Overview of RPA from the condensed matter perspective

Lucia Reining Palaiseau Theoretical Spectroscopy Group

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

- 1. History
- 2. Look at the reponse
- 3. Look at a spectral function

4. Look at the total energy

1. History and Definition

Bohm and Pines 1952: response of an electron gas to an effective single particle potential

Equivalence (*Ehrenreich and Cohen 1959*) to the linearized time-dependent Hartree Approximation (*Lindhard 1954*)

RPA ~ bubble approximation (*Hubbard 1957*)

No exchange contribution

2. Look at the response

a. Connection to experiment

b. Long range and short range

c. Failures

Independent electrons and transitions

$$\operatorname{Im}\left[\chi_{0}\right] \sim -\Sigma_{vc} |\langle v|D|c\rangle|^{2} \delta \left(E_{c}-E_{v}-\omega\right)$$

Partial DOS → EELS~XAS

Excitation ?

Induced Hartree: long-range and local field effects

$$\varepsilon = 1 - v\chi_{0} \qquad V_{ext} = \varepsilon \quad V_{tot}$$

$$\varepsilon^{-1} = (1 - v\chi_{0})^{-1} = 1 + v\chi = 1 + v\chi_{0}(1 - v\chi_{0})^{-1}$$

$$\chi = \chi_{0} + \chi_{0} v\chi \qquad \overline{\chi} = \chi_{0} + \chi_{0} \overline{v} \overline{\chi}$$

$$\delta \quad V_{H} / \delta \rho \qquad \delta \quad V_{H} / \delta \rho \quad (micro)$$

$$V_{ind} = v\chi \quad V_{ext} \qquad \delta \quad V_{H} / \delta \rho \quad (micro)$$

$$V_{ind} = v\chi \quad (V_{ext} + V_{ind}^{0})$$

$$Loss: -Im(\chi) \qquad Abs: Im(1/\varepsilon^{-1}) = vIm(\overline{\chi})$$

$TDDFT-RPA: \hat{U} \quad \chi = \chi_{0} + \chi_{0} [v] \chi$

v (q+G) ~ $1/|q+G|^2$ G=0 → plasmon G **‡** 0 → crystal local field effects

$$\varepsilon = 1 - v\chi_{0} \qquad V_{ext} = \varepsilon \quad V_{tot}$$

$$\varepsilon^{-1} = (1 - v\chi_{0})^{-1} = 1 + v\chi = 1 + v\chi_{0}(1 - v\chi_{0})^{-1}$$

$$\chi = \chi_{0} + \chi_{0}v\chi \qquad \overline{\chi} = \chi_{0} + \chi_{0}\overline{v}\overline{\chi}$$

$$\delta \quad V_{H}/\delta \rho \qquad \delta \quad V_{H}/\delta \rho \quad (micro)$$

$$V_{ind} = v\chi \quad V_{ext} \qquad V_{ext} \qquad V_{ind} = v\chi \quad (V_{ext} + V_{ind}^{0})$$
Loss: -Im(χ) 1/q² Abs: Im(1/ ε^{-1})=vIm($\overline{\chi}$)

Sottile et al, Int. J. Quant. Chem. (2002)

Sottile et al, Int. J. Quant. Chem. (2002)

H. Weissker et al., Collaboration LSI – ESRF (ID16)

H. Weissker et al., Collaboration LSI – ESRF (ID16)

RPA including crystal local field effects: \overline{v}

$$\varepsilon = 1 - v\chi_{0} \qquad V_{ext} = \varepsilon \quad V_{tot}$$

$$\varepsilon^{-1} = (1 - v\chi_{0})^{-1} = 1 + v\chi = 1 + v\chi_{0}(1 - v\chi_{0})^{-1}$$

$$\chi = \chi_{0} + \chi_{0} v\chi \qquad \overline{\chi} = \chi_{0} + \chi_{0} \overline{v} \overline{\chi}$$

$$\overline{\chi} = \chi_{0} + \chi_{0} \overline{v} \overline{\chi}$$

$$\delta \quad V_{H} / \delta \rho \qquad \delta \quad V_{H} / \delta \rho \quad (micro)$$

$$V_{ind} = v\chi \quad V_{ext} \qquad V_{ext} \qquad \delta \quad V_{H} / \delta \rho \quad (micro)$$

$$V_{ind} = v\chi \quad (V_{ext} + V_{ind}^{0})$$

$$Loss: -Im(\chi) \qquad Abs: Im(1/\varepsilon^{-1}) = vIm(\overline{\chi})$$

loss function versus momentum orientation

loss function versus momentum orientation

graphite graphene (double spacing)

