Multi-reference Energy Density Functional calculations for nuclei Constraints from consistency requirements

T. Duguet 1,2

$^1\mathrm{DSM}/\mathrm{Irfu}/\mathrm{SPhN},$ CEA Saclay, France

²National Superconducting Cyclotron Laboratory, Department of Physics and Astronomy, Michigan State University, USA

Multidisciplinary workshop on RPA, Paris, January 26th-29th, 2010

1 Introduction

- Main ingredients of the nuclear EDF method
- Ground-state correlations et collective excitations
- Link with QRPA

2 Constraining the MR-EDF method to avoid pathologies

- Basic consistency requirements
- Unexpected pathologies
- Regularization method

3 Conclusions

I Bibliography

Talk in one slide		

Context

- Two-step nuclear EDF method (i) single-reference (ii) multi-reference
- Built by analogy with wave-function based methods (no existence theorem)
- SR-EDF has both similarities and differences with (standard) DFT
- Strongly relies on spontaneous symmetry breaking and restoration

Context

- Two-step nuclear EDF method (i) single-reference (ii) multi-reference
- Built by analogy with wave-function based methods (no existence theorem)
- SR-EDF has both similarities and differences with (standard) DFT
- Strongly relies on spontaneous symmetry breaking and restoration

Take-away message

- **Q** MR-EDF tackles long-range correlations and accesses collective excitations
- **QRPA** is recovered from the harmonic limit of MR-EDF
- **③** MR-EDF calculations must be constrained through consistency requirements

1 Introduction

- Main ingredients of the nuclear EDF method
- Ground-state correlations et collective excitations
- Link with QRPA

Constraining the MR-EDF method to avoid pathologies

- Basic consistency requirements
- Unexpected pathologies
- Regularization method

3 Conclusions

Bibliography

1 Introduction

- Main ingredients of the nuclear EDF method
- Ground-state correlations et collective excitations
- Link with QRPA

2 Constraining the MR-EDF method to avoid pathologies

- Basic consistency requirements
- Unexpected pathologies
- Regularization method

3 Conclusions

Ingredients of the nuclear EDF method

Two-level variational wave-function method

1^{st} level: HFB	2^{nd} level: projected HFB + GCM
Trial WF: $ \Phi_q\rangle = \prod_\mu \beta_\mu^q 0\rangle$	Trial WF: $ \Psi\rangle = \sum_{q} f_{q} \Phi_{q}\rangle = \sum_{ q } g_{ q } P_{X} \Phi_{ q }\rangle$
Sym. break. $q = q e^{i\varphi} \neq 0$	Sym. restor. (\sum_{φ}) and zero-point fluct. $(\sum_{ q })$

 $[\mathbf{X},\mathbf{H}]=0 \ \text{for} \ \{\mathbf{X}\}=\{\mathbf{N},\mathbf{Z},\mathbf{P},\mathbf{J^2},\mathbf{J_z},\mathbf{T^2},\mathbf{T_z},\mathcal{T^2}\}$

Static collective correlations	Dynamical collective correlations
$\begin{split} E^{1^{\mathrm{st}}}_{ q } &= \langle \Phi_q H \Phi_q \rangle \\ & \Downarrow \\ \mathrm{Standard} \ \mathrm{Wick} \ \mathrm{Theorem} \\ & \downarrow \\ \langle \Phi_q H \Phi_q \rangle &= E[\rho^{qq}, \kappa^{qq}, \kappa^{qq*}] \end{split}$	$\begin{split} E_X^{2^{\mathrm{nd}}} &= \langle \Psi H \Psi \rangle = \sum_{\substack{qq'}} f_q^* f_{q'} \langle \Phi_q H \Phi_{q'} \rangle \\ & \qquad \qquad$
$ \begin{array}{l} {\bf E}_{ {\bf q} }^{1^{\rm st}} \ {\bf is \ a \ functional \ of} \\ diagonal \ {\bf density \ matrices} \\ \rho^{{\bf q}{\bf q}}, \kappa^{{\bf q}{\bf q}} \ {\rm and} \ \kappa^{{\bf q}{\bf q}*} \end{array} $	

