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This result flows at once from the idea of a correlation, in
virtue of which the two terms mutually imply each other, and
are the reciprocal condition one of the other, a correlation of
which the purest product is beauty. But experience does not
offer an example of so perfect a correlation.

J. C. Friedrich von Schiller




The Electronic Schrédinger Equation
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Energies are obtained as eigenvalues.

All other properties can be found from the eigenvectors.




Average-Potential Models: One Slater Determinant
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Example: Lithium Atom, 1s22s?

Born Postulate: the probability distribution function for
electrons is the square-magnitude of the wavefunction.

oF (Xl’XZ’XS) :‘\P(XMXZ’XS)‘Z

Hartree Product: Independent Particle Approximation.
P3 (Xl’XZ’X3) = Pis o (rl) Pis 5 (rz) P2s o (rs)
:‘Wls(rl)a(l)W1s(r2):B(2)Wzs(ra)a(g)‘z

Slater determinant: Independent Particle Approximation but
account for independent-particle statistics for fermions,

Wis (rl)a(l) Wis (rl)ﬂ(l) Was (rl)“(l)

Pa(xl’xz’XS):—,‘Vls(rZ)“(Z) vis (12) B(2) was(1,)a(2)
P 0)a3) 1 (6)AE) va(B)ald)

Also works for nuclei and other fermions; replace determinant with permanent
for bosons (which is problematic...).
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One dominant electron configuration — the Slater determinant is
a good starting point & existing methods work well.

Many important electron configurations — the orbital picture is
invalid...the problem of strong correlation...

HF/DFT CASSCF (710)

CISD... DMRG (750)
CCSD... MR-CI/CC




One dominant electron configuration — the Slater determinant is
a good starting point & existing methods work well.
Many important electron configurations — the orbital picture is
invalid...the problem of strong correlation...
Single-reference Near-degeneracy

nifrontier ~ {O,l} frontler 1/2 n_frontier < 1

I
band gap > Vee[valence] | band gap ~ Vee[valence]

stretched bonds
transition-states of rxns
polyacenes; polynes;
cumulenes
transition-metal
compounds, Cro,

Equilibrium structures

Saturated hydrocarbons

closed-shell main-group noninnocent ligands
molecules Open-shell molecules (esp.
f-block and d-block
elements)

noninteracting electrons Hubbard & PPP models




Symmetry-Breaking in Mean-Field Models

Real chemical systems possess certain symmetries,

defined by operators that commute with the Hamiltonian
o Total-spin and spin-orientation (in absence of magnetic fields)
Number of electrons

Spatial-symmetry/angular momentum (in symmetric systems)
complex conjugation (invariance to phases)

particle-hole symmetry (at half-filling)

O O O O O

Allowing these symmetries to “break” extends mean-field

models beyond the normal domain of validity but....

o Dynamic correlation is missing (almost by definition)

o Experiments (spectroscopy) measure states with good symmetry.

o Tyranny of the energy: the eigenfunctions are qualitatively
incorrect, so while the energy may be accurate, other properties
may be modelled only very inaccurately.

e e.g., poor predictions of magnetic properties for spin-
symmetry-broken wavefunctions.
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Example: Spatial-symmetry breaking in Jahn-
Teller transition-metal complexes,
1-dimensional chains, antiaromatic
systems, Carbon dimer (cf. figure),...

Example: Coulson-Fisher (spin-sym breaking)
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This occurs due to the presence of near degeneracy, and especially
nearly-degenerate states with different spin/spatial symmetry.

‘ meanfleld> ZCS‘T>

sym. broken

‘IPS>:|3

S

O

mean-field >

sym. broken

Symmetry can be restored by projection; the symmetry-projected

state is not mean-field but is often quite good because it includes
H| O

only the “best” lowest energy state. l.e,,
<(Dmean—field mean field > ZC C < 8'>
sym. broken sym. broken
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Beyond the Average Potential: Many Electron Configurations
(Many Slater Determinants)

A Nelectrons 5 i-1 1
Helectrons = Z _%Vi +V(r)+z—
i=1 j=1 ‘ri - rj ‘

Y =c,d,+cD, +C,D, +---

“Electron Droplets”

Configuration Interaction




Curse of Dimension:

He
Be
Ne

Mg

Ar

The number of electron configurations
N E determinants) grows
exponentially as the number of
electrons increases

# of e # of Sl. Dets.
(cc-pVTZ)
2 196
4 189,225
10 20,307,960,036
12 1,808,766,769,216
18 2,751,134,255,977,536




Conventional Strategy #1: Single-reference theories.
(Nobel Prize 1998; John Pople)

Use a single Slater determinant as a starting point; add corrections
for neglected effects.

e Highly effective when a single Slater determinant is a good
qualitative description of the system.

e Systematically improvable but with exponentially increasing cost

e Examples:
o many-body perturbation theory
o limited configuration interaction
o coupled cluster (cumulant) expansion;...

e Qualitatively ineffective for strong correlation.
o electron-electron repulsion energy is similar to the splitting
between frontier orbitals (orbitals near the Fermi level).
o ..many important electron configurations.
o ..impossible to assign “occupied” and “unoccupied” orbitals to
define an adequate reference determinant.