LFE ——

no LFE -----

LFE tell us about polarizable objects

Rutile TiO₂

Titanium Dioxide

EXP Theory: RPA Theory: no local fields 0.6 0.6 ntegrated Loss Function (arb. unit) 0.4 0.2 0.4 20 0 0.2 0 20 60 40 $E_{loss}(eV)$

Vast, Reining, Olevano, Schattschneider, Jouffrey, PRL 88, 037601 (2002)

Rutile TiO₂ Titanium Dioxide $q \sim 0.4 A^{-1}$ — EXP — Theory: RPA (--) Theory: no local fields 0.6 0.6 0.6 0.6 0.6 0.4

Induced microscopic Hartree potential crucial for inhomogeneous system

Vast, Reining, Olevano, Schattschneider, Jouffrey, PRL <u>88</u>, 037601 (2002)

RPA:
$$\chi = \chi_0 + \chi_0 [v] \chi$$

v (q+G) ~ $1/|q+G|^2$ G=0 → plasmon G \ddagger 0 → crystal local field effects

Graphene, π plasmon

R. Hambach, Diplomarbeit

Graphene, π plasmon

C. Kramberger et al., PRL 100, 196803 (2008)

Isolated carbon nanotube, π plasmon

C. Kramberger et al., PRL 100, 196803 (2008)

Nanotubes and graphene, π plasmon dispersion

C. Kramberger et al., PRL 100, 196803 (2008)

More quantitatively?

H. Weissker et al., Phys. Rev. Lett. **97**, 237602 (2006) Collaboration LSI – ESRF (ID16)

... or even qualitatively?

3. Look at a spectral function

a. Appearance of the (RPA) response function

b. Effects of the (RPA) response function

c. Failures

$A(\omega) \sim Im[G(\omega)]$

From Damascelli et al., RMP 75, 473 (2003)

$$V_{H}(12) = -i\delta(12)G(33^{+})v_{c}(31)$$
 $\Sigma_{x}(12) = iG(12^{+})v_{c}(21)$

$$\Sigma_{\infty}(1,2) = \Sigma_{x} + iG(1\bar{3}) \Xi(\bar{3},\bar{5};2,\bar{6}) L(\bar{6}\bar{2};\bar{5}\bar{2}) v_{c}(\bar{2},1)$$
(1)

$$\Xi(\bar{3},\bar{2},\bar{3}',\bar{2}') := -i\delta(\bar{3}\bar{3}')\delta(\bar{2}',\bar{2})v_{c}(\bar{3}\bar{2}) + \frac{\delta\Sigma_{xc}(\bar{3},\bar{3}')}{\delta G(\bar{2}',\bar{2})}$$
(2)
Interaction = variation of "potential"

$$L(1,2,1',2') = L_{0}(1,2,1',2') + L_{0}(1,\bar{3}',1',\bar{3})\Xi(\bar{3},\bar{2},\bar{3}',\bar{2}')L(\bar{2}',2,\bar{2},2')$$
(3)
What does the system do (create e-h pairs....)

$$L_0(1,2,1',2') = G(1,2')G(2,1')$$
(4)

$$V_{H}(12) = -i\delta(12)G(33^{+})v_{c}(31)$$
 $\Sigma_{x}(12) = iG(12^{+})v_{c}(21)$

$$\Sigma_{\infty}(1,2) = \Sigma_{x} + iG(1\bar{3}) \Xi(\bar{3},\bar{5};2,\bar{6}) L(\bar{6}\bar{2};\bar{5}\bar{2}) \nu_{c}(\bar{2},1)$$
(1)

$$\Xi(\bar{3},\bar{2},\bar{3}',\bar{2}') := -i\delta(\bar{3}\bar{3}')\delta(\bar{2}',\bar{2})v_{c}(\bar{3}\bar{2}) + \frac{\delta\Sigma_{xc}(\bar{3},\bar{3}')}{\delta G(\bar{2}',\bar{2})}$$
(2)
Interaction = variation of "potential"

$$L(1,2,1',2') = L_{0}(1,2,1',2') + L_{0}(1,\bar{3}',1',\bar{3})\Xi(\bar{3},\bar{2},\bar{3}',\bar{2}')L(\bar{2}',2,\bar{2},2')$$
(3)
What does the system do (create e-h pairs....)

