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Foundations of density functional theory

No proofs ...

... although simple and enlightening.
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Foundations of density functional theory Definitions and notations

Operators

H = T + Vne + Vee : Hamiltonian

T = −(1/2)
∑N

i=1∇2
i : Kinetic energy

Vne =
∑N

i=1 vne(ri ): Interaction between electrons and nuclei

Vee =
∑N

i<j 1/|ri − rj |: Interaction between electrons

A. Savin Trujillo 2016 5 / 38



Foundations of density functional theory Definitions and notations

Wave function and density

Ψ: general wave function

φi : orbitals

Φ: Slater determinant

ρΨ(r1) = N
∫
��
�HHHd3r1d

3r2 . . . |Ψ|2: density

ρΦ =
N∑
i=1

|φi |2

Remark ∫
ρ(r)d3r = N
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Foundations of density functional theory Definitions and notations

Particle Density, ρ(r)

average number of particles in the volume element around r

volume of that element

r

ρ

A. Savin Trujillo 2016 7 / 38



Foundations of density functional theory Definitions and notations

Density Functional

ρ(r) 7→ F
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Foundations of density functional theory Definitions and notations

Theory

Hohenberg-Kohn theorem: obtaining the ground state energy and density
by a variation principle.

E0 = min
Ψ
〈Ψ|T + Vne + Vee |Ψ〉 = min

ρ

(
F [ρ(r)] +

∫
ρ(r)vne(r)d3r

)
Usually, E0 from N and vne that give H
HK: E0 from ρ and vne .

Trivial, as ρ→ N? No.

Simple form of the only term where vne enters: all effort has to be put into F ,
independent of vne .

Extra effort for obtaining F is considerable. Guideline for cheap approximations?
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Foundations of density functional theory Accurate functionals

Accurate functionals

F [ρ] = min
Ψ→ρ(r)

〈Ψ|T + Vee |Ψ〉

Examples

N Vee F
∫
ρv E comment

1 0 0.5 -1 -0.5 H atom, ρ = N
π e
−2r

2 0 1 -2 -1 Non-interacting H−, ρ = N
π e
−2r

2 1/r12 0.84 -1.37 -0.53 Interacting H−, v known, ρ calc. a

2 1/r12 1.59 -3.26 -1.67 ρ = N
π e
−2r , ρ known, v calc. b

aFreund+Huxtable+Morgan,1984; Umrigar+Gonze, 1994
bColonna+AS, 1999
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Foundations of density functional theory Response functions

Response functions, χ

Relationship between small changes in the potential and in the density:

δρ(r) =

∫
χ(r , r ′)δv(r ′)d3r ′

Result of first-order perturbation theory

Density in r is affected by a change of potential in r ′

Hydrogen atom Z = 1→ Z = 1 + ε

1 2 3 4 5

r

-2.0

-1.5

-1.0

-0.5

δv

1

ε

1 2 3 4 5

-0.25

0.25

0.5

0.75

4 π r
2 δρ / ε

1 2 3 4 5

r

0.2

0.4

0.6

0.8

1.0

δρ / ε
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Foundations of density functional theory Response functions

Understanding the response functions, χ

Even δv(r) = δ(r − r0) produces changes in r 6= r0: δρ(r) = χ(r , r0)

χ(r , r0)r2r2
0 for He

Colonna+Allavena+AS, 2001
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Methods used in the framework of DFT The Kohn-Sham method

The Kohn-Sham method

E0 = min
Ψ
〈Ψ|T + Vne |Ψ〉+ Ehxc [ρΨ(r)]

Ehxc corrects for the part missing in 〈Ψ|T + Vne |Ψ〉

Features

A choice

Still exact, in principle

Variation of Ψ gives a Schrödinger equation for non-interacting
particles:

(T + VKS)ΨKS = EKSΨKS
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Methods used in the framework of DFT Functionals for the Hartree, exchange, correlation energies

