996).

In this approach one obtains for each atom a set of orthogonal
atomic hybrids and their respective occupation numbers, adding up to
the net population of the atom.

These atomic hybrids closely mimic the core and valence shells of the
atom, as anticipated on the basis of classical notions of electron
configuration of the atom/fragment within the molecule.

ρAA(~r) =
∑
µ

λµ(wA(~r)χA
µ(~r))∗(wA(~r)χA

µ(~r)) and < χA
i |χA

j >= δij



Theory

Let us consider a single-determinant WF formed by n orthonormalized
doubly occupied orbitals ϕi (~r), i = 1, 2 . . . , n, and a “fuzzy” division of
the 3D-space into Nat atomic domains ΩA defined e.g., by a continuous
atomic weight function wA(~r), fulfilling wA(~r) > 0 and

∑
A wA(~r) = 1.

Let us for each atom A (A = 1, 2, . . . ,Nat) form the n × n Hermitian
matrix QA with the elements

QA
ij =

∫
wA(~r)ϕ∗i (~r)wA(~r)ϕj (~r)d~r .

The matrix QA is essentially the “net atomic overlap matrix” in the basis
of the MO-s ϕi . Furthermore, for each atom A we define the
“intraatomic” part ϕA

i of every MO ϕi as wA(~r)ϕj (~r). Thus
QA

ij = 〈ϕA
i |ϕA

j 〉 i.e., QA is the overlap matrix of the orbitals ϕA
i .

In the case of disjoint domains, QA is also the atomic overlap matrix of
the MOs, as wa(~r)2 ≡ wa(~r).



Theory

We diagonalize the Hermitian matrix QA by the unitary matrix UA:

UA†QAUA = ΛA = diag{λA
i } .

It can be shown that every λA
i ≥ 0, as is the case for an overlap matrix.

The dimension of the matrix also indicates the max. number of non-zero
eigenvalues that can be obtained (n), disregarding the size of the
underlying set of AOs

For each atom A we can define nA (nA ≤ n) “effective atomic orbitals
χA
µ(~r) as linear combinations of the “intraatomic” parts ϕA

i (~r) of the
MO-s as

χA
µ(~r) =

1√
λA
µ

n∑
i=1

UA
iµϕ

A
i (~r) ; µ = 1, 2, . . . , nA ,

where nA is the number of non-zero eigenvalues λA
i .



Properties of the eff-AOs

They are orthonormalized within the atomic domain:

〈χA
µ|χA

ν 〉 = 〈 1√
λA
µ

n∑
i=1

UA
iµϕ

A
i |

1√
λA
ν

n∑
j=1

UA
jνϕ

A
j 〉 =

1√
λA
µλ

A
ν

n∑
i,j=1

(UA†)µiQ
A
ij U

A
jν

=
1√
λA
µλ

A
ν

λA
µδµν = δµν

The sum of occ. numbers equals the net atomic population of the atom

In the case of disjoint domains (QTAIM), orbitals χA
µ(~r) differ from zero

only in the atomic domain of atom A, thus

〈χA
µ|χB

ν 〉 = 0



Properties of the eff-AOs

In the framework of QTAIM they form an orthogonal set of numerical basis
functions, and the occ. numbers add up to the atomic populations

The eff-AOs of atom A can also be obtained even if no atom-centered
basis functions where used in the original MO description, see CPL 563
97 (2013).

They can also be obtained in the AO basis from the diagonalization of the
matrix PSA, where P is the LCAO density matrix. This alternative permits
the straightforward generalization to correlated WFs.

Alternatively, in the natural orbital representation, the symmetrized form

U′
A†
η1/2QAη1/2U′

A
= ΛA = diag{λA

i }

that also produces the same set of eigenvalues, where η is the diagonal
matrix of the natural occupations.



The eff-AOs as basis functions

The definition of the eff-AOs can be trivially inverted, and one gets

ϕA
j (~r) =

nA∑
µ=1

UA∗
jµ

√
λA
µχ

A
µ(~r) = wA(~r)

nA∑
µ=1

UA∗
jµ

√
λA
µ χ(~r)µ .

Owing to this result, the MO-s can be written as linear combinations of
the “effective AO-s” of different atoms:

ϕi (~r) =
Nat∑
A

wA(~r)ϕA
i (~r) =

Nat∑
A

nA∑
µ=1

UA∗
iµ

√
λA
µχ

A
µ(~r) =

Nat∑
A

nA∑
µ=1

cA
µiχ

A
µ(~r) .