000000	

Constraining MR-EDF

Conclusions

Bibliography

Ingredients of the nuclear EDF method

Two-level energy density functional method		
1 st level: single-reference	2^{nd} level: multi-reference	
Trial state $ \Phi_q\rangle = \prod_{\mu}\beta^q_{\mu} 0\rangle$	Trial set of states $\{ \Phi_q\rangle\} \neq \Psi\rangle$	
Sym. break. $q = q e^{i\varphi} \neq 0$	Sym. restor. (\sum_{φ}) and zero-point fluct. $(\sum_{ q })$	
$[\mathbf{X},\mathbf{H}] = 0 \mathbf{for} \{\mathbf{X}\} = \{\mathbf{N},\mathbf{Z},\mathbf{P},\mathbf{J^2},\mathbf{J_z},\mathbf{T^2},\mathbf{T_z},\mathcal{T^2}\}$		
Static collective correlations	Dynamical collective correlations	
${\cal E}^{ m SR}_{ q }\equiv {\cal E}[\Phi_q;\Phi_q]$	$\mathcal{E}_X^{\mathrm{MR}} \equiv \sum\nolimits_{qq'} f_q^* f_{q'} \mathcal{E}[\Phi_q; \Phi_{q'}] \left< \Phi_q \Phi_{q'} \right> \neq \left< \Psi H \Psi \right>$	
Bulk of correlations resummed into $\mathcal{E}[\Phi_q; \Phi_{q'}] \equiv \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$		
$\delta \left[\mathcal{E}^{\text{SR}} - \lambda \text{Tr}\{\rho\} - \lambda^{ \mathbf{q} } \text{Tr}\{\rho\mathbf{Q}\} \right] = 0$	$\delta \mathcal{E}^{\mathrm{MR}}_{\mathbf{X}} / \delta \mathbf{f}^*_{\mathbf{q}} = 0$	
HFB-like equations	Hill-Wheeler-Griffin-like equations	

Ingredients of the nuclear EDF method

Two-level energy density functional method		
1^{st} level: single-reference	2^{nd} level: multi-reference	
Trial state $ \Phi_q\rangle = \prod_{\mu}\beta^q_{\mu} 0\rangle$	Trial set of states $\{ \Phi_q\rangle\} \neq \Psi\rangle$	
Sym. break. $q = q e^{i\varphi} \neq 0$	Sym. restor. (\sum_{φ}) and zero-point fluct. $(\sum_{ q })$	
Relevant questions		
• Is the WF \rightarrow EDF mapping efficient? Is it safe? How is it constrained?		
• Is the GWT-inspired mapping $\mathcal{E}[\Phi_q; \Phi_{q'}] \equiv \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$ appropriate?		
• What is the connection of all that to QRPA?		
• What is the link to (Ensemble) DFT?		
Bulk of correlations resummed into $\mathcal{E}[\Phi_q; \Phi_{q'}] \equiv \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$		
$ \begin{split} \delta \bigg[\mathcal{E}^{\mathrm{SR}} - \lambda \mathrm{Tr}\{\rho\} - \lambda^{ \mathbf{q} } \mathrm{Tr}\{\rho \mathbf{Q}\} \bigg] = 0 & \delta \mathcal{E}_{\mathbf{X}}^{\mathrm{MR}} / \delta \mathbf{f}_{\mathbf{q}}^* = 0 \\ & \qquad \qquad$		

Introduction

• Main ingredients of the nuclear EDF method

• Ground-state correlations et collective excitations

• Link with QRPA

2 Constraining the MR-EDF method to avoid pathologies

- Basic consistency requirements
- Unexpected pathologies
- Regularization method

