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Outline

I. Intrinsic versus laboratory systems of coordinates

II. Projected equations of motion

III. Electromagnetic transitions in even-even nuclei

IV. Conclusions



I. Intrinsic versus laboratory
systems of coordinates

The intrinsic system of coordinates is connected
to the symmetry axis (3) of an axially deformed nucleus.

I is the angular momentum of the rotating nucleus.
K is the the projection of I in the intrinsic system.

M is the the projection of I in the laboratory system.



Quantum rotation of an axially symmetric top

is described by the sum of normalized Wigner rotation functions
with opposite intrinsic projections

ΦI
MK (Ω) =

1
√

2(1 + δK 0)

[

DI∗
MK (Ω) + (−)I+KDI∗

M−K (Ω)
]

. (1)

K = 0 corresponds to the ground rotational band .



In a spherical nuclear mean field
protons and neutrons occupy

sigle particle orbitals c†
njm,

n labels the level, j = l + s total spin and m its projection.



In a deformed nuclear mean field

the intrinsic nucleon wave function with a given projection K
(called intrinsic Nilsson wave functions )

is a superposition of spherical orbitals
with the same total spin projection K

b†

kK =
∑

nj

dnj
kK c†

njK , (2)

where k denotes the deformed eigenvalue index.

One can use the short-hand notations
(nj) ≡ j , (kK ) ≡ K .



Standard description
of collective excitations in the intrinsic system

is given by the deformed RPA phonon operator
which is a coherent suporposition

Γ†K =
∑

ph

(

XphδΓ
†
ph − YphδΓph

)

, (3)

of particle-hole (p-h) excitations

δΓ†ph ≡ b†
pbh . (4)

Here, p is a particle state (x), h is a hole state (o) and
K = Kp + Kh is the intrinsic pair projection.



The measured state has a given angular momentum

ΨIMK =

∫

dΩDI∗
MKΓ

†
K |0〉 , (5)

where DI
MK (Ω) is the normalized Wigner function

depending on the Euler angles between
laboratory and intrinsic system of coordinates.

In all calculations it is considered only the projection
of the collective excitation Γ†

(because it is easy to extract the projected pairs [a†

Ip
⊗ aIh ]I)

while the deformed vacuum |0〉 is approximated as spherical.



Moreover, this a ”projection after variation” procedure.

We propose a new ”variation after projection procedure”

by using a single particle basis with good angular momentum
and a consistent RPA vacuum state.



Total wave wave function in the intrinsic system

is a symmetrised product between rotational function with spin I
and single particle (Nilsson) wave function

a†

IMK (Ω) =
1

√

2(1 + δK 0)

[

DI∗
MK (Ω)b

†

K + (−)I+KDI∗
M−K (Ω)b

†

−K

]

, (6)

In the configuration space the Nilsson wave function

φK (r′) = 〈r′|b†
K 〉 , (7)

depends upon the intrinsic coordinate r′.



By rotating b†

K to the laboratory system

one obtains a single particle operator with good angular momentum
as a superposion of spherical orbitals ”dressed” by deformation.

For K = 0 one gets

a†

IM(Ω) →
∑

J=even

∑

j≥I

X Jj
I

[

DJ∗
.0 (Ω)⊗ c†

j

]

IM
, (8)

where by dot we denoted angular momentum projection coupling.
The coefficient is proportional to the intrinsic Nilsson coefficient

X Jj
I =

√
2〈II; j − I|J0〉d j

I . (9)

Therefore the spin I plays role of the
”spin projection” in lab. system.



We build a deformed many-body system

by using these single particle operators
satisfying the anticommutation rule

obtained by integrating over Euler angles
∫

dΩ
{

aIM(Ω), a†

IM(Ω)
}

= δII′δMM′ . (10)

Any product of deformed operators a†

IM becomes
a superposition of products between spherical orbitals c†

jm
because the product of Wigner functions

becomes a superposition of Wigner functions .



Spherical operator with multipolarity λ
in the deformed basis is given by

Qλµ =
∑

I1I2

(I1||Qλ||I2)√
2λ+ 1

[

a†

I1
⊗ ãI2

]

λµ
. (11)

One obtains the following rule expressing
the deformed reduced matrix element integrated over Euler angles

in terms of standard spherical reduced matrix element

(I1||Qλ||I2) =
∑

Jj1 j2

X Jj1 j2
I1 I2

〈j1||Qλ||j2〉 , (12)

where the two-particle expansion coefficient contains
the product of single particle coefficients X Jj1

I1
X Jj2

I2
.



In particular, by considering the leading J = 0 term,
one obtains in the laboratory system of coordinates

for the number of particles operator

NI =
2
(

dI
I

)2

2I + 1

∑

M

a†
IMaIM ≡ SINI , (13)

and the pair operator

P†

I =
2
(

dI
I

)2

2I + 1

∑

M

a†

IMa†

I−M(−)I−M ≡ SIP
†

I . (14)

SI are called statistical factors:
two particles ocuppy (2I + 1)/

(

dI
I

)2 ≈ 2I + 1
projections in the lab. system.