Hilbert-space analysis within QTAIM

The atomic population calculated by Mulliken analysis in the basis of the
“effective AO-s” is equal to that obtained by the 3D QTAIM analysis.

QAIM
A =

∫
ΩA

ρ(~r)dv = 2

∫
ΩA

n∑
i=1

|ϕi (~r)|2dv = 2
n∑

i=1

∫
ΩA

|ϕi (~r)|2dv = 2
n∑

i=1

QA
ii .

QLCAO
A =

∑
ν∈A

Dνν = 2
n∑

i=1

∑
ν∈A

|Cνi |2 = 2
n∑

i=1

nA∑
µ=1

∣∣∣UA∗
iµ

√
λµ

∣∣∣2 = 2
n∑

i=1

QA
ii

Analogously, Wiberg bond orders calculated on the basis of eff-AOs are exactly

equal to the Delocalization index, and so on.

Similar relationships are also found for fuzzy atomic domains such as
TFVC, the only difference being the eff-AOs do not form and
orthonormalized set.



Properties

In practice, the dimension of the eff-AO basis has nothing to do with
the dimension of the LCAO basis (if any) used in the original
calculations.

The maximum number of eff-AOs that can be obtained is Nat × n,
which can be less that the total number of the LCAO basis functions.

Experience shows that the number of eff-AOs with significant
occupation numbers on each atom is limited, and typically much
smaller than the number n of the doubly occupied orbitals in the
whole molecule.

The remaining eff-AOs with very small occupation numbers have a
marginal significance.



Approximate expressions

One may consider to express the molecular orbitals as a linear combination of an
atomic basis set build up from a bf subset of the eff-AOs.

In order to obtain the new LCAO coefficients one can make use of the singular
value decomposition (SVD) technique to perform a pairing between the set of
eff-AOs from one side, and the set of doubly occupied MO-s from the other.

Let us consider those eff-AO-s χA
µ, A = 1, 2, . . .Nat which meet some criterion

λA
µ ≥ t ≥ 0. Let their number be neff . We build the rectangular neff × n matrix

Z, with elements
Zµi = 〈χµ|ϕi 〉 .

With the SVD, the rectangular matrix is transformed as

U†ZV = Ξ ,

where U and V are unitary matrices of dimension neff × neff and n × n,

respectively, and Ξ is a rectangular diagonal matrix containing the singular values

ξi of Z .



Approximate expressions

From the definition of matrix Z one can write

neff∑
µ

n∑
j

U∗µi 〈χµ|ϕj〉Vji = ξi ,

that is, the singular value ξi is the overlap between the function

ψi =

neff∑
µ=1

Uµiχµ ,

which is a linear combination of the eff-AOs and

ϕ′i =
n∑
µ=1

Vjiϕj ,

representing a molecular orbital after performing a unitary transformation with
the matrix V.



Approximate expressions

If ξi = 1 the two functions have an overlap equal one, ψi and ϕ′i are essentially
(“almost everywhere”) equal to each other, and one can write

ϕ′i =

neff∑
µ

Uµiχµ .

That is, the columns of the unitary matrix U contain the LCAO coefficients of
each rotated MO in the orthogonal basis of eff-AOs.

If ξi is close to, but not exactly equal one, this expression represents an

approximation to the (rotated) molecular orbital. Under these circumstances the

equivalence between the Hilbert-space and real-space populations are no longer

strictly fulfilled but, since these approximated MOs form an orthonormalized set,

the number of electrons is conserved.



Visualization of the eff-AOs

Figure 1: Occupied oxygen eff-AOs in alanine molecule (TFVC)



Visualization of the eff-AOs

Figure 2: Highly occupied carbon (a), nitrogen (b), and oxigen (c) orbitals in the HCNO molecule (QTAIM)



A signature of hypervalency
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Figure 3: Occupation numbers of the eff-AOs of S atom on CH3Sx CH3, x=0,1,2



Formal oxidation states from WF analysis



Formal oxidation states

The concept of oxidation state (OS) is ubiquitous in transition metal
(TM) chemistry and in the study of redox and catalytic reactions.

Many properties such as reactivity, spin-state, spectroscopic and
geometrical features of TM complexes are often rationalized on the
basis of the oxidation state of the metal center.

