

Gogny-based optical potential

G. Blanchon, R. Bernard, M. Dupuis, H. F. Arellano

CEA, DAM, DIF F-91297 Arpajon, France

TALYS: A.J. Koning, S. Hilaire, M. Duijvestijn, in Proceeding of the International Conference on Nuclear Data for Science and Technology-ND2007 (EDP Sciences, Paris, France, 2008), pp. 211–214

\rightarrow Nuclear Structure Method for scattering

N. Vinh Mau, Theory of nuclear structure (IAEA, Vienna) p. 931 (1970)

NSM & EDF extended reach

Spherical HF (~10 nuclei)

G. Blanchon, M. Dupuis, H. Arellano, N. Vinh Mau, Phys. Rev. C (2015)
G. Blanchon, M. Dupuis, H. Arellano, Eur. Phys J. A, 51 12 (2015) 165

NSM & EDF extended reach

HFB+QRPA Potential

> Nonlocal Coupled channels

Spherical HFB (~300 nuclei)

Collaboration with R. Bernard and S. Péru (CEA, DAM, DIF)

NSM & EDF extended reach

Deformed HFB (~6000 nuclei)

"Non-local microscopic potentials for calculation of scattering observables of nucleons on deformed nuclei"

Collaboration with H. Arellano

Observables

NUCLEAR STRUCTURE METHOD FOR SCATTERING

From NN interaction to the optical potential

Cez

Optical potential

Bare Interaction

Gogny D1S interaction has been designed anticipating the inclusion of particle-vibration couplings

Issue : The resulting potential is not dispersive ...

Self-consistency

Schrödinger equation

Schrödinger equation

HF

- Coordinate representation
- Treatment of the continuum (SP resonances)

RPA

- Oscillator basis including 15 major shells
- Excited states up to J = 8 with both parities

Self energy \rightarrow optical potential The resulting potential is nonlocal, complex and energy dependent

Nonlocal potential & Schrödinger equation

Integro-differential Schrödinger equation

$$-\frac{\hbar^2}{2m}\left[\frac{d^2}{dr^2}-\frac{l(l+1)}{r^2}\right]u_{lj}(r)+\int dr' r\nu_{lj}(r,r';E)r'u_{jl}(r')=E\ u_{lj}(r)$$

- Radial mesh
- Solution obtained by matrix inversion
- Connection to asymptotic \rightarrow phaseshift \rightarrow observables

No use of local version

$$-\frac{\hbar^2}{2m}\left[\frac{d^2}{dr^2}-\frac{l(l+1)}{r^2}\right]u_{lj}(r)+\nu_{lj}(r;E)u_{jl}(r)=E\ u_{lj}(r)$$

Coupling to a single target excited state

- ▶ p+⁴⁰Ca scattering
- Coupling to the first 1⁻ state of ⁴⁰Ca with E₁⁻ = 9.7 MeV

- Importance of the intermediate single particle resonances
- Strong impact on reaction cross section

HF phaseshift

NUCLEON SCATTERING OFF N=Z TARGET NUCLEUS

Elastic scattering $n/p + {}^{40}Ca$

Integral cross sections $n/p + {}^{40}Ca$

▶ p + ⁴⁰Ca

▶ n + ⁴⁰Ca

- Compound elastic from Haüser-Feshbach with Koning-Delaroche potential
- Use of phenomenological width for the excited states of the target.

Integral cross sections $n/p + {}^{40}Ca$

▶ p + ⁴⁰Ca

- Compound elastic from Haüser-Feshbach with Koning-Delaroche potential
- Use of phenomenological width for the excited states of the target.

Width sensitivity (n+⁴⁰Ca @ 25 MeV)

Integral cross sections $n/p + {}^{40}Ca$

▶ p + ⁴⁰Ca

- Compound elastic from Haüser-Feshbach with Koning-Delaroche potential
- Use of phenomenological width for the excited states of the target.

 Perspective: microscopic determination of energy widths and shifts: 2p-2h coupling (N. Pillet)

Cross section and Analyzing powers $n/p+^{40}Ca$

NSM (full line) Koning-Delaroche (dashed line)

- Good agreement with cross section data below 30 MeV.
- In terms of energy regime, NSM is complementary to g-matrix approaches.
- Good agreement with analyzing powers data: correct behaviour of the "spin-orbit" term of the potential.
- Effective interaction fitted from structure data + fission barriers

Microscopic and phenomenological potentials

Cea

Potential for n + ${}^{40}Ca$ @ 10 MeV

DAM

- NSM potential
- ▶ Non Local Dispersive (NLD) potential fitted on all the available data for ⁴⁰Ca $\nu_{lj}(\mathbf{r},\mathbf{r}') = \iint d\hat{\mathbf{r}} d\hat{\mathbf{r}}' \mathcal{Y}_{jl}^m(\hat{\mathbf{r}}) V(\mathbf{r},\mathbf{r}') \mathcal{Y}_{jl}^{m\dagger}(\hat{\mathbf{r}}')$

