The ELF and NCI analysis Training session

J. Contreras-Garcia

R. Chaudret

Silvi, B.; Savin, A. Nature **1994**, 371, 683. Piquemal, J. P. Int. J. Quant. Chem. **2008**, 108, 1951. Johnson, E. R. J. Am. Chem. Soc. **2010**, 132, 6498. Contreras-Garcia, J. J. Chem. Theo. Comput. **2011**. 7, 625.

ELF, AIM, NCI: Summary

Method	AIM	ELF	NCI
Function	density	Pauli kinetic energy density	Reduced density gradient
Chemical meaning	Atoms	Lewis pairs	Non covalent interactions
Critical points	Maxima=atoms	Maxima=Lewis pairs	Minima=NCIs

The ELF analysis

- Visualization of bonds, lone pairs and atoms
- ➤ Link with Lewis or VSEPR theory → Easy to understand for the chemist
- > Integration of different properties on the basins (charge, dipole, volume...)

The NCI analysis

The NCI analysis

1- Strength The electronic density is proportional to the strength of the interaction (AIM)

ρ (a.u.)

2-Nature

ρ < 0 λ < 0		ρ≈0 λ≈0	ρ > 0 λ > 0
	attraction		repulsion
Hydrogen bo	ond	Vdw interactions	Steric clashes

The NCI analysis

1- Strength The electronic density is proportional to the strength of the interaction (AIM)

ρ (a.u.)

2-Nature

Exercices NCI

Silvi, B.; Savin, A. *Nature* **1994**, *371*, 683. Piquemal, J. P. *Int. J. Quant. Chem.* **2008**, *108*, 1951. Johnson, E. R. *J. Am. Chem. Soc.* **2010**, *132*, 6498. Contreras-Garcia, J. *J. Chem. Theo. Comput.* **2011**. *7*, 625.

Analysis of the intramolecular hydrogen bond in catechol molecule

- 1. Run promolecular and wfn NCI analysis for catechol and comment the results. What is unexpected?
- 2. Associate every spike in the 2D plot to molecular interactions using gnuplot and VMD for both promolecular and wfn.

What are the differences?

What is similar?

Input file

- Different type of input: wfn / xyz
- Different possible keywords
- > More information in NCI-manual.pdf

Running simulation

1- (already done but don't forget to set up the NCI environment)

Ex: setenv NCIPLOT_HOME /home/irsrvhome1/R07/chaudrer/programmes/nciplot

(Needed to find the promolecular densities stored)

2- Run NCI : nciplot NCI.inp >NCI.out

NCI analysis

Output files

NCI.out :

1.Opening

2.If promolecular : look for the atomic densities

3. Display the input information (keywords)

4. Display the parameters for the calculation

Coordinates of the starting point of the grid

Coordinates of the ending point of the grid

Step (x, y, z)

Number of steps (x, y, z)

5. Display the name of the other output files

NCI analysis

Output files

NCI.dat:

Contains all the values of ρ and $s(\rho)$

(to plot the 2D graph)

To plot NCI.dat with gnuplot:

- 1. Open gnuplot
- 2. Enter: plot "NCI.dat"
- 3. The 2D graph should appear

Output files

NCI-*.cube

NCI.vmd

Use vmd to analyse

vmd-tutorial.pdf in the documents

Open a file

- 1. Open VMD : vmd
- 2. File > Load Visualisation State

VMD Main	1			. 🗆	x		
File Molecule Graphics Di	isplay	Mouse	Extensions	Help			
New Molecule		Atoms	Frame	es Vol			
Save Coordinates							
Load Visualization State						$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	vmd –e NCI.vmd
Save Visualization State						(
Log Tcl Commands to Console	2						
Log Tcl Commands to File	-						
Turn Off Logging	p	spee	d				
Render		The second	No. of Concession, Name	-			
2 Quit							

- 3. Select NCI.vmd
- 4. Open

Graphical Representations _ 🗆 X **Graphics > Representation** Selected Molecule 0: opoh-alone-dens.cube • Create Rep Delete Rep Style Color Selection Lines Name all CPK Name index 0 to Isosurface Volume 0 <volume> • + Selected Atoms all Draw style | Selections | Trajectory Periodic | ♦ Update Selection Every Frame Color range ♦ Update Color Every Frame Color Scale Data Range: -7.00 7.00 Set Autoscale Draw Multiple Frames: (now, b:e, b:s:e) now Trajectory Smoothing Window Size: **F** 0

