Consistent Quasiparticle Random Phase Approximation for deformed systems

D.S. Delion
Horia Hulubei National Institute of Physics
and Nuclear Engineering (IFIN-HH)
Bucharest-Măgurele, Romania

Extreme Light Infrastucture - Nuclear Physics (ELI-NP) Bucharest-Măgurele

Outline

I. Intrinsic versus laboratory systems of coordinates
II. Projected equations of motion
III. Electromagnetic transitions in even-even nuclei
IV. Conclusions

I. Intrinsic versus laboratory systems of coordinates

The intrinsic system of coordinates is connected to the symmetry axis (3) of an axially deformed nucleus.
I is the angular momentum of the rotating nucleus.
\mathbf{K} is the the projection of \mathbf{I} in the intrinsic system.
\mathbf{M} is the the projection of \mathbf{I} in the laboratory system.

Quantum rotation of an axially symmetric top

is described by the sum of normalized Wigner rotation functions with opposite intrinsic projections

$$
\begin{equation*}
\Phi_{M K}^{\prime}(\Omega)=\frac{1}{\sqrt{2\left(1+\delta_{K 0}\right)}}\left[\mathcal{D}_{M K}^{\prime *}(\Omega)+(-)^{I+K} \mathcal{D}_{M-K}^{\prime *}(\Omega)\right] \tag{1}
\end{equation*}
$$

$K=0$ corresponds to the ground rotational band.

In a spherical nuclear mean field

 protons and neutrons occupy sigle particle orbitals $c_{n i m}^{\dagger}$,n labels the level, $j=I+s$ total spin and m its projection.

In a deformed nuclear mean field

the intrinsic nucleon wave function with a given projection K (called intrinsic Nilsson wave functions)
is a superposition of spherical orbitals with the same total spin projection K

$$
\begin{equation*}
b_{k K}^{\dagger}=\sum_{n j} \mathbf{d}_{k K}^{n j} c_{n j K}^{\dagger}, \tag{2}
\end{equation*}
$$

where k denotes the deformed eigenvalue index.
One can use the short-hand notations

$$
(n j) \equiv j, \quad(k K) \equiv K
$$

Standard description

of collective excitations in the intrinsic system
is given by the deformed RPA phonon operator which is a coherent suporposition

$$
\begin{equation*}
\Gamma_{K}^{\dagger}=\sum_{p h}\left(X_{p h} \delta \Gamma_{p h}^{\dagger}-Y_{p h} \delta \Gamma_{p h}\right), \tag{3}
\end{equation*}
$$

of particle-hole ($\mathrm{p}-\mathrm{h}$) excitations

$$
\begin{equation*}
\delta \Gamma_{p h}^{\dagger} \equiv b_{p}^{\dagger} b_{h} . \tag{4}
\end{equation*}
$$

Here, p is a particle state (x), h is a hole state (o) and $K=K_{p}+K_{h}$ is the intrinsic pair projection.

The measured state has a given angular momentum

$$
\begin{equation*}
\Psi_{I M K}=\int d \Omega \mathcal{D}_{M K}^{\prime *} \Gamma_{K}^{\dagger}|0\rangle \tag{5}
\end{equation*}
$$

where $\mathcal{D}_{M K}^{\prime}(\Omega)$ is the normalized Wigner function depending on the Euler angles between laboratory and intrinsic system of coordinates.

In all calculations it is considered only the projection of the collective excitation Γ^{\dagger} (because it is easy to extract the projected pairs $\left.\left[a_{l_{p}}^{\dagger} \otimes a_{l_{h}}\right]_{l}\right)$ while the deformed vacuum $|0\rangle$ is approximated as spherical.

Moreover, this a "projection after variation" procedure.
We propose a new "variation after projection procedure"
by using a single particle basis with good angular momentum and a consistent RPA vacuum state.

Total wave wave function in the intrinsic system

is a symmetrised product between rotational function with spin / and single particle (Nilsson) wave function

$$
\begin{equation*}
a_{I M K}^{\dagger}(\Omega)=\frac{1}{\sqrt{2\left(1+\delta_{K 0}\right)}}\left[\mathcal{D}_{M K}^{\prime *}(\Omega) b_{K}^{\dagger}+(-)^{I+K} \mathcal{D}_{M-K}^{\prime *}(\Omega) b_{-K}^{\dagger}\right] \tag{6}
\end{equation*}
$$

In the configuration space the Nilsson wave function

$$
\begin{equation*}
\phi_{K}\left(\mathbf{r}^{\prime}\right)=\left\langle\mathbf{r}^{\prime} \mid b_{K}^{\dagger}\right\rangle \tag{7}
\end{equation*}
$$

depends upon the intrinsic coordinate \mathbf{r}^{\prime}.