Since | have confined my imagination to the
margin...those changes may be safely offered...
Samuel Johnson




Conventional Strategy #2: Alternative Descriptor Approach.

(Nobel Prize 1998; Walter Kohn)

Use a simpler descriptor that nonetheless suffices to describe all
properties of an electronic system.

Computationally Affordable.

Theoretically exact, but “existence theorems” give few hints for
practical computational methods.

Examples:

o Density-functional theory & Electron-Distribution Functional Th.
o Density-matrix approaches

o Electron-propagator (Green’s function) methods (sometimes)

Not robust: must select “right method for right problem”

Qualitatively ineffective for strong correlation.
o Models used to design practical computational schemes are rarely
effective for strongly correlated systems.

..theories which are restrained by no reference to
existing analogies, and in which a desire is manifested
to cut, rather than patiently to untie, the Gordian knot.

Charles Lyell




}/(I’,I") r2(rl’r2;rl!’ r2,> r3(l’l,l’2,l’3;l’l', rzl’rgl) I

HF,CIS CCSD, etc. CCSDT, etc. CCSDTQ, etc. ful

Science strives to make the new
intelligible in terms of the familiar.
Baruch Spinoza




Conventional Strateqy #3: Direct Assault

Use “trickery” to represent an exponentially complex wavefunction.
e Must exploit simplifying features of “real” electronic systems.

e Examples:
o Truncation of the Cl expansion based on chemical and/or
mathematical considerations.
o Factorization of the wavefunction.
o Efficient reparameterization of the wavefunction.
o Monte-Carlo techniques.

e Requires inspiration and “domain knowledge.”

It should always be borne in mind that when part is
modified, so will be other parts, through certain dimly
seen causes ... which lead to the many mysterious cases
of correlation, which we do not in the least understand.
Charles Darwin



Second Quantization

A Slater Determinant:

46,04 = |48, ) =aaja;a|0)

Creators of Electrons Annihilators of Electrons

"lg)=|f 1g)=0 —
«|q)=|7) ? “19)
=0 4 - o|)<lg) A= > —
a|F)=|rr) A o|fF)=|F) M —¥
i J i 1 L J
Pauli principle enforced by construction:

+ + + At + At
1-body and 2-body operators compactly expressed:

o + 7 + At

h=> ha'a, V=> gaaaa

i ] iy ],k
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Use a Slater determinant as an initial guess.....
Unrestricted Hartree-Fock

| D) =2a'a)...a)|0) N = # of electrons
Singly-excited Slater determinant; doubly-excited Slater det.,...
a + ab + At
‘(Di>:aaai|q)UHF> ‘(Dij >:aaabajai|(DUHF>
i,jeocc (1<i<N) a,bevit (a>N)

Linear combinations of Slater determinants.

Configuration Interaction (Linear Combination of Slater Dets.)
ClI-Singles & Doubles (CISD)

CI-Singles (CIS)

f—/%
ant ab A+ A+ abC A+t AtAt
¥ esor.) =| 1+ z Ciaa + z Cij 8,8,8;8; + z Ci 2188, 8,28+ D)
ie i,je i,j.ke
acvir & bevir b cevir




Coupled Cluster. Product Form.

CC-Singles & Doubles (CCSD)

CC-Singles (CCS)

/—/%
|W cesor..) = H (14-tiaa;ai ) H (1+tiz;1b(31;agajai ) H (1+ti‘;?‘i?ca;agac*akajai )+
acvir & bevir e

ant aby+qt abC A+ q+at
=exp| 1+ D tlaja,+ Y, tfajajaa + Y, tirajaaaaa +-

ieocc i, jeocc i, j,keocc
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CCs
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Occupation Number Representation

For a system with K spin-orbitals, choosing:

(a))" = m, =1 a, ; occupy k"
/" m, =0 1; multiply by 1
Full-Cl: sum over all possible ways of occupying N orbitals
W)= X e (e (@) () o)
m, €{0,1}
My, My,...Mg N:imk

There is no dependence on a reference determinant
in the occupation number representation....