Graphics > Color

- Display > Background > White
- \rightarrow Set the background white
- Name > C > Black
- \rightarrow Set the Carbon atoms black
- Color Scale : change the color scale of the interactions (here blue < green < red)

ig imes Color Controls			_ ×
Assign colors to cat	tegories:		
Categories	Names	Colors	
Display Axes Name Type Element Resname		0 blue 1 red 2 gray 3 orange 4 yellow 5 tan	•
Color Definitions Col 0 blue 1 red 2 gray 3 orange 4 yellow 5 tan	lor Scale	Default	

Rendering

Print an image:

Select the rendering mode you prefer (snapshot for exemple) Give a file name (NCI.tga for exemple) Click on "Start Rendering"

Exercices ELF

Silvi, B.; Savin, A. *Nature* **1994**, *371*, 683. Piquemal, J. P. *Int. J. Quant. Chem.* **2008**, *108*, 1951. Johnson, E. R. J. Am. Chem. Soc. **2010**, *132*, 6498. Contreras-Garcia, J. J. Chem. Theo. Comput. **2011**. *7*, 625.

1. Perform ELF analysis and obtain the elf and esyn cubes for ethane, ethylene

(ethane), ethyne, choloro-ethane and ethanol molecule.

2. Visualize the cube files using VMD and color then using the esyn cubes. How is

the C-C bond evolving? Visualize the lone pairs for ethanol and chloro-ethane

molecules. Can you explain the differences?

ELF input files

General presentation

To run a complete ELF analysis there are 4 different steps using 3 programms:

- Compute ELF and AIM fonction on every point of a grid Use top_grid or grid09
- Decompose the ELF volume Use top_bas or bas09
- Decompose the AIM volume
 Use top_bas or bas09
- Can be interverted

4. Integrate different properties

Use top_pop, top_chem or pop09

Here the name of the .wfn and the title within the wfn should be similar

Input file (can also be done interactively)

The output are sbf files that can be transformed into cube files :

sbf_to_cube

Grid09

Output files

Grid09 output files are .sbf files

Use sbf_to_cube

Visualize cube file with vmd:

File > New Molecule...

Input file for ELF (can also be done interactively)

Input file for density (can also be done interactively)

Output files

- 1. Attractor (ELF or density) x,y,z coordinates
- 2. Time spent for the calculation
- 3. Distance of each (valence) attractor from nuclei (ELF only)
- 4. Angle between attractors (ELF only)

AIM: only atomic attractors

Input file (can also be done interactively)

Pop09 output file

Output files

First ELF then AIM

1. Integrated properties for all basins: volume, population, $p\alpha\beta$, $p\alpha\alpha$, $p\beta\beta$, ...

2. Orbital contribution for all basins

3.Atomic contribution for all basins (ELF only)

- $4.\alpha$ spin covariance matrix and its correlation coefficients
- 5. Total covariance matrix and its correlation coefficients

Exercices ELF/NCI

Silvi, B.; Savin, A. *Nature* **1994**, *371*, 683. Piquemal, J. P. *Int. J. Quant. Chem.* **2008**, *108*, 1951. Johnson, E. R. *J. Am. Chem. Soc.* **2010**, *132*, 6498. Contreras-Garcia, J. *J. Chem. Theo. Comput.* **2011**. *7*, 625.

ELF/NCI for reaction mechanisms

Running calculations

- > Need the different wfn files from the reaction coordinate
- > Run several small scripts to get the calculation automated
- ATTENTION: For ELF prepare the grid input so that it includes all the atoms of all the structures (get a larger grid)
- Modify the "general" input files
- Run scripts: sh make_elf.sh (do all the ELF calculations)

sh make_nci.sh (do all the NCI calculations)

Creation of several new folders to store out, dat, sbf and cube files

ELF/NCI for reaction mechanisms

Getting the films

- copy result/elf_nci_visualization.pl and result/example-input-vmd-file in cube
- ➤ modify input file :
 - NAME name: put the wfn names (NAME-[number].wfn
 - GEOM n1 n2 n3: [number] going from n1 to n2 by step of n3
 - REPRESENTATION [CPK/line/licorice]: VMD representation
 - ELF n: ELF cutoff = n
 - NCI n1 n2 n3: density cutoff = n1, density ranking from n2 to n3
 - set viewpoint...: use vmd to get the desired view of the system
- ./elf_nci_visualization.pl input output vmd-surface-output (vmd-attractor output)
- run vmd to get the tga files: vmd –e vmd-surface-output
- copy, modify and run result/tga2gifanim

- 1. Perform the ELF/NCI scripts.
- 2. Obtain the film with your selected cutoffs, color range and view.
- 3. Look at the different ELF output. What is the evolution of the populations of the

different important basins? Does that correspond to the NCI analysis evolution?

Congrats!

You finished

Ethane

Ethylene

Ethine

Ethanol

Chloro-ethane

Catechol