By rotating b_{K}^{\dagger} to the laboratory system

one obtains a single particle operator with good angular momentum as a superposion of spherical orbitals "dressed" by deformation.

For $K=0$ one gets

$$
\begin{equation*}
a_{I M}^{\dagger}(\Omega) \rightarrow \sum_{J=\text { even }} \sum_{j \geq 1} \mathcal{X}_{I}^{J j}\left[\mathcal{D}_{0}^{J *}(\Omega) \otimes c_{j}^{\dagger}\right]_{\mathbb{M}} \tag{8}
\end{equation*}
$$

where by dot we denoted angular momentum projection coupling.
The coefficient is proportional to the intrinsic Nilsson coefficient

$$
\begin{equation*}
\mathcal{X}_{I}^{J j}=\sqrt{2}\langle I I ; j-I \mid J 0\rangle \mathbf{d}_{I}^{j} . \tag{9}
\end{equation*}
$$

Therefore the spin / plays role of the "spin projection" in lab. system.

We build a deformed many-body system

by using these single particle operators satisfying the anticommutation rule obtained by integrating over Euler angles

$$
\begin{equation*}
\int d \Omega\left\{a_{M M}(\Omega), a_{I M}^{\dagger}(\Omega)\right\}=\delta_{I I} \delta_{M M^{\prime}} \tag{10}
\end{equation*}
$$

Any product of deformed operators $a_{l M}^{\dagger}$ becomes a superposition of products between spherical orbitals $c_{j m}^{\dagger}$
because the product of Wigner functions becomes a superposition of Wigner functions.

Spherical operator with multipolarity λ

 in the deformed basis is given by$$
\begin{equation*}
Q_{\lambda \mu}=\sum_{l_{1} l_{2}} \frac{\left(l_{1}\left\|Q_{\lambda}\right\| l_{2}\right)}{\sqrt{2 \lambda+1}}\left[a_{l_{1}}^{\dagger} \otimes \tilde{a}_{l_{2}}\right]_{\lambda \mu} \tag{11}
\end{equation*}
$$

One obtains the following rule expressing the deformed reduced matrix element integrated over Euler angles in terms of standard spherical reduced matrix element

$$
\begin{equation*}
\left(I_{1}\left\|Q_{\lambda}\right\| I_{2}\right)=\sum_{j_{i} j_{2}} \mathcal{X}_{l_{1} I_{2}}^{J_{1} j_{2}}\left\langle j_{1}\left\|Q_{\lambda}\right\| j_{2}\right\rangle, \tag{12}
\end{equation*}
$$

where the two-particle expansion coefficient contains the product of single particle coefficients $\mathcal{X}_{l_{1}}^{J_{1}} \mathcal{X}_{l_{2}}^{J j_{2}}$.

In particular, by considering the leading $J=0$ term, one obtains in the laboratory system of coordinates for the number of particles operator

$$
\begin{equation*}
\mathcal{N}_{I}=\frac{2\left(\mathbf{d}_{I}^{\prime}\right)^{2}}{2 I+1} \sum_{M} a_{l M}^{\dagger} a_{I M} \equiv S_{I} N_{l} \tag{13}
\end{equation*}
$$

and the pair operator

$$
\begin{equation*}
\mathcal{P}_{I}^{\dagger}=\frac{2\left(\mathbf{d}_{l}^{\prime}\right)^{2}}{2 I+1} \sum_{M} a_{l M}^{\dagger} a_{l-M}^{\dagger}(-)^{I-M} \equiv S_{I} P_{I}^{\dagger} \tag{14}
\end{equation*}
$$

$S_{/}$are called statistical factors:
two particles ocuppy $(2 I+1) /\left(\mathbf{d}_{I}^{\prime}\right)^{2} \approx 2 I+1$ projections in the lab. system.