$$L_0(1,2,1',2') = G(1,2')G(2,1')$$
(4)

System does nothing: HF Only classical part of Ξ : $L \rightarrow i\chi$, $\Sigma_{xc} \rightarrow iG(v_c + v_c \chi v_c) = iGW$

$$V_{H}(12) = -i\delta(12)G(33^{+})v_{c}(31)$$
 $\Sigma_{x}(12) = iG(12^{+})v_{c}(21)$

$$\Sigma_{\infty}(1,2) = \Sigma_{x} + iG(1\bar{3}) \Xi(\bar{3},\bar{5};2,\bar{6}) L(\bar{6}\bar{2};\bar{5}\bar{2}) \nu_{c}(\bar{2},1)$$
(1)

$$\Xi(\bar{3},\bar{2},\bar{3}',\bar{2}') := -i\delta(\bar{3}\bar{3}')\delta(\bar{2}',\bar{2})\nu_{c}(\bar{3}\bar{2}) + \frac{\delta\Sigma_{xc}(\bar{3},\bar{3}')}{\delta G(\bar{2}',\bar{2})}$$
(2)
Interaction = variation of "potential"

$$L(1,2,1',2') = L_{0}(1,2,1',2') + L_{0}(1,\bar{3}',1',\bar{3})\Xi(\bar{3},\bar{2},\bar{3}',\bar{2}')L(\bar{2}',2,\bar{2},2')$$
(3)

What does the system do (create e-h pairs....)

$$L_0(1,2,1',2') = G(1,2')$$
 W consistently in RPA

System does nothing: HF Only classical part of Ξ : $L \rightarrow i\chi$, $\Sigma_{xc} \rightarrow iG(v_c + v_c \chi v_c) = iGW$

RPA screening in GW?

→ self-consistent screening of Fock exchange

localization

Improve QP energies and wavefunctions

Even qualitatively important - VO₂

monoclinic

Matteo Gatti et al.

T. C. Koethe et al., Phys. Rev. Lett. 97, 116402 (2006).

T. C. Koethe et al., Phys. Rev. Lett. 97, 116402 (2006).

T. C. Koethe et al., Phys. Rev. Lett. 97, 116402 (2006).

LDA insulator \rightarrow metal

M. Gatti, F. Bruneval, V. Olevano and L. Reining, Phys. Rev. Lett. **99**, 266402 (2007)

$G_{0}W_{0}$ insulator \rightarrow metal !!!!!

M. Gatti, F. Bruneval, V. Olevano and L. Reining, Phys. Rev. Lett. **99**, 266402 (2007)

sc GW insulator = insulator !!!

M. Gatti, F. Bruneval, V. Olevano and L. Reining, Phys. Rev. Lett. **99**, 266402 (2007)

Away from the LDA starting point!

- → S. V. Faleev, M. van Schilfgaarde, and T. Kotani, PRL 93, 126406 (2004).
- → Bruneval, Vast, and Reining, Phys. Rev. B 74, 045102 (2006). COHSEX
- → T. Miyake et al., Phys. Rev. B 74, 245231 (2006).*LDA*+*U*
- → F. Fuchs, et al., Phys. Rev. B 76, 115109 (2007). *Hybrids*
- → Hong Jiang et al., , Phys. Rev. Lett. 102, 126403 (2009). LDA+U
- \rightarrow P. Rinke et al., New J. Phys. 7, 126 (2005). *KS-EXX*