3 Conclusions

Introduction 0000000

Constraining MR-EDI

Conclusions

Bibliography

Ground-state correlation energy associated with $X = J^2$

Collective coordinates = "Order parameter"

- $\bullet |q| = \text{multipole moments of } \rho(\vec{r})$

From static deformation

$$\Delta \mathcal{E}^{\mathrm{SR}}_{|q|_{\mathrm{min}}} = \mathrm{Min}_{|q|} \left\{ \mathcal{E}^{\mathrm{SR}}_{|q|} \right\} - \mathcal{E}^{\mathrm{SR}}_{0}$$

Transitional nucleus for $|q| = \rho_{20}$

Introduction 0000000

Constraining MR-EDI

Conclusions

Bibliography

Ground-state correlation energy associated with $X = J^2$

Collective coordinates = "Order parameter"

- ${\small \bigcirc \ } |q| = {\rm multipole \ moments \ of \ } \rho(\vec{r})$

From dynamical fluctuations

$$\Delta \mathcal{E}_{J=0}^{\mathrm{MR}} = \mathcal{E}_{J=0}^{\mathrm{MR}} - \mathrm{Min}_{|q|} \left\{ \mathcal{E}_{|q|}^{\mathrm{SR}} \right\}$$

Stiff nucleus for $|q| = \rho_{20}$ $Q_0(b)$ 2060 -20 80 100 0 -1790-2 -4 -1795 (Ne Me -1800 E E (MeV) -6 HFB -10 -12 -14 -1805projected HFB -16 -18 ¥GCM 0 $|q| = \rho_{20}$ [M. Bender, private communication]

Soft nucleus for $|q| = \rho_{20}$

Systematic of quadrupole correlations: $\rho_{20} \neq 0 + J = 0 + \Delta \rho_{20}$

[M. Bender, G.-F. Bertsch, P.-H. Heenen, PRC73 (2006) 034322]

Operation Deformation fluctuations dominant in heavy/light nuclei

② Right balance between open- and closed-shell nuclei from single EDF

Improve ground-state observables systematically, e.g. $\sigma_{2149}^{\text{mass}} = 800 \text{keV}$

Constraining MR-EDI

Conclusions

Bibliography

Collective excitations

Energy spectrum

- Vibrational + rotational states
- Nicely aligned with experiment
- Too spread out spectrum

Electromagnetic transitions

- Restoration of (J^2, J_z) essential
- Selection rules recovered
- Good in- and out-band B(E2)

Nuclear MR-EDF method

Introduction

- Main ingredients of the nuclear EDF method
- Ground-state correlations et collective excitations
- Link with QRPA

2 Constraining the MR-EDF method to avoid pathologies

- Basic consistency requirements
- Unexpected pathologies
- Regularization method

3 Conclusions

Introduction

Constraining MR-ED

Conclusions

Bibliography

Link with QRPA

QRPA from Time-Dependent SR-EDF calculations

• Adiabatic-type scheme (omitting anomalous densities κ)

$$A_{minj} = (\epsilon_m - \epsilon_i) \,\delta_{mn} \,\delta_{ij} + \frac{\partial^2 \mathcal{E}[\rho]}{\partial \rho_{im} \partial \rho_{nj}} \quad ; \quad B_{minj} = \frac{\partial^2 \mathcal{E}[\rho]}{\partial \rho_{im} \partial \rho_{jn}}$$

❷ Extensions (e.g. second RPA...) needed to access spreading width

QRPA from Projection+GCM in WF method

■ QRPA (WF)

$$A_{minj} = (\epsilon_m - \epsilon_i)\delta_{mn}\delta_{ij} + \bar{v}_{mjin} \quad ; \quad B_{minj} = \bar{v}_{mnij}$$

QRPA (WF) is recovered from the harmonic limit of GCM (WF)
 [B. Jancovici, D. H. Schiff, NP58 (1964) 678]