II. Projected RPA equations of motion

Deformed phonon is defined by

$$
\begin{equation*}
\Gamma_{\nu}^{\dagger}=\sum_{l_{1} l_{2}}\left(X_{l_{1} l_{2}}^{\nu} \delta \Gamma_{l_{1} l_{2}}^{\dagger}-Y_{l_{1} l_{2}}^{\nu} \delta \Gamma_{l_{1} / 2}\right), \tag{15}
\end{equation*}
$$

Basis building blocks can be considered for

I. Non-coupled case

of p-h excitations with a given multipolarity

$$
\begin{equation*}
\delta \Gamma_{l_{1,2}}^{\dagger}=\left[a_{l_{1}}^{\dagger} \otimes \tilde{\mathbf{a}}_{l_{2}}\right]_{\lambda \mu} . \tag{16}
\end{equation*}
$$

II. Coupled case

of p -h excitations with the core motion

$$
\begin{equation*}
\delta \Gamma_{l_{1} l_{2}}^{\dagger}=\sum_{J_{1} J_{2}}\left\{\mathcal{D}_{.0}^{J_{1} *} \otimes\left[a_{l_{1}}^{\dagger} \otimes \tilde{a}_{l_{2}}\right]_{J_{2}}\right\}_{\lambda \mu} \tag{17}
\end{equation*}
$$

Standard equation of motion

$$
\begin{equation*}
\left[H, \Gamma_{\nu}^{\dagger}\right]=\omega_{\nu} \Gamma_{\nu}^{\dagger} \tag{18}
\end{equation*}
$$

leads to projected equations
by considering double commutators with basis operators and by integrating over Euler angles

$$
\begin{align*}
\int d \Omega\left[\delta \Gamma_{l_{1} 2},\left[H, \Gamma_{\nu}^{\dagger}\right]\right] & =\omega_{\nu} \int d \Omega\left[\delta \Gamma_{l_{1} 1_{2}}, \Gamma_{\nu}^{\dagger}\right] \\
\int d \Omega\left[\delta \Gamma_{l_{1} 1_{2}}^{\dagger},\left[H, \Gamma_{\nu}^{\dagger}\right]\right] & =\omega_{\nu} \int d \Omega\left[\delta \Gamma_{l_{1} 1_{2}}^{\dagger}, \Gamma_{\nu}^{\dagger}\right] \tag{19}
\end{align*}
$$

dRPA equations

have a similar to the spherical case form

$$
\left(\begin{array}{cc}
\mathcal{A} & \mathcal{B} \tag{20}\\
-\mathcal{B}^{*} & -\mathcal{A}^{*}
\end{array}\right)\binom{X^{\nu}}{Y^{\nu}}=\omega_{\nu}\binom{X^{\nu}}{Y^{\nu}} .
$$

dRPA matrices

are given by the relations

$$
\begin{align*}
& \mathcal{A}_{l_{1} l_{2}, l_{1}^{\prime} l_{2}^{\prime}}=\int d \Omega\left[\delta \Gamma_{l_{1} l_{2}},\left[H, \delta \Gamma_{l_{1}^{\prime} l_{2}^{\prime}}^{\dagger}\right]\right] \\
& \mathcal{B}_{l_{1} l_{2}, l_{1}^{\prime} l_{2}^{\prime}}=-\int d \Omega\left[\delta \Gamma_{l_{1} l_{2}}^{\dagger},\left[H, \delta \Gamma_{l_{1}^{\prime} \prime_{2}^{\prime}}^{\dagger}\right]\right] . \tag{21}
\end{align*}
$$

Deformed quasiparticle RPA (dQRPA)

considers pairing correlations

$$
\begin{align*}
\alpha_{M M}^{\dagger} & =u_{l} a_{l M}^{\dagger}-v_{l} a_{l-M}(-)^{I-M} \\
& =u_{l} a_{M}^{\dagger}+v_{l} \tilde{a}_{I M} . \tag{22}
\end{align*}
$$

Occupation probability

for normal and superfluid systems

We can consider two versions of the dQRPA basis building blocks:

I. Non-coupled case

of p-h quasiparticle excitations with a given multipolarity

$$
\begin{equation*}
\delta \Gamma_{l_{1} l_{2}}^{\dagger}=\left[\alpha_{l_{1}}^{\dagger} \otimes \alpha_{l_{2}}^{\dagger}\right]_{\lambda \mu} \rightarrow u_{l_{1}} v_{l_{2}}\left[a_{l_{1}}^{\dagger} \otimes \tilde{a}_{l_{2}}\right]_{\lambda \mu}+v_{l_{1}} u_{l_{2}}\left[\tilde{a}_{l_{1}} \otimes a_{l_{2}}^{\dagger}\right]_{\lambda \mu} . \tag{23}
\end{equation*}
$$