Figure : $s = |\mathbf{r} - \mathbf{r'}|$

NLD: M.H. Mahzoon et al. , Phys. Rev. Lett. 112, 162503 (2014)

NUCLEON SCATTERING OFF N>Z TARGET NUCLEUS

Cross section and Analyzing powers $n/p+^{48}Ca$

NSM (full line) Koning-Delaroche (dashed line)

- Good agreement with cross section data for n + ⁴⁸Ca
- Lack of absorption for p + ⁴⁸Ca

TALYS

- NSM potential describes direct components
- Need for two-fold charge exchange (p, n, p)

PB-like equivalent of the imaginary NSM potential

 $p + {}^{48}Ca$:

Perey-Buck ansatz :

 $W^{n/p}(\mathbf{r}, \mathbf{r}'; E) = H(\mathbf{s}, \beta_{v}) W_{v}^{n/p}(E) f(R, r_{v}, a_{v}) + 4H(\mathbf{s}, \beta_{s}) W_{s}^{n/p}(E) a_{s} f'(R, r_{s}, a_{s})$ $f(r, r_{0}, a) = \left[1 + \exp\left(\frac{r - r_{0}A^{1/3}}{a}\right)\right]^{-1} WS \text{ form factor}$ $H(\mathbf{s}, \beta) = \frac{1}{\pi^{3/2}\beta^{3}} \exp\left(-\left|\frac{\mathbf{s}}{\beta}\right|\right) \quad \text{Gaussian nonlocality}$

with R = (r + r')/2 and $\mathbf{s} = \mathbf{r} - \mathbf{r'}$

PB-like equivalent of the imaginary NSM potential

 $W^{n/p}(\mathbf{r},\mathbf{r}';E) = H(\mathbf{s},\beta_{v})W_{v}^{n/p}(E)f(R,r_{v},a_{v}) + 4H(\mathbf{s},\beta_{s})W_{s}^{n/p}(E)a_{s}f'(R,r_{s},a_{s})$

Fit parameters :

r _v	rs	a _v	as	β_v	β_s
0.78	1.254	0.49 (⁴⁰ Ca) 0.78 (⁴⁸ Ca)	0.44	0.35	1.1

Check of reliability of the fit :

PB-like equivalent of the imaginary NSM potential

Magnitudes :

Lane consistency (already discussed by Osterfeld)

- Proton/neutron asymmetry of the target yields a bigger proton surface potential than the neutron one
- Volume imaginary potential decreases with asymmetry for protons and neutrons

NSM/Lane potential

Approximate method to recover proton absorption

Lane model assumes isospin symmetry in nuclei :

$$V^{(n/p)} = V_0 \pm \frac{(N-Z)}{2A} V_1$$
 with $V^{n/p}(E - E_F^{n/p})$

in reality, one gets

$$V^n - V^p = \frac{N-Z}{A}V_1 - V_{cc}$$

 V_{cc} : isospin non-conserving Coulomb corrections in the second order term

 $V_{cc} pprox 0$ in the case of 40 Ca

$$V^n({}^{40}Ca) \approx V^p({}^{40}Ca) \approx V_0^{FIT}({}^{40}Ca)$$

and assuming NSM provides nice results for $n+^{48}$ Ca scattering

$$V^{p}_{NSM/Lane}(^{48}Ca) = 2V^{FIT}_{0}(^{48}Ca) - V^{n}_{NSM}(^{48}Ca)$$

CONCLUSION

Conclusions

- Gogny interaction is connected to reaction observables
- Need for double-charge-exchange component in NSM
- Results on asymmetry (submitted to EPJA)
- Study of all doubly-closed-shell target nuclei (in progress)
- Account of pairing (in progress)

Potential based on effective interaction

Nuclear Structure Method

- N. Vinh Mau, Theory of nuclear structure (IAEA, Vienna 1970) p. 931.
- N. Vinh Mau, A. Bouyssy, NPA 257(2), 189 (1976).
- V. Bernard, N. Van Giai, NPA 327(2), 397 (1979).
- F. Osterfeld, J. Wambach, V.A. Madsen, PRC 23(1), 179 (1981).
- K. Mizuyama et al., PRC 86, 041603 (2012).
- Y. Xu et al., JPG 41, 015101 (2014).
- G. Blanchon, M. Dupuis, H. Arellano and N. Vinh Mau, PRC 91, 014616 (2015).
- G. Blanchon, M. Dupuis, H. Arellano, Eur. Phys J. A, 51 12 (2015) 165
- T. V. Nhan Hao et al., PRC 92, 014605 (2015).