II. Projected RPA equations of motion

Deformed phonon is defined by

Γ†ν =
∑

I1 I2

(

Xν
I1 I2δΓ

†
I1 I2

− Y ν
I1 I2δΓI1 I2

)

, (15)

Basis building blocks can be considered for

I. Non-coupled case
of p-h excitations with a given multipolarity

δΓ†I1I2
=

[

a†
I1
⊗ ãI2

]

λµ
. (16)

II. Coupled case
of p-h excitations with the core motion

δΓ†I1 I2
=

∑

J1J2

{

DJ1∗
.0 ⊗

[

a†

I1
⊗ ãI2

]

J2

}

λµ

(17)



Standard equation of motion

[H, Γ†ν ] = ωνΓ
†
ν , (18)

leads to projected equations
by considering double commutators with basis operators

and by integrating over Euler angles
∫

dΩ[δΓI1 I2 , [H, Γ†ν ]] = ων

∫

dΩ[δΓI1I2 , Γ
†
ν ]

∫

dΩ[δΓ†I1 I2
, [H, Γ†ν ]] = ων

∫

dΩ[δΓ†I1I2
, Γ†ν ] . (19)



dRPA equations
have a similar to the spherical case form
(

A B
−B∗ −A∗

)(

Xν

Y ν

)

= ων

(

Xν

Y ν

)

. (20)

dRPA matrices
are given by the relations

AI1I2,I′1I′2
=

∫

dΩ
[

δΓI1I2 ,
[

H, δΓ†I′1 I′2

]]

BI1I2,I′1I′2
= −

∫

dΩ
[

δΓ†I1 I2
,
[

H, δΓ†I′1 I′2

]]

.

(21)



Deformed quasiparticle RPA (dQRPA)
considers pairing correlations

α†
IM = uIa

†
IM − vIaI−M(−)I−M

= uIa
†
IM + vIãIM . (22)

Occupation probability
for normal and superfluid systems



We can consider two versions of the dQRPA basis building blocks:

I. Non-coupled case
of p-h quasiparticle excitations with a given multipolarity

δΓ†I1I2
=

[

α†
I1
⊗ α†

I2

]

λµ
→ uI1vI2

[

a†
I1
⊗ ãI2

]

λµ
+ vI1uI2

[

ãI1 ⊗ a†
I2

]

λµ
. (23)

II. Coupled case
of p-h quasiparticle excitations with the core motion

δΓ†I1 I2
=

∑

J1J2

{

DJ1∗
.0 ⊗

[

α†
I1
⊗ α†

I2

]

J2

}

λµ

. (24)



III. Electromagnetic transitions in even-even nuclei

Hamiltonian
contains single particle + pairing
for protons (π) and neutrons (ν)

+ quadrupole-quadrupole (QQ) interaction
for π − π, ν − ν, π − ν systems

H =
∑

τ=πν





∑

I

(ǫI(τ)− λτ )NI(τ)−
Gτ

4

∑

I1I2

P†

I1
(τ)PI2 (τ)





− 1
2

∑

ττ ′

Fττ ′

√
5[Q2(τ) ⊗ Q2(τ

′)]0 . (25)

We considered the non-coupled case in the dQRPA basis

δΓ†2µ =
[

a†
I1
⊗ a†

I2

]

2µ
. (26)



Parameters

Single particle spectrum ǫI(τ) is generated
by a deformed Woods-Saxon mean field

with universal parametrisation

λτ are determined by number of protons and neutrons conservation

Gτ are determined by experimental pairing gaps

Fππ = Fνν = Fπν are determined by
experimental E2 energies.

Thus, B(E2)-values (reduced transition probabilities)
with a common polarisation parameter χ = 0.2 are predicted

in all even-even superfluid nuclei with Z > 50.



Strength function versus excitation energy
D.S. Delion and J. Suhonen, Phys. Rev. C 87, 024309 (2013).
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Figure : 1.



We investigated E : 2+ → 0+ transitions
in superfluid even even nuclei for two regions

50 < Z < 82 (open circles)
Z > 82 (dark circles)

Nuclear chart with magic numbers



B(E2) values versus excitation energy
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Figure : 2.



B(E2) values versus quadrupole deformation
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Figure : 3.



Exp./Theor. values versus excitation energy
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QQ coupling strengh versus mass number
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IV. Conclusions

1) Many-body deformed systems can be described in terms
of single particle states with good angular momentum

in the laboratory system of coordinates.

2) dRPA equations have a similar to the spherical case form.

3) Electromagnetic transitions in all superfluid even-even nuclei
are described within dQRPA with a reasonable accuracy

D.S. Delion and J. Suhonen, Phys. Rev. C 87, 024309 (2013).

4) dQRPA was extended to proton-neutron excitations (pn-dQRPA)
to analyze Gamow-Teller resonances and 2νββ decays

D.S. Delion and J. Suhonen, Phys. Rev. C 91, 054329 (2015);
Phys. Rev. C 95, 034334 (2017).
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