- **()** Use Thouless parameterization $|\Phi_q\rangle = \exp[\sum_{im} z_{mi}^{q*} a_m^{\dagger} a_i] |\Phi_0\rangle$
- $@ Expand \langle \Phi_q | H | \Phi_{q'} \rangle / \langle \Phi_q | \Phi_{q'} \rangle \text{ to second order in } \mathbf{z}^{\mathbf{q}} / \mathbf{z}^{\mathbf{q'}}$
- ◎ Assume gaussian overlap $\langle \Phi_q | \Phi_{q'} \rangle \propto \exp[\text{Tr}(\mathbf{z}^{\mathbf{q}} \mathbf{z}^{\mathbf{q}'}^{\dagger})]$

 \blacksquare HFB + GCM can tackle large amplitude *anharmonic* collective motions

Introduction

Constraining MR-ED

Conclusions

Bibliography

Link with QRPA

QRPA from Time-Dependent SR-EDF calculations

• Adiabatic-type scheme (omitting anomalous densities κ)

$$A_{minj} = (\epsilon_m - \epsilon_i) \,\delta_{mn} \,\delta_{ij} + \frac{\partial^2 \mathcal{E}[\rho]}{\partial \rho_{im} \partial \rho_{nj}} \quad ; \quad B_{minj} = \frac{\partial^2 \mathcal{E}[\rho]}{\partial \rho_{im} \partial \rho_{jn}}$$

O Extensions (e.g. second RPA...) needed to access spreading width

QRPA from Projection+GCM in WF method

■ QRPA (WF)

$$A_{minj} = (\epsilon_m - \epsilon_i)\delta_{mn}\delta_{ij} + \bar{v}_{mjin} \quad ; \quad B_{minj} = \bar{v}_{mnij}$$

QRPA (WF) is recovered from the harmonic limit of GCM (WF)
 [B. Jancovici, D. H. Schiff, NP58 (1964) 678]

- **Q** Use Thouless parameterization $|\Phi_q\rangle = \exp[\sum_{im} z_{mi}^{q*} a_m^{\dagger} a_i] |\Phi_0\rangle$
- **2** Expand $\langle \Phi_q | H | \Phi_{q'} \rangle / \langle \Phi_q | \Phi_{q'} \rangle$ to second order in $\mathbf{z}^{\mathbf{q}} / \mathbf{z}^{\mathbf{q'}*}$
- **③** Assume gaussian overlap $\langle \Phi_q | \Phi_{q'} \rangle \propto \exp[\operatorname{Tr}(\mathbf{z}^{\mathbf{q}} \mathbf{z}^{\mathbf{q}'\dagger})]$

■ HFB + GCM can tackle large amplitude *anharmonic* collective motions

1 Introduction

- Main ingredients of the nuclear EDF method
- Ground-state correlations et collective excitations
- Link with QRPA

2 Constraining the MR-EDF method to avoid pathologies

- Basic consistency requirements
- Unexpected pathologies
- Regularization method

3 Conclusions

I Bibliography

Introduction

- Main ingredients of the nuclear EDF method
- Ground-state correlations et collective excitations
- Link with QRPA

2 Constraining the MR-EDF method to avoid pathologies

• Basic consistency requirements

- Unexpected pathologies
- Regularization method

3 Conclusions

Introduction Constraining MR-EDF Conclusions

SR-EDF [J. Dobaczewski, J. Dudek, APP B27 (1996) 45]

- $\mathcal{E}_{|q|}^{SR}$ must be real and a scalar under all $\mathcal{R}(g) \in$ symmetry group \mathcal{G}
- **\blacksquare** Rules to build local Skyrme EDF to 2nd order in σ_{ν} and ∇

$$\mathcal{E}[\rho,\kappa,\kappa^*] \equiv \int d\vec{r} \, \mathcal{E}[\rho_T(\vec{r}),\tau_T(\vec{r}),J_{T,\mu\nu}(\vec{r}),\vec{s}_T(\vec{r}),\vec{j}_T(\vec{r}),\vec{T}_T(\vec{r}),\vec{F}_T(\vec{r}),\tilde{\rho}_T(\vec{r});\nabla]$$

