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Talk in one slide

Context
1 Two-step nuclear EDF method (i) single-reference (ii) multi-reference
2 Built by analogy with wave-function based methods (no existence theorem)
3 SR-EDF has both similarities and differences with (standard) DFT
4 Strongly relies on spontaneous symmetry breaking and restoration
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Talk in one slide

Context
1 Two-step nuclear EDF method (i) single-reference (ii) multi-reference
2 Built by analogy with wave-function based methods (no existence theorem)
3 SR-EDF has both similarities and differences with (standard) DFT
4 Strongly relies on spontaneous symmetry breaking and restoration

Take-away message
1 MR-EDF tackles long-range correlations and accesses collective excitations

2 QRPA is recovered from the harmonic limit of MR-EDF

3 MR-EDF calculations must be constrained through consistency requirements
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Ingredients of the nuclear EDF method

Two-level variational wave-function method
1st level: HFB 2nd level: projected HFB + GCM

Trial WF: |Φq〉=
∏
µ
βq
µ|0〉 Trial WF: |Ψ〉=

∑
q fq |Φq〉=

∑
|q| g|q|PX |Φ|q|〉

Sym. break. q = |q|eiϕ "= 0 Sym. restor. (
∑
ϕ

) and zero-point fluct. (
∑
|q|)

[X,H] = 0 for {X}= {N,Z, ~P,J2,Jz,T2,Tz,T 2}

Static collective correlations Dynamical collective correlations

E1st
|q| = 〈Φq |H |Φq〉 E2nd

X = 〈Ψ|H |Ψ〉=
∑

qq′ f
∗
q fq′〈Φq |H |Φq′〉

⇓ ⇓
Standard Wick Theorem Generalized Wick Theorem

⇓ ⇓
〈Φq |H |Φq〉= E[ρqq ,κqq,κqq∗] 〈Φq |H |Φq′〉= E[ρqq′ ,κqq′ ,κq′q∗] 〈Φq |Φq′〉

E1st
|q| is a functional of E2nd

X invokes the SAME functional of
diagonal density matrices (all) transition density matrices
ρqq,κqq and κqq∗ ρqq′ ,κqq′ and κq′q∗
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Ingredients of the nuclear EDF method

Two-level energy density functional method
1st level: single-reference 2nd level: multi-reference

Trial state |Φq〉=
∏
µ
βq
µ|0〉 Trial set of states {|Φq〉} "= |Ψ〉

Sym. break. q = |q|eiϕ "= 0 Sym. restor. (
∑
ϕ

) and zero-point fluct. (
∑
|q|)

[X,H] = 0 for {X}= {N,Z, ~P,J2,Jz,T2,Tz,T 2}

Static collective correlations Dynamical collective correlations

ESR
|q| ≡ E[Φq ;Φq ] EMR

X ≡
∑

qq′ f
∗
q fq′ E[Φq ;Φq′ ] 〈Φq |Φq′〉 "= 〈Ψ|H |Ψ〉

Bulk of correlations resummed into E[Φq ;Φq′ ]≡ E[ρqq′ ,κqq′ ,κq′q∗]

δ
[
ESR−λTr{ρ}−λ|q|Tr{ρQ}

]
= 0 δEMR

X /δf∗q = 0
⇓ ⇓

HFB-like equations Hill-Wheeler-Griffin-like equations
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= 0 δEMR
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HFB-like equations Hill-Wheeler-Griffin-like equations

Relevant questions
1 Is the WF→EDF mapping efficient? Is it safe? How is it constrained?
2 Is the GWT-inspired mapping E [Φq ;Φq′ ]≡ E [ρqq′ ,κqq′ ,κq′q ∗] appropriate?
3 What is the connection of all that to QRPA?
4 What is the link to (Ensemble) DFT?
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Ground-state correlation energy associated with X = J 2

Collective coordinates = "Order parameter"
1 |q|= multipole moments of ρ(#r)
2 ϕ= Euler angles (α,β,γ)