According to IUPAC, in coordination chemistry, the OS is the charge
left on the metal after all ligands have been removed in their normal,
closed shell, configuration.

Formal OS are obtained by assigning integer number of electrons to
the atoms/ligands according to some rules. In complicated bonding
situations involving non-innocent ligands or in intermediates or
transition states of catalytic reactions the formal OS assignment may
be rather ambiguous.



Conventional population analysis fail

Thom et al. illustrated how neither Mulliken charges nor Mulliken spin
populations match in general with the oxidation state.

Mulliken (left) and TFVC (right) charges for a set of transition metal
complexes.

Cl− H2OHS H2OLS CN− CO Cl− H2OHS H2OLS CN− CO

VII 0.98 1.12 - 0.05 0.64 1.60 1.76 - 1.60 1.64
MnII 1.10 1.24 1.18 0.10 0.64 1.36 1.64 1.70 1.53 1.53
MnIII 0.93 1.58 1.52 0.35 0.80 1.46 2.05 2.09 1.58 1.67
FeII 0.86 1.22 1.15 0.01 0.51 1.27 1.63 1.77 1.46 1.44
FeIII 0.99 1.64 1.48 0.24 0.66 1.44 2.06 1.98 1.49 1.58
NiII 0.99 - 1.08 -0.19 0.31 1.27 - 1.59 1.24 1.30
ZnII 1.02 - 1.06 -0.03 0.52 1.25 - 1.45 1.15 1.19



ab initio determination of oxidation states

A number or empirical approaches to correlate atomic distances or
populations with transition metal (TM) oxidation states
(bond-valence sum scheme).

Sit et al.[1] used projection techniques to obtain d orbital populations
of central metal in transition metal (TM) complexes. Can not deal
with metal-metal bonds.

Sit et al.[2] also used the positions of the centers of gravity of
maximally-localized Wanier Functions. Applicable for plane-waves
calculations only.

Localized Orbital Bond Analysis (LOBA) [3]: MO localization
followed by population analysis. A threshold is introduced to
distribute electrons among atoms

1. Sit et al., Inorg. Chem. 2011, 50, 10259-10267 2. Sit et al., Chem. Eur. J. 2011,
17, 12136-12143 3. Thom et al., Phys. Chem. Chem. Phys, 2009, 11, 11297



ab initio determination of oxidation states

Focus on the effective state of the atoms within the molecule

Derive from the WF some set of ”atomic orbitals” and occupation
numbers that will allow to assign each electron to a given atom.

Desirable properties of the ”atomic orbitals”

Clear-cut separation (in terms of occupation numbers) of core,
valence and virtual orbitals

Applicable on equal footing for any level of theory and basis set
(plane waves, core potentials, etc)

Basis set independent

Able to treat alpha and beta electrons independently.

Able to define functional groups/fragments.



ab initio determination of oxidation states

The eff-AOs, and specially their occupation numbers, can be used to
retrieve the appropriate oxidation states of the atoms from the
wavefunction from first principles.

Strategy

Obtain ρ(~r , ~r ′) from an ab initio calculation.

For each atom, obtain spin-resolved eff-AOs and occupation numbers
up to a given theshold (e.g. 0.1)

Sort all of them according to decreasing occupation number

Round the occupation numbers to 1 (i.e. assign occupied eff-AOs)
starting from the highest occupied eff-AO until the the number of
alpha electrons is reached. Do analogously for the beta part.



Oxidation states for TM complexes

Alpha effective atomic orbitals for Fe(CN)3−
6 at the B3LYP/6-31G(d) level

of theory.
Total number of alpha electrons: 54



Oxidation states for TM complexes

Beta effective atomic orbitals for Fe(CN)3−
6 at the B3LYP/6-31G(d) level

of theory.
Total number of beta electrons: 53



A simple scheme for oxidation states

Oxidation states, last occupied eff-AO (LO) and first unoccupied eff-AO
(FU) orbitals for Fe(CN)3−

6 .

From the ”frontier” occupation numbers one can derive a simple index
R(%) to quantify how close is the electron distribution provided by the
actual wavefunction to the formal picture of the oxidation states.

R(%) ≡ 100min(1,max(0, λσLO − λσHU + 1/2), for σ = α, β.