→

RPA: flexible screening

...of practical importance: example photovoltaics

Beyond Standard GW

Quasiparticle energies within sc-GW for CIS

	CuInS ₂			
	DFT-LDA	G_0W_0	sc-GW	exp.
Eg	-0.11	0.28	1.48	1.54
In-(S,Se)	6.5	6.9	7.0	6.9
(Se,S) s band	12.4	13.0	13.6	12.0
In 4 d band	14.6	16.4	18.2	18.2
	CuInSe ₂			
		Cu	InSe ₂	
	DFT-LDA	G_0W_0	InSe ₂ sc-GW	exp.
Eg	DFT-LDA -0.29	Cu G ₀ W ₀ 0.25	InSe ₂ sc-GW 1.14	exp. 1.05 (+0.2)
<i>E</i> g In-(S,Se)	DFT-LDA -0.29 5.8	Cu G ₀ W ₀ 0.25 6.15	InSe ₂ sc-GW 1.14 6.64	exp. 1.05 (+0.2) 6.5
<i>E</i> g In-(S,Se) (Se,S) s band	DFT-LDA -0.29 5.8 12.6	Cu G ₀ W ₀ 0.25 6.15 12.9	InSe ₂ sc-GW 1.14 6.64 13.6	exp. 1.05 (+0.2) 6.5 13.0

J. Vidal et al., PRL in press (2010)

Bandgaps in function of structure (Cu-S)

Hybrids ~ approximate GW with almost fixed screening

RPA: dynamical screening

→ Fock exchange

→ Screening

→ Screening (dynamical)

$W(\omega)$ leads to imaginary part

$$G(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{i} \frac{f^{i}(\mathbf{r}) f^{i*}(\mathbf{r}')}{\omega - \varepsilon_{i}}$$
(1)

$$W(\mathbf{r}, \mathbf{r}', \omega) = \frac{1}{|\mathbf{r} - \mathbf{r}'|} + \sum_{s} \frac{2\omega_s V^s(\mathbf{r}) V^s(\mathbf{r}')}{\omega^2 - \omega_s^2},$$
(2)

$$\langle k | \Sigma_c | k \rangle = \sum_{i,s \neq 0} \frac{|V_{ki}^s|^2}{\omega - \omega_s sgn(\mu - \varepsilon_i) - \varepsilon_i}$$
(3)

$$A_k(\omega) = \frac{1}{\pi} |ImG_{kk}(\omega)| = \frac{1}{\pi} \frac{|Im\Sigma_{kk}(\omega)|}{(\omega - \varepsilon_k - Re\Sigma_{kk}(\omega))^2 + (Im\Sigma_{kk}(\omega))^2}$$
(4)

Broadening (lifetime), satellites

Photoemission spectra

From: Koethe et al. PRL 97 (2006)

From: Eguchi et al. PRB 78 (2008)

Identification of the peak: partial DOS

Partial DOS: V s component

GW spectral function

GW spectral function

Role of Surface Plasmons in the Decay of Image-Potential States on Silver Surfaces

A. García-Lekue,¹ J. M. Pitarke,^{1,2} E. V. Chulkov,^{2,3} A. Liebsch,⁴ and P. M. Echenique^{2,3}

PHYSICAL REVIEW B 76, 195116 (2007)

Many-pole model of inelastic losses in x-ray absorption spectra

J. J. Kas,¹ A. P. Sorini,¹ M. P. Prange,¹ L. W. Cambell,² J. A. Soininen,³ and J. J. Rehr¹

VOLUME 87, NUMBER 24 PHYSICAL REVIEW LETTERS

10 December 2001

Anomalous Quasiparticle Lifetime in Graphite: Band Structure Effects

Catalin D. Spataru,^{1,2} Miguel A. Cazalilla,³ Angel Rubio,^{4,5} Lorin X. Benedict,⁶

$W(\omega)$ leads to structured imaginary part

$$G(\mathbf{r}, \mathbf{r}'; \omega) = \sum_{i} \frac{f^{i}(\mathbf{r}) f^{i*}(\mathbf{r}')}{\omega - \varepsilon_{i}}$$
(1)

$$W(\mathbf{r}, \mathbf{r}', \omega) = \frac{1}{|\mathbf{r} - \mathbf{r}'|} + \sum_{s} \frac{2\omega_s V^s(\mathbf{r}) V^s(\mathbf{r}')}{\omega^2 - \omega_s^2},$$
(2)

$$\langle k | \Sigma_c | k \rangle = \sum_{i,s \neq 0} \frac{|V_{ki}^s|^2}{\omega - \omega_s sgn(\mu - \varepsilon_i) - \varepsilon_i}$$
(3)

$$A_k(\omega) = \frac{1}{\pi} |ImG_{kk}(\omega)| = \frac{1}{\pi} \frac{|Im\Sigma_{kk}(\omega)|}{(\omega - \varepsilon_k - Re\Sigma_{kk}(\omega))^2 + (Im\Sigma_{kk}(\omega))^2}$$
(4)

Broadening (lifetime), satellites

 VO_2

T. C. Koethe et al., Phys. Rev. Lett. 97, 116402 (2006).

see also Exp.: Abe et al. Jpn. J. Appl. Phys (1997)

Silicon

Kheifets, Sashin, Vos, Weigold, Aryasetiawan, PRB 68, 233205 (2003)

Satellites qualitative.