Matrix Product States

n”n [1] a”z?”zi [ ] (ngpns, ) [3] 4¢n4¢ [4] a (ngpns, ) [5] a’({:m”w)[G]

KK Kpks K4Ks
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Wee) = Z gl M) (a1+)m1 (a;)mz (a;)mg (a; )mK 6
{mke{o,l};N:Z::lmk}
There are 0O(2¥) CI coefficients. We can factor them:

eigenvalue decomposition

Schmidt decomposition Hv,=4v, ujH=2u;
2 r n Y r n Y

mm,)  NO1a(m) 2.4(m i) (i), . (j

) 3 1g(m) 2g(m) 0 =3 a0, b =3 2ulh
(=1 (=1 (=1

(M) _ N N (M) 24 (M) 34 (ma)
mm,ms) m m, ms
cmM =% > A fay ey

81:1[2:1

( ) NN\ La(M) 24(m) 34 (M) 4o (me)
mmmem,) m) my) 3.(mg) m,
C _ZZZ afl aflfz asza aCs

(mlmz...mj...mK 1mK)

2 g, ™R (m) 2(m) (M) (M) Ka(me)
— 1alm) 25(M)  ja\Mi) KA (Meq) KoMk
=>2. > > D &, A Ay CYVSIRE -
210,21 = (=l (41
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When one does a singular-value decomposition or an
eigenvalue decomposition of a matrix, it is common to
make a low-rank approximation:

D<«n D«n

M~ > o,u,v; _ZO-CUV M~ > Au,v; —Z/Iuv

o> |4z

Similarly, truncate the factorization of the Cl coefficients:
2 min(Zj,ZK’j,D)
1

4
C(mlmz...mj...mK) zzz Z Z al (m) [1[2 a( )J Kag,;:)

(’1: 62:]. C]:l CK l_l

Keep track of the “largest neglected weight” to control the
error in the decomposition. This is the matrix product
state. It is usually optimized using the density matrix
renormalization group (DMRG) algorithm.

Note: The number of variational parameters is decreased
from O(2%) to O(KD?). This is much cheaper....
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This recovers full-Cl as D — o. To get there, we
extrapolate versus the maximum discarded weight from
the matrix decomposition. Computational Cost O(K>D?)
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DMRG is usually performed using spatial orbitals. With
“overloaded” notation, for a system with L spatial orbitals:

_ + +
My =3 Q.85
_ +
<0Jf )ﬂj =47 A
J +
M= aj,
w; =0 1

The full-Cl wavefunction is:

|\PFCI> )Y C(M%H#L)(O;)Nl(Og)uzm(oz)%
ef0.1,2.3 NZ 12} Z (2)}

And the corresponding matrix product state is:

4 min(4),47,D) 4 (1)
p— LN 1) 250 gli) L)
~ ZZ Z Z afl aéléz a Cialy aé'-—l
0,=10,=1 ;=1 f4=1
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. The matrix product state is a parameterization of the full-Cl
wavefunction using only a polynomial number of unknowns.
o But there can be a hidden exponential prefactor, as the
number of retained states, D, may diverge exponentially.

. Key Idea: DMRG omits electron configurations that are less-
important, using a “generalized” singular value decomposition.

. Limitation: Without further tricks, the method is limited to ~50
electrons in 7100 spatial orbitals.

. Limitation: Reliable calculations require extrapolation to the
basis-set limit.

White, Phys. Rev. Lett. 69, 2863 (1992).

Chan & M. Head-Gordon, J. Chem. Phys. 116, 4462 (2002).

Ostlung & Rommer, Phys. Rev. Lett. 75, 3537 (1995).

Olivares-Amaya, Hu, Nakatani, Sharma, Yang, Chan, J. Chem. Phys. 142,
034102 (2015).

Szalay, Pfeffer, Murg, Barcza, Verstraete, Schneider, Legeza Int. J. Quantum
Chem. 115, 1342 (2015)

Wouters, Poelman, Ayers, Van Neck Comp. Phys. Comm. 185, 1501 (2014).

https://github.com/SebWouters/CheMPS2
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Reparameterization of the Wavefunction
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Replace configurations of electrons
with configurations of electron pairs.

Build wavefunctions not from orbitals I cl |
(1e™ states) but two-electron states. I
e Strong correlations from electron — -
pairing (superconductivity, etc.) are | Cl— P —cll

automatically included this way.
A two-electron state is called a geminal. It is generated by:
K
+ (P)a+ A+
G, =.¢a’a,
i,j=1
so the wavefunction then has the form,

W) =GG; -Gy ,|0)

Hurley, Lennard-Jones, & Pople, Proc. R. Soc. London VvA220, 446 (1953).
Parr, Ellison, & Lykos, J. Chem. Phys. v24, 1106 (1956).

Surjan, Szabados, Jeszenszki, & Zoboki, J. Math. Chem. v50, 534 (2012).