Functionals for the kinetic, exchange, correlation energies

Eh[ρ] =
1

2

∫ ∫
d3r1d

3r2 ρ(r1)ρ(r2)/r12

Exc [ρ] = Ehxc [ρ]− Eh[ρ]

Ex [ρ] = 〈ΨKS |Vee |ΨKS〉 − Eh[ρ]

Ec [ρ] = Exc [ρ]− Ex [ρ]

. . . and hybrids

Motivations

Eh: electrostatics (〈Vne〉, 〈Vnn〉 always treated exactly)

Exc : treating on same footing exchange and correlation; exchange is statistically
“correlation”);
also compensation in approximations

Ec : smaller contribution to approximate

hybrids (some Ex): partitioning is arbitrary, anyhow.
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Methods used in the framework of DFT Exact properties of functionals

Exact properties of functionals

Useful when constructing approximations (M. Levy, et al.) Scaling

Ψλ(r1, r2, . . . ) = λ3N/2Ψ(λr1, λr2, . . . )

Ψλ is normalized to 1

Basic idea: minΨ contains minλ Ψλ(r)

Examples

ρλ(r) = ρ(r ,Ψλ) = λ3ρ(λr)

Eh[ρλ] = λEh[ρ]

Ex [ρλ] = λEx [ρ]
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Tools for constructing approximations, and extending DFT Adiabatic connection

Adiabatic connection

With H(µ) = T + V (µ) + W (µ) there is a Hohenberg-Kohn theorem, and
functional Fµ[ρ].
Choose µ = 0 for the Kohn-Sham system, µ =∞ for the physical system.

Ehxc =

∫ ∞
0

dµ 〈Ψ(µ)|W ′(µ)|Ψ(µ)〉

Ψ(µ) is the eigenfunction of H(µ)

Langreth+Perdew 1975, Yang 1998, . . .
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Tools for constructing approximations, and extending DFT Hybrids

Hybrids

Reason to start the adiabatic connection with the Kohn-Sham system:
non-interacting system is computationally efficient

Reason to start the adiabatic connection somewhere else:
getting closer to the physical system

Ehxc(µ0) =

∫ ∞
µ0>0

dµ 〈Ψ(µ)|W ′(µ)|Ψ(µ)〉
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Approximations for density functionals LDA

Local Density Approximation

Assumption of universality for the ansatz

E... ≈
∫

d3r e... (ρ (r)) =

∫
d3r ρ ε... (ρ (r))

Change of notation: e...(ρ) = ρ ε...(ρ)

Uniform electron gas: a reasonable choice for finding ε

ρ(r) independent of r
E... ≈

∫
d3r ρ ε...(ρ) = ε...(ρ)

∫
d3r ρ = N ε...(ρ)

ε... (ρ (r)) = (E...(ρ(r))/N)UEG
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Approximations for density functionals Semi-local approximations

Semi-local approximations

Some ansatz of the form:

E... ≈
∫

d3r e... (ρ (r) , |∇ρ|, . . . )

i.e., including derivatives, too.
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Approximations for density functionals Hybrids

Hybrids

Correct the energy of the model

H(µ0) = T + V (µ0) + W (µ0), µ0 > 0

with some approximations both for

the correction Ehxc(µ0), and

for the solution of H(µ0)Ψ(µ0) = E (µ0)Ψ(µ0)

Combination with Hartree-Fock:
Ψ(µ0) restricted to a single Slater determinant
Combination with multi-reference methods (CI, CC, PT, . . . ):
Ψ(µ0) as a linear combination of Slater determinants
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Approximations for density functionals Spin-densities

Spin densities

Most functional approximations depend on
ρ↑ and ρ↓ (spin-up and spin-down densities).

For a single Slater determinant
ρ↑(r) =

∑
i ,spin up |φi (r)|2

ρ↓(r) =
∑

i ,spin down |φi (r)|2

ρ↑ + ρ↓ = ρ

ρ↑ − ρ↓ = σ

σ: spin density
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Methods for excited states

Methods for excited states

Time-dependent DFT

∆SCF

Orbital energy differences

. . .
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Main limitations of approximations Systematic improvement

Systematic improvement

What is systematic improvement?