$\mathrm{MR} ext{-}\mathrm{EDF}$ = [L. Robledo, IJMP E16 (2007) 337; JPG: Nucl. Part. Phys. 37 (2010) in press

- \mathcal{E}_X^{MR} must be real and a scalar under all $\mathcal{R}(g) \in$ symmetry group \mathcal{G}
- Onsistency of MR and SR schemes

- @ Chemical potential λ must be recovered from Kamlah expansion of \mathcal{E}_N^{MR}
- **③** QRPA must be recovered through harmonic limit of \mathcal{E}_X^{MF}

Extension to MR kernel must implicate *transition* densities only

Diagonal SR kernel $\mathcal{E}[\rho^{qq}, \kappa^{qq}, \kappa^{qq*}]$

GWT-inspired connection (only) viable option? **)ff-diagonal MR kernel** $\mathcal{E}[\rho^{\mathbf{q}\mathbf{q}'}, \kappa^{\mathbf{q}\mathbf{q}'}, \kappa^{\mathbf{q}'\mathbf{q}*}]$

IntroductionConstraining MR-EDFConclusionsBiblio00000000000000Set of constraints from consistency requirements

SR-EDF [J. Dobaczewski, J. Dudek, APP B27 (1996) 45]

- **\mathcal{E}_{|q|}^{SR} must be real and a scalar under all \mathcal{R}(g) \in symmetry group \mathcal{G}**
- **\blacksquare** Rules to build local Skyrme EDF to 2nd order in σ_{ν} and ∇

$$\mathcal{E}[\rho,\kappa,\kappa^*] \equiv \int d\vec{r} \,\mathcal{E}[\rho_T(\vec{r}),\tau_T(\vec{r}),J_{T,\mu\nu}(\vec{r}),\vec{s}_T(\vec{r}),\vec{j}_T(\vec{r}),\vec{T}_T(\vec{r}),\vec{F}_T(\vec{r}),\tilde{\rho}_T(\vec{r});\nabla]$$

MR-EDF [L. Robledo, IJMP E16 (2007) 337; JPG: Nucl. Part. Phys. 37 (2010) in press]

- $\bigcirc \ \mathcal{E}_X^{MR} \text{ must be real and a scalar under all } \mathcal{R}(g) \in \text{symmetry group } \mathcal{G}$
- **②** Consistency of MR and SR schemes

$$\mathfrak{E}_X^{MR} = \mathcal{E}_{|q|}^{SR} \text{ when } \{|\Phi_q\rangle\} \longrightarrow |\Phi_q\rangle$$

- ${\it eta}$ Chemical potential λ must be recovered from Kamlah expansion of ${\cal E}_N^{MR}$
- **③** QRPA must be recovered through harmonic limit of \mathcal{E}_X^{MR}

Extension to MR kernel must implicate transition densities only

Diagonal SR kernel $\mathcal{E}[\rho^{\mathbf{qq}}, \kappa^{\mathbf{qq}}, \kappa^{\mathbf{qq}*}]$

GWT-inspired connection (only) viable option? $\begin{array}{c} \textbf{Off-diagonal MR kernel} \\ \mathcal{E}[\rho^{\mathbf{q}\mathbf{q}'},\kappa^{\mathbf{q}\mathbf{q}'},\kappa^{\mathbf{q}'\mathbf{q}*}] \end{array}$

Introduction

- Main ingredients of the nuclear EDF method
- Ground-state correlations et collective excitations
- Link with QRPA

2 Constraining the MR-EDF method to avoid pathologies

- Basic consistency requirements
- Unexpected pathologies
- Regularization method