OS for simple transition metal complexes

Table 1: Metal OS and R(%) values for a set of 32 octahedral complexes. HS and
LS stand for high-spin and low-spin, respectively.

metal/ligands Cl− H2O H2O CN− CO
(HS) (HS) (LS) (LS) (LS)

VII 100 100 - 99 100
MnII 100 100 100 97 100
MnIII 87 100 100 95 93
FeII 100 100 100 99 97
FeIII 100 100 100 86 91
NiII 100 - 100 98 100
ZnII 100 - 100 99 100

The analysis also yielded OS of (H(+))2O(2−), C(2+)N(3−) and C(2+)O(2−) for the
different ligands, conforming with chemical expectations.



Oxidation states for simple molecules

Molecule O.S. % trust qA/qB 

LiF Li 1+ F1- 100% 0.83/-0.83 

CO C 2+ O2- 100% 1.13/-1.13 

CN- (C 2+ N3-)-1 97% 0.62/-1.62 

NO+ (N 3+ O2-)+1 94% 1.45/-0.45 

CO2 C4+ (O2-)2 100% 2.23/-1.12 

SO2 S4+ (O2-)2 100% 2.76/-1.38 

SO3 S6+ (O2-)3 94% 3.82/-1.27 

HCONH2 

(formamide) 
H1- C4+ O2-N3- (H1+)2 52% 

-0.05/1.67/-1.16 

-1.23/0.39 

HCNO H1+ C2+ N1- O2- 60% 
0.15/0.95 

-0.69/-0.41 



Oxidation states for simple molecules

Molecule O.S. % trust qH 

LiH Li 1+ H1- 100% -0.73 

BeH2 Be2+ (H1-)2 100% -0.66 

MgH2 Mg2+ (H1-)2 100% -0.63 

AlH3 Al3+ (H1-)3 100% -0.66 

BH3 B3+ (H1-)3 100% -0.62 

CH4 C2+ (H0.5-)4 58% -0.08 

SiH4 Si4+ (H1-)4 100% -0.67 

NH3 N3- (H1+)3 81% +0.30 

PH3 P3- (H1+)3 100% -0.69 

H2O (H1+)2O2- 100% +0.56 

H2S (H1-)2S2+ 55% -0.21 

HF H1+ F1- 100% +0.72 

HCl H1+ Cl1- 78% +0.18 



Oxidation states for simple molecules

Molecule O.S. % trust qH 

B2H6 (B3+)2(H1-)6 100% -0.60/-0.67 

C2H6 (C2+)2(H0.66-)6 63% -0.10 

C2H4 (C2+)2(H1-)4 52% -0.05 

C6H6 (C1+)6(H1-)6 54% -0.06 

C2H2 (C1-)2(H1+)2 57% +0.09 

Limit of applicability

Large ambiguity in the OS of hydrocarbons ( and possibly for other
systems exhibiting bonds with extremely weak polarity)

Large systems in general (definition of fragments/functional groups is
necessary)



A hierarchical scheme for oxidation states

Define atoms/fragments/ligands of the system

wΓi
(~r) ≡

∑
A∈Γi

wA(~r) SΓi 6=
∑
A∈Γi

SA

Obtain spin resolved eff-AOs for all Γi fragments

Distribute the number of electrons among the fragments according to
occupations of their eff-AOs

Get most appropriate atom/ligand oxidation states and R(%) index.

If necessary, the OS for the atoms of a given fragment can be
subsequently obtained by obtaining the eff-AOs for every atom and
distributing the number of alpha and beta electrons that were
assigned to the ligand in the previous step.



Active species of the catalytic hydroxylation with
Fe(Pytacn) complex



Endohedral fullerenes

Cage Charge C(%) 

-4 100% 

Sc2C2 

Atom/ 
Fragment 

Oxidation 
state 

Sc 3+ 

C2 2- 

C(%) = 100% 

Sc2C2@C80  IPR5 



Endohedral fullerenes

Cage Charge C(%) 

-6 100% 

Sc4O2 

Atom/ 
Fragment 

Oxidation 
state 

Sc eq 3+ 

Sc ax 2+ 

O 2- 

C(%) = 60% 

Sc4O2@C80  Ih 



Endohedral fullerenes

Sc4C2@C80  

Cage 
Charge 

C(%) 

-6 100% 

Atom/ 
Fragment 

OS 

Sc 3+ 

C2 6- 

C(%) = 68% 

Atom/ 
Fragment 

OS 

Sc 3+ 

C 4- 

C 2- 

C(%) = 62% 

lLOEFF (C2)= 0.392 
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