Next level result better?
Not for most computed quantities in quantum chemistry.

Defining a path toward the exact result?
In wave function methods, not in DFAs.

Smaller rigorous error bars at the higher level?
No useful rigorous error bars in quantum chemistry.

Smaller experience defined error bars at higher level?
In DFAs.
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Main limitations of approximations Treatment of degeneracy and size-consistency

Treatment of degeneracy and size-consistency

Unsolved problem in DFAs. Also problem with spin-densities.
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Main limitations of approximations Methods related to DFT

Local potentials

Kohn-Sham produces local potentials that decay ∝ 1/r : better than
Hartree-Fock, e.g., for excited states.

Using Kohn-Sham like potentials

optimized effective potentials

“exact exchange”

. . .

Active field.
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Main limitations of approximations Methods related to DFT

Random phase approximation

RPA much used in nuclear physics.
Proposes approximation for pair density.
As related to change of density with change in external potential (χ),
considered connected to DFT.

A. Savin Trujillo 2016 31 / 38



Main limitations of approximations Judging approximations

Judging approximations
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Main limitations of approximations Judging approximations

Concepts from statistics

Large data sets used for judging if a given approximation is better than
another.

Caution !
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Main limitations of approximations Judging approximations

Benchmarks and their limits
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Main limitations of approximations Judging approximations

Two properties, A and B , and two questions

1 Is property B (e.g., bulk modulus) well reproduced, and is property A
(e.g., lattice constant well) reproduced?

2 Is the bulk modulus good, when the lattice constant is good?
(e.g., lattice constant can be checked, and trusted, but no
information about the bulk modulus)

Check benchmark paper

In the table for A method X works best.
In the table for B, method X is also the best.
Should one use method X for the questions above?

Most benchmark papers do not allow us to answer such questions

1 P(A ∩ B)
2 P(B|A)

while benchmark about P(A) and P(B).
Civalleri, Dovesi, Pernot, Presti, AS 2016
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Main limitations of approximations Judging approximations

Two properties: Maths

Results with density functional approximation X

A: lattice constant 'good'
B: bulk modulus 'good'

Results with density functional approximation Y

A: lattice constant 'good'
B: bulk modulus 'good'

P(A) = n(A)/n(total): probability to obtain a good lattice constant

P(A∩B) = n(A∩B)/n(total): probability to obtain a good lattice constant and a
good bulk modulus

P(A|B) = n(A ∩ B)/n(A) = P(A ∩ B)/P(A): probability to obtain a good bulk
modulus if the lattice constant was good
P(A ∩ B) and P(A|B) both refer to n(A ∩ B), but have different ”normalization”
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Main limitations of approximations Judging approximations

Two properties: DF example

Errors: Lattice constant < 1pm, bulk modulus < 4GPa
DF P(A) P(B) P(A ∩ B) P(B|A)

LDA 0.11 0.43 0.07 0.64

PBEsol 0.25 0.50 0.07 0.28

Errors: Lattice constant < 2pm, bulk modulus < 4GPa
DF P(A) P(B) P(A ∩ B) P(B|A)

LDA 0.39 0.43 0.29 0.74

PBEsol 0.39 0.50 0.14 0.36

Errors: Lattice constant < 3pm, bulk modulus < 4GPa
DF P(A) P(B) P(A ∩ B) P(B|A)

LDA 0.54 0.43 0.29 0.54

PBEsol 0.61 0.50 0.32 0.52

Remark: Sample size (28) is too small to draw conclusions about functionals
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Conclusion

Conclusion

Speaker: I use DFT, because it is an easy to use black box, and does not
require much thinking.
K. Ruedenberg: Why is it a bad thing to think?

35th Midwest Theoretical Chemistry Conference, Ames (2003)
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