But coupling to excitations overall important

 \rightarrow renormalizes energies \rightarrow explains lifetimes \rightarrow gives rise to van der Waals *e.g. Garcia Gonzalez* + *Godby*, *PRL* 88, 056406 (2002) \rightarrow distorts bands e.g. Trevisanutto et al., PRL 101, 226405 (2008); Park et al., PRL 102, 076803 (2009)

→ can be generalized (e.g. phonons) e.g. A. Marini, PRL 101,106405 (2008) e.g. Eiguren + Ambrosch Draxl, PRL 101, 036402 (2008)

Is there anything **BAD** about the RPA W in GW?

→ Fock exchange

→ Screening

→ Screening (dynamical)

→ Widely valid and efficient

→ Room for speedup

$$\Sigma_{xc}(1,2) = \Sigma_x + iG(1\bar{3})\Xi(\bar{3},\bar{5};2,\bar{6})L(\bar{6}\bar{2};\bar{5}\bar{2})v_c(\bar{2},1)$$
(1)

$$\Xi(\bar{3},\bar{2},\bar{3}',\bar{2}') := -i\delta(\bar{3}\bar{3}')\delta(\bar{2}',\bar{2})v_c(\bar{3}\bar{2}) + \frac{\delta\Sigma_{xc}(\bar{3},\bar{3}')}{\delta G(\bar{2}',\bar{2})}$$
(2)
Interaction – variation of "potential"

 $L(1,2,1',2') = L_0(1,2,1',2') + L_0(1,\bar{3}',1',\bar{3}) \Xi(\bar{3},\bar{2},\bar{3}',\bar{2}') L(\bar{2}',2,\bar{2},2')$ (3)

What does the system do (create e-h pairs....)

$$L_0(1,2,1',2') = G(1,2')G(2,1')$$
(4)

System does nothing: HF Only classical part of Ξ : L \rightarrow i χ , $\Sigma_{xc} \rightarrow$ iGW

Additional particle interacts in a classical way

2 site 1 electron Hubbard model; P. Romaniello et al. JPC 2009

2 site 1 electron Hubbard model; P. Romaniello et al. JPC 2009

$$\Sigma_{xc}(1,2) = \Sigma_x + iG(1\bar{3})\Xi(\bar{3},\bar{5};2,\bar{6})L(\bar{6}\bar{2};\bar{5}\bar{2})v_c(\bar{2},1)$$
(1)

$$\Xi(\bar{3},\bar{2},\bar{3}',\bar{2}') := -i\delta(\bar{3}\bar{3}')\delta(\bar{2}',\bar{2})v_c(\bar{3}\bar{2}) + \frac{\delta\Sigma_{xc}(\bar{3},\bar{3}')}{\delta G(\bar{2}',\bar{2})}$$
(2)
Interaction = variation of "potential"

$$L(1,2,1',2') = L_0(1,2,1',2') + L_0(1,\bar{3}',1',\bar{3})\Xi(\bar{3},\bar{2},\bar{3}',\bar{2}')L(\bar{2}',2,\bar{2},2')$$
(3)

What does the system do (create e-h pairs....)

$$L_0(1,2,1',2') = G(1,2')G(2,1')$$
(4)

System does nothing: HF Only classical part of Ξ : $L \rightarrow i\chi$, $\Sigma_{xc} \rightarrow iGW$ Better Ξ : e.g. T-matrix approach