3 Conclusions

	000000	
Unevnected n	athologies	
Unexpected p	autologics	

The example of particle number restoration (PNR)

$$\blacksquare \text{ MR set } \{ |\Phi_{\varphi}\rangle \equiv e^{i\hat{N}\varphi} |\Phi_0\rangle; \varphi \in [0, 2\pi] \}$$

■ Real, scalar, particle-number-restored MR energy reads

$$\mathcal{E}_{N}^{MR} \equiv \int_{0}^{2\pi} d\varphi \frac{e^{-i\varphi N}}{2\pi c_{N}^{2}} \mathcal{E}[\rho^{0\varphi}, \kappa^{0\varphi}, \kappa^{\varphi 0*}] \langle \Phi_{0} | \Phi_{\varphi} \rangle$$

that corresponds to the Fourier decomposition of MR kernel on U(1) Irreps

$$\begin{split} \mathcal{E}[\rho^{0\varphi}, \kappa^{0\varphi}, \kappa^{\varphi 0\,*}] \langle \Phi_0 | \Phi_{\varphi} \rangle &= \sum_{N \in \mathbb{Z}} c_N^2 \, \mathcal{E}_N^{MR} \, e^{iN\varphi} \\ \langle \Phi_0 | \Phi_{\varphi} \rangle &= \sum_{N \in \mathbb{Z}} c_N^2 \, e^{iN\varphi} \end{split}$$

■ So far so good...

Constraining MR-EDF

Conclusions

Unexpected pathologies

- ♦ Non-analyticity of $\mathcal{E}[\rho^{0\varphi}, \kappa^{0\varphi}, \kappa^{\varphi 0*}]$ over \mathbb{C} -plane with $e^{i\varphi} \equiv z$
- $\mathcal{E}_N^{MR} \neq 0$ for $N \leq 0!!$ [M. Bender, T.D., D. Lacroix, PRC79 (2009) 044319]
- **③** Similar problems for other MR modes, e.g. angular momentum restoration

• $\mathcal{E}_N^{MR} \neq 0$ for $N \leq 0!!$ [M. Bender, T.D., D. Lacroix, PRC79 (2009) 044319]

Similar problems for other MR modes, e.g. angular momentum restoration

1 Introduction

- Main ingredients of the nuclear EDF method
- Ground-state correlations et collective excitations
- Link with QRPA

2 Constraining the MR-EDF method to avoid pathologies

- Basic consistency requirements
- Unexpected pathologies
- Regularization method

3 Conclusions

Conclusions

Regularization method

Origin of the problem and its solution

- Alternative method to define $\mathcal{E}[\Phi_q; \Phi_{q'}]$ that relies on
 - **Q** Considering Bogoliubov transformation connecting $|\Phi_q\rangle$ to $|\Phi_{q'}\rangle$
 - **②** Using Bloch-Messiah-Zumino decomposition to reach BCS-like connection

$$|\Phi_{q'}\rangle = \tilde{\mathcal{C}}_{qq'} \prod_{p>0} \left(\bar{A}_{pp}^* + \bar{B}_{p\bar{p}}^* \tilde{\alpha}_p^+ \tilde{\alpha}_{\bar{p}}^+\right) |\Phi_q\rangle$$

- 0 Using SWT to compute $\langle \Phi_{q}|H|\Phi_{q'}\rangle/\langle \Phi_{q}|\Phi_{q'}\rangle$
- **Q** Extending to general EDF disconnected from genuine operator H
- GWT-inspired $\mathcal{E}[\Phi_q; \Phi_{q'}] \equiv \mathcal{E}[\rho^{qq'}, \kappa^{qq'}, \kappa^{q'q*}]$ unsafe in EDF context
 - Provides dangerous weights to terms that are zero with SWT
 - **②** Such terms cancel for WF method but not for more general EDF
 - Originates from self interaction and self pairing in the EDF kernel

[D. Lacroix, T. D., M. Bender, PRC 79 (2009) 044318]