From static deformation

∆ESR
|q|min = Min|q|

{
ESR
|q|

}
−ESR

0

Well-deformed nucleus for |q|= ρ20

[M. Bender, private communication]

Transitional nucleus for |q|= ρ20

[M. Bender, private communication]
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Ground-state correlation energy associated with X = J 2

Collective coordinates = "Order parameter"
1 |q|= multipole moments of ρ(#r)
2 ϕ= Euler angles (α,β,γ)

From dynamical fluctuations

∆EMR
J=0 = EMR

J=0−Min|q|
{
ESR
|q|

}

Stiff nucleus for |q|= ρ20

.
[M. Bender, private communication]

Soft nucleus for |q|= ρ20

.

[M. Bender, private communication]

Nuclear MR-EDF method



Introduction Constraining MR-EDF Conclusions Bibliography

Ground-state correlation energy associated with X = J 2

Systematic of quadrupole correlations: ρ20 $= 0 + J = 0 + ∆ρ20
[M. Bender, G.-F. Bertsch, P.-H. Heenen, PRC73 (2006) 034322]

1 Deformation/fluctuations dominant in heavy/light nuclei
2 Right balance between open- and closed-shell nuclei from single EDF
3 Improve ground-state observables systematically, e.g. σmass

2149 = 800keV

Nuclear MR-EDF method
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Collective excitations

Restoration of N ,Z ,J2,M + ∆ρ20 + ∆ρ22

[M. Bender, P.-H. Heenen, PRC78 (2008) 024309]

Energy spectrum
! Vibrational + rotational states
! Nicely aligned with experiment
! Too spread out spectrum

Electromagnetic transitions
! Restoration of (J2,Jz) essential
! Selection rules recovered
! Good in- and out-band B(E2)

Nuclear MR-EDF method
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Link with QRPA

QRPA from Time-Dependent SR-EDF calculations
1 Adiabatic-type scheme (omitting anomalous densities κ)

Aminj = (εm− εi)δmn δĳ + ∂2E [ρ]
∂ρim∂ρnj

; Bminj = ∂2E [ρ]
∂ρim∂ρjn

2 Extensions (e.g. second RPA. . . ) needed to access spreading width

QRPA from Projection+GCM in WF method
! QRPA (WF)

Aminj = (εm− εi)δmnδĳ + v̄mjin ; Bminj = v̄mnĳ

! QRPA (WF) is recovered from the harmonic limit of GCM (WF)
[B. Jancovici, D. H. Schiff, NP58 (1964) 678]

1 Use Thouless parameterization |Φq〉= exp[
∑

im zq ∗
mi a†m ai ]|Φ0〉

2 Expand 〈Φq |H |Φq′〉/〈Φq |Φq′ 〉 to second order in zq/zq′∗

3 Assume gaussian overlap 〈Φq|Φq′ 〉 ∝ exp[Tr(zq zq′†)]
! HFB + GCM can tackle large amplitude anharmonic collective motions

Nuclear MR-EDF method
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Set of constraints from consistency requirements
SR-EDF [J. Dobaczewski, J. Dudek, APP B27 (1996) 45]

! ESR
|q| must be real and a scalar under all R(g) ∈ symmetry group G

! Rules to build local Skyrme EDF to 2nd order in σν and ∇

E [ρ,κ,κ∗]≡
∫

d#r E [ρT (#r),τT (#r),JT ,µν(#r),#sT (#r),#jT (#r), #TT (#r), #FT (#r), ρ̃T (#r);∇]

MR-EDF [L. Robledo, ĲMP E16 (2007) 337; JPG: Nucl. Part. Phys. 37 (2010) in press]

1 EMR
X must be real and a scalar under all R(g) ∈ symmetry group G

2 Consistency of MR and SR schemes
1 EMR

X = ESR
|q| when {|Φq〉}−→ |Φq〉

2 Chemical potential λ must be recovered from Kamlah expansion of EMR
N

3 QRPA must be recovered through harmonic limit of EMR
X

Extension to MR kernel must implicate transition densities only
Diagonal SR kernel Off-diagonal MR kernel
E[ρqq,κqq,κqq∗] GWT-inspired connection