II. Coupled case

of p-h quasiparticle excitations with the core motion

$$
\begin{equation*}
\delta \Gamma_{1_{1} l_{2}}^{\dagger}=\sum_{J_{1} J_{2}}\left\{\mathcal{D}_{.0}^{J_{1} *} \otimes\left[\alpha_{1_{1}}^{\dagger} \otimes \alpha_{l_{2}}^{\dagger}\right]_{J_{2}}\right\}_{\lambda \mu} . \tag{24}
\end{equation*}
$$

III. Electromagnetic transitions in even-even nuclei

$$
\begin{gather*}
\begin{array}{c}
\text { Hamiltonian } \\
\text { contains single particle }+ \text { pairing } \\
\text { for protons }(\pi) \text { and neutrons }(\nu) \\
+ \text { quadrupole-quadrupole (QQ) interaction } \\
\text { for } \pi-\pi, \nu-\nu, \pi-\nu \text { systems }
\end{array} \\
H=\sum_{\tau=\pi \nu}\left[\sum_{l}\left(\epsilon_{l}(\tau)-\lambda_{\tau}\right) \mathcal{N}_{l}(\tau)-\frac{G_{\tau}}{4} \sum_{l_{1} /_{2}} \mathcal{P}_{l_{1}}^{\dagger}(\tau) \mathcal{P}_{l_{2}}(\tau)\right] \\
-\frac{1}{2} \sum_{\tau \tau^{\prime}} F_{\tau \tau^{\prime}} \sqrt{5}\left[Q_{2}(\tau) \otimes Q_{2}\left(\tau^{\prime}\right)\right] 0 .
\end{gather*}
$$

We considered the non-coupled case in the dQRPA basis

$$
\begin{equation*}
\delta \Gamma_{2 \mu}^{\dagger}=\left[a_{l_{1}}^{\dagger} \otimes a_{l_{2}}^{\dagger}\right]_{2 \mu} . \tag{26}
\end{equation*}
$$

Parameters

Single particle spectrum $\epsilon_{l}(\tau)$ is generated by a deformed Woods-Saxon mean field with universal parametrisation
λ_{τ} are determined by number of protons and neutrons conservation
G_{τ} are determined by experimental pairing gaps

$$
\begin{gathered}
F_{\pi \pi}=F_{\nu \nu}=F_{\pi \nu} \text { are determined by } \\
\text { experimental } E_{2} \text { energies. }
\end{gathered}
$$

Thus, $\mathrm{B}(\mathrm{E} 2)$-values (reduced transition probabilities) with a common polarisation parameter $\chi=0.2$ are predicted in all even-even superfluid nuclei with $Z>50$.

Strength function versus excitation energy

D.S. Delion and J. Suhonen, Phys. Rev. C 87, 024309 (2013).

Figure: 1.

We investigated $E: 2^{+} \rightarrow 0^{+}$transitions

 in superfluid even even nuclei for two regions $50<Z<82$ (open circles) $Z>82$ (dark circles)Nuclear chart with magic numbers

$B(E 2)$ values versus excitation energy

Figure : 2.

$B(E 2)$ values versus quadrupole deformation

Figure : 3.

Exp./Theor. values versus excitation energy

Figure : 4.

QQ coupling strengh versus mass number

Figure : 5.

IV. Conclusions

1) Many-body deformed systems can be described in terms of single particle states with good angular momentum in the laboratory system of coordinates.
2) dRPA equations have a similar to the spherical case form.
3) Electromagnetic transitions in all superfluid even-even nuclei are described within dQRPA with a reasonable accuracy
D.S. Delion and J. Suhonen, Phys. Rev. C 87, 024309 (2013).
4) dQRPA was extended to proton-neutron excitations (pn-dQRPA) to analyze Gamow-Teller resonances and $2 \nu \beta \beta$ decays
D.S. Delion and J. Suhonen, Phys. Rev. C 91, 054329 (2015); Phys. Rev. C 95, 034334 (2017).

THANK YOU!