Constraining MR-EDI

Conclusions

Bibliography

Regularization method

Regularized PNR calculations

$$= \mathcal{E}_{REG}[\Phi_0; \Phi_{\varphi}] \equiv \mathcal{E}[\rho^{0\varphi}, \kappa^{0\varphi}, \kappa^{\varphi 0*}] - \mathcal{E}_C[\langle \Phi_0 |; | \Phi_{\varphi} \rangle]$$

Q Analytical over \mathbb{C}^*

 $\textcircled{O} \ \mathcal{E}_N^{MR} \text{ is free from divergencies/steps and zero for } N \leq 0$

The correction

 \bigcirc is crucial at critical points but also *away* from them

- **2** depends on the quadrupole deformation ρ_{20}
- O is on the MeV scale = mass accuracy/spectroscopic scale

[M. Bender, T. D., D. Lacroix, PRC 79 (2009) 044319]

1 Introduction

- Main ingredients of the nuclear EDF method
- Ground-state correlations et collective excitations
- Link with QRPA

Constraining the MR-EDF method to avoid pathologies

- Basic consistency requirements
- Unexpected pathologies
- Regularization method

3 Conclusions

4 Bibliography

Summary

MR-EDF method

- Solution Efficient to tackle long-range correlations and access spectroscopy
- O Difficulties must be taken seriously
 - [J. Dobaczewski, W. Nazarewicz, P. G. Reinhard, M. V. Stoitsov, PRC76 (2007) 054315]

Regularization method

O Valid for all MR modes; i.e. fluctuations of any |q| and/or φ

② Successful application to particle number restoration

- ♦ Limited to EDF kernels of the form $\mathcal{E}[\rho^n, (\kappa^* \kappa)^m]$
- **9** Specific case of $\mathcal{E}[\rho^{\gamma}]$ with γ non integer

Perspectives		

To be done in the near future

• Build correctable EDF of the form $\mathcal{E}[\rho^n, (\kappa^* \kappa)^m]$

- Build SI- and SP-free EDF
- Perform regularized MR calculations for AMR and Δρ₂₀ mixing [M. Bender, T.D., D. Lacroix, in progress]

• Work out new constraints on $\mathcal{E}[\Phi_0; \Phi_\Omega]$ for various symmetry groups

$$\mathcal{E}[\Phi_0;\Phi_\Omega]\langle\Phi_0|\Phi_\Omega\rangle = \sum_{\lambda ab} c^*_{\lambda a} \, c_{\lambda b} \, \mathcal{E}_\lambda \, S^\lambda_{ab}(\Omega)$$

[T. D., J. Sadoudi, J. Phys. G: Nucl. Part. Phys, in press]

Need a constructive framework for MR-EDF method

[[]J. Sadoudi, T. D., M. Bender, K. Bennaceur, in progress]

1 Introduction

- Main ingredients of the nuclear EDF method
- Ground-state correlations et collective excitations
- Link with QRPA

Constraining the MR-EDF method to avoid pathologies

- Basic consistency requirements
- Unexpected pathologies
- Regularization method

B Conclusions

Conclusions

Bibliography

Selected bibliography

- M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75 (2003) 121
- R. Balian, E. Brézin,
 Nuevo Cimento 64 (1969) 37
- B. Jancovici, D. H. Schiff, Nucl. Phys. 58 (1964) 678
- - L. Robledo, Int. Journ. Mod. Phys. E16 (2007) 337
- J. Dobaczewski, J. Dudek, Acta Phys. Polon. B27 (1996) 45
- D. Lacroix, T. Duguet, M. Bender, Phys. Rev. C 79 (2009) 044318
 - M. Bender, T. Duguet, D. Lacroix, Phys. Rev. C 79 (2009) 044319
 - T. Duguet, M. Bender, K. Bennaceur, D. Lacroix, T. Lesinski, Phys. Rev. C 79 (2009) 044320