(only) viable option?
E[ρqq′ ,κqq′ ,κq′q∗]

Nuclear MR-EDF method



Introduction Constraining MR-EDF Conclusions Bibliography

Set of constraints from consistency requirements
SR-EDF [J. Dobaczewski, J. Dudek, APP B27 (1996) 45]

! ESR
|q| must be real and a scalar under all R(g) ∈ symmetry group G

! Rules to build local Skyrme EDF to 2nd order in σν and ∇

E [ρ,κ,κ∗]≡
∫

d#r E [ρT (#r),τT (#r),JT ,µν(#r),#sT (#r),#jT (#r), #TT (#r), #FT (#r), ρ̃T (#r);∇]

MR-EDF [L. Robledo, ĲMP E16 (2007) 337; JPG: Nucl. Part. Phys. 37 (2010) in press]

1 EMR
X must be real and a scalar under all R(g) ∈ symmetry group G

2 Consistency of MR and SR schemes
1 EMR

X = ESR
|q| when {|Φq〉}−→ |Φq〉

2 Chemical potential λ must be recovered from Kamlah expansion of EMR
N

3 QRPA must be recovered through harmonic limit of EMR
X

Extension to MR kernel must implicate transition densities only
Diagonal SR kernel Off-diagonal MR kernel
E[ρqq,κqq,κqq∗] GWT-inspired connection

(only) viable option?
E[ρqq′ ,κqq′ ,κq′q∗]

Nuclear MR-EDF method



Introduction Constraining MR-EDF Conclusions Bibliography

Outline

1 Introduction
Main ingredients of the nuclear EDF method
Ground-state correlations et collective excitations
Link with QRPA

2 Constraining the MR-EDF method to avoid pathologies
Basic consistency requirements
Unexpected pathologies
Regularization method

3 Conclusions

4 Bibliography

Nuclear MR-EDF method



Introduction Constraining MR-EDF Conclusions Bibliography

Unexpected pathologies

The example of particle number restoration (PNR)

! MR set {|Φϕ〉 ≡ eiN̂ϕ|Φ0〉 ; ϕ ∈ [0,2π]}

! Real, scalar, particle-number-restored MR energy reads

EMR
N ≡

∫ 2π

0
dϕ e−iϕN

2π c2
N
E [ρ0ϕ,κ0ϕ,κϕ0∗]〈Φ0|Φϕ〉

that corresponds to the Fourier decomposition of MR kernel on U (1) Irreps

E [ρ0ϕ,κ0ϕ,κϕ0∗]〈Φ0|Φϕ〉 =
∑

N∈Z

c2
N E

MR
N eiNϕ

〈Φ0|Φϕ〉 =
∑

N∈Z

c2
N eiNϕ

! So far so good...

Nuclear MR-EDF method
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Unexpected pathologies

EMR
Z=8,N=10 vs ρ20 for E [ρρρ1/6]

[M. Bender et al., PRC79 (2009) 044319]

EMR
Z=8,N=10 vs ρ20 for E [ρρρ]

[M. Bender et al., PRC79 (2009) 044319]

1 Divergencies and finite steps [J. Dobaczewski et al., PRC76 (2007) 054315]

2 Non-analyticity of E [ρ0ϕ,κ0ϕ,κϕ0∗] over C-plane with eiϕ ≡ z
3 EMR

N $= 0 for N ≤ 0!! [M. Bender, T.D., D. Lacroix, PRC79 (2009) 044319]

4 Similar problems for other MR modes, e.g. angular momentum restoration
Nuclear MR-EDF method
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Unexpected pathologies

EMR
Z=8,N=10 vs [ρ20] for E [ρρρ1/6]

[M. Bender et al., PRC79 (2009) 044319]

EMR
Z=8,N=10 vs [ρ20] for E [ρρρ]

[M. Bender et al., PRC79 (2009) 044319]