We are used to solve 2-particle equations: BSE

$$\Sigma_{xc}(1,2) = \Sigma_x + iG(1\bar{3})\Xi(\bar{3},\bar{5};2,\bar{6})L(\bar{6}\bar{2};\bar{5}\bar{2})v_c(1,\bar{2})$$
(1)

$$\Xi(\bar{3},\bar{2},\bar{3}',\bar{2}') := -i\delta(\bar{3}\bar{3}')\delta(\bar{2}',\bar{2})v_c(\bar{3}\bar{2}) + \frac{\delta\Sigma_{xc}(\bar{3},\bar{3}')}{\delta G(\bar{2}',\bar{2})}$$
(2)

 $L(1,2,1',2') = L_0(1,2,1',2') + L_0(1,\bar{3}',1',\bar{3}) \Xi(\bar{3},\bar{2},\bar{3}',\bar{2}') L(\bar{2}',2,\bar{2},2')$ (3) **Dyson-like equation: BSE**

$$L_0(1,2,1',2') = G(1,2')G(2,1')$$
(4)

Electron-hole interaction

Excitonic effects

Bethe-Salpeter Equation

Like in GW:

4. Look at the total energy

Adiabatic connection fluctuation dissipation theorem (ACFDT)

$$E_{\mathrm{X}}^{\mathrm{EXX}}[n] = -2 \times \frac{1}{2} \sum_{nm}^{\mathrm{occ}} \int \mathrm{d}^{3}\mathbf{r} \, \mathrm{d}^{3}\mathbf{r}' \, \frac{c_{nm}(\mathbf{r}) \, c_{mn}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

 $c_{nm}(\mathbf{r}) = \phi_n^*(\mathbf{r}) \ \phi_m(\mathbf{r}).$

$$E_{\rm C}[n] = -\int_0^\infty \frac{\mathrm{d}u}{2\pi} \int_0^1 \mathrm{d}\lambda \int \mathrm{d}^3 \mathbf{r} \, \mathrm{d}^3 \mathbf{r}' \frac{1}{|\mathbf{r} - \mathbf{r}'|} \times [\chi_\lambda(\mathbf{r}, \mathbf{r}'; \mathrm{i}u) - \chi_0(\mathbf{r}, \mathbf{r}'; \mathrm{i}u)]$$

.....in DFT framework

Total energy in GW framework

$$\Phi_{GW} = \frac{1}{2} Tr \left[GV_H \right] + \frac{1}{2} Tr \left[G\Sigma_x \right] - Tr \left[\frac{1}{4} (v_c GG)^2 + \frac{1}{6} (v_c GG)^3 + \dots \right]$$
$$= \frac{1}{2} Tr \left[GV_H \right] + \frac{1}{2} Tr \left[G\Sigma_x \right] + \frac{1}{2} Tr \left[v_c GG + \ln(1 - v_c GG) \right].$$

$$\Omega_{Klein}[G_s] = \Phi[G_s] - Tr(G_0^{-1}G_s - 1) - Tr\ln(-G_s^{-1})$$

$$E^{GWA,s} = \Omega_{Klein}[G_s] + \mu N =$$

$$= \langle \Psi_s | \hat{H} | \Psi_s \rangle + \frac{1}{2} Tr \left[v_c G_s G_s + ln(1 - v_c G_s G_s) \right]$$

.....evaluated at $G=G_s$, equivalent to RPA ACFDT

First-Principles Description of Correlation Effects in Layered Materials

Andrea Marini,¹ P. García-González,² and Angel Rubio^{3,4}

RPA+ : because **RPA** has deficiencies

Uniform gas correlation energy too negative. Can be corrected by LDA like term. S. Kurth and J. P. Perdew, Phys. Rev. B 59, 10 461 (1999); M. Lein, E. K. U. Gross, and J. P. Perdew, Phys. Rev. B 61, 13 431 (2000).

Conclusions

RPA = simplest way to include response === a lot of physics!!!

Spectra: plasmons, crystal LFE, but e.g. no excitons (Hartree only!!!)

Many-body effects: renormalization of energies, lifetimes plasmon satellites but no "strong correlation"

Total energies: long range contributions, improved correlation energies

Conclusions

RPA = simplest way to include response === a lot of physics!!!

Spectra: plasmons, crystal LFE, but e.g. no excitons

RPA = excellent starting point for doing better

Many-body effects:

renormalization of energies,

lifetimes

plasmon satellites

but no "strong correlation"

Total energies: long range contributions, improved correlation energies
Palaiseau Theoretical Spectroscopy Group

Thank you!!!