There is a unitary transformation that allows us to rewrite the
geminal in natural-orbital representation For a singlet state:

K
G;:Zcfjp) g; a ZC i Bip

i,
The antisymmetric product of interactlng geminals (APIG) is,

) H(Zc .4 Jo

This does not require a reference Slater determinant. In the
occupation-number representation:,

|lPAPIG>: Z (a1+aa1+ﬁ> (a aZﬂ) "'(a+ atﬂ)m|9>
:01}N:izu,}

The expansion coefficients for the Slater determinants are

of the occupied orbitals coefficients,

Silver, J. Chem. Phys. v50, 5108 (1969); v52, 299 (1970).




Mathematics Trick

There are certain matrices whose permanents are easy to evaluate.
1

Ci'p::a & +bA
p&i THi4,

Then,

C.W. Borchardt, “Bestimmung der symmetrischen Verbindungen
vermittelst ihrer erzeugenden Funktion,” Crelle's Journal, 53, 193-
198 (1855).




Physics Trick

Use the “weak” formulation of the eigenvalue problem. Project the
Schrédinger equation against Slater determinants:

(@]H]¥)=E(@|¥) VO

We usually choose the project against just the pair excitations,
<|3|c1>0\\11>: E (@] )

(R

v)=E(0f|¥)

With this choice, there are other efficient geminal forms that can be
used too.

Limacher, Ayers, Johnson, De Baerdemacker, Van Neck, and
Bultinck, J. Chem. Theory Comp. v9, 1394 (2013).

Johnson, Ayers, Limacher, De Baerdemacker, Van Neck, and
Bultinck, Comput. Theor. Chem. v1003, 101 (2013).
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Example: Carbon Dimer (C;). Hard because lots of low-lying states.
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Tecmer,Boguslawski,Johnson,Limacher,Johnson,Chan,Verstraelen,Ayers J. Phys.

Chem. A 118, 9058 (2014).
http://theochem.github.io/horton/
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H 50 (Symmetric Stretch)

== AP1roG
MP2
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. The geminal product form captures most strong correlation
effects.
o It is a mean-field method for pairs, and thus very fast.
(Potentially thousands of electrons.)
o But there can be a hidden exponential prefactor in cases
where this form is qualitatively incorrect.

. Key Idea: Build your wavefunction from electron pair
quasiparticles, not quasi-independent electrons.

. Limitation: The method may not work well when the dominant
strong-correlation effect is not based on electron-pairing.

. Limitation: The method does not approach full-Cl in some limit.
It is limited to even numbers of electrons, and (partly) neglects
weak correlations.

Surjan. In Correlation and localization Springer, Berlin, 1999 (pp. 63-88).
Limacher, et al. J. Chem. Th. Comp. 2013; 9:1394-401.

Johnson, et al. Comp. Theor. Chem. 2013; 1003:101-13.

Boguslawski, et al. Phys. Rev. B. 2014; 89:201106.

Stein, Henderson, Scuseria. J. Chem. Phys. 2014; 140:214113.




e /f you suspect there might be more than one
important electron configuration, be very careful!!
o CASSCF/DMRG/Multireference Methods.
o Geminals(?) Too early to know....
o Must include excitations to all orders.

e _.orjustignore the problem and hope for the best. It's what
most people do.

e | BEWMG A MAN O

AN b
I CAMT AF

...where ignorance is bliss, "tis folly to be wise.
Thomas Gray
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Helpful
Open-Source
Research

TOol for

N-fermion Systems

H=RT=N

Verstraelen

http://theochem.github.io/horton



APEPRONERES

Frontier Molecular Orbital

OUTPUT §

Cube Files (.cube)
Molden Files (.molden)

Finite Difference
Analytical
(Perturbation Theory)

VMD Visualization Scripts
Excel Spreadsheet
Postscript

I@D\‘JSED

Hirshfeld Family
Becke (Fuzzy)
Mulliken Family
ESP Fitted Family
QTAIM (Bader)
NPA

CTERS

Non-Covalent Interaction
(NcI1)

Electron Localization
Function (ELF)

Kinetic Energy Density

- Positive Definite
- Thomas Fermi
- Weizsdcker

+ (Hyper-)Fukui Response

.

NI

Linear Response

- Independent Particle Approximation

- Random Phase Approximation
- Coupled Perturbed Kohn Sham
- Coupled Perturbed Hartree-Fock

Softness Kernel

Formated Checkpoint
Files (.fchk)
Wavefunction Files (.wfn)
Cube Files (.cube)
Molden Files (.molden)
Molekel Files (.mkl)

LD,
Chemical Potential
Chemical (Hyper-)Hardness
Chemical (Hyper-)Softness
Electrophilicity
Electro/Nucleo-Fugality

Fukui Function

Dual Descriptor
Hyper-Fukui Function
Local (Hyper-)Softness
Local Electophilicity
Molecular

Electrostatic

ofen'rial