1 Divergencies and finite steps [J. Dobaczewski et al., PRC76 (2007) 054315]

2 Non-analyticity of E [ρ0ϕ,κ0ϕ,κϕ0∗] over C∗ via eiϕ ≡ z
3 EMR

N $= 0 for N ≤ 0!! [M. Bender, T.D., D. Lacroix, PRC79 (2009) 044319]

4 Similar problems for other MR modes, e.g. angular momentum restoration

Absent from wave-function method

Nuclear MR-EDF method
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Regularization method

Origin of the problem and its solution
! Alternative method to define E [Φq ;Φq′ ] that relies on

1 Considering Bogoliubov transformation connecting |Φq〉 to |Φq′ 〉
2 Using Bloch-Messiah-Zumino decomposition to reach BCS-like connection

|Φq′ 〉= C̃qq′
∏

p>0

(
Ā∗pp + B̄∗pp̄ α̃

+
p α̃

+
p̄
)
|Φq〉

3 Using SWT to compute 〈Φq |H |Φq′〉/〈Φq |Φq′ 〉
4 Extending to general EDF disconnected from genuine operator H

! GWT-inspired E [Φq;Φq′ ]≡ E [ρqq′ ,κqq′ ,κq′q ∗] unsafe in EDF context
1 Provides dangerous weights to terms that are zero with SWT
2 Such terms cancel for WF method but not for more general EDF
3 Originates from self interaction and self pairing in the EDF kernel

[D. Lacroix, T. D., M. Bender, PRC 79 (2009) 044318]

Nuclear MR-EDF method
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Regularization method

Regularized PNR calculations
! EREG[Φ0;Φϕ]≡ E [ρ0ϕ,κ0ϕ,κϕ0∗]−EC [〈Φ0|; |Φϕ〉]

1 Analytical over C∗

2 EMR
N is free from divergencies/steps and zero for N ≤ 0

! The correction
1 is crucial at critical points but also away from them
2 depends on the quadrupole deformation ρ20
3 is on the MeV scale = mass accuracy/spectroscopic scale

[M. Bender, T. D., D. Lacroix, PRC 79 (2009) 044319]

Nuclear MR-EDF method



Introduction Constraining MR-EDF Conclusions Bibliography

Outline

1 Introduction
Main ingredients of the nuclear EDF method
Ground-state correlations et collective excitations
Link with QRPA

2 Constraining the MR-EDF method to avoid pathologies
Basic consistency requirements
Unexpected pathologies
Regularization method

3 Conclusions

4 Bibliography

Nuclear MR-EDF method



Introduction Constraining MR-EDF Conclusions Bibliography

Summary
MR-EDF method

1 Efficient to tackle long-range correlations and access spectroscopy
2 Difficulties must be taken seriously

[J. Dobaczewski, W. Nazarewicz, P. G. Reinhard, M. V. Stoitsov, PRC76 (2007) 054315]

Regularization method
1 Valid for all MR modes; i.e. fluctuations of any |q| and/or ϕ
2 Successful application to particle number restoration
3 Limited to EDF kernels of the form E [ρn ,(κ∗κ)m ]
4 Specific case of E [ργ ] with γ non integer

. . . .
..
..
.
.
...................

.... . .
. . .

. . . ...
...
..
...........
......
.....
. . . . .

[T. D., M. Bender, K. Bennaceur, D. Lacroix, T. Lesinski, PRC 79 (2009) 044320]
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Perspectives

To be done in the near future
1 Build correctable EDF of the form E [ρn ,(κ∗κ)m ]

[J. Sadoudi, T. D., M. Bender, K. Bennaceur, in progress]

2 Build SI- and SP-free EDF

3 Perform regularized MR calculations for AMR and ∆ρ20 mixing
[M. Bender, T.D., D. Lacroix, in progress]

4 Work out new constraints on E [Φ0;ΦΩ] for various symmetry groups

E [Φ0;ΦΩ]〈Φ0|ΦΩ〉=
∑

λab
c∗λa cλb Eλ Sλab(Ω)

[T. D., J. Sadoudi, J. Phys. G: Nucl. Part. Phys, in press]

5 Need a constructive framework for MR-EDF method

Nuclear MR-EDF method
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