
The lone pairs of H2O 
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1) MO = nn pp , VB = (n  p)(n  p )(n  p)(n  p ) . 
 

2) VB = (nn  pn  np  pp )(nn  pn  np  pp )   

 nn nn   nn pn   nn np  2 nn pp 

 pn nn  2 pn pn  2 pn np  3 pn pp 

 np nn  2 np pn  2 np np  3 np pp 

2 pp nn  3 pp pn  3 pp np  4 pp pp 

 

After eliminating all determinants having two orbitals with the same spin, there 

remains : VB = 2 nn pp  2 pn np  2 np pn  2 pp nn . 
After permuting the columns and changing signs accordingly, there remains : 

VB = 42 nn pp = MO (if one includes normalization factors).
 

3) 1 = (n  p)(n  p )(n  p) , 2 = (n  p)(n  p )(n  p)  (putting the orbitals 
in maximum correspondance).  

 
4) 1 and 2 differ by only one orbital, (n-p) in 1 which becomes (n+p) in 2 . 

Therefore the matrix element 1H2 is a simple  integral, necessarily negative. 

=> The lowest ionized state is 
1

2
(1 2) while the higher ionized state is 

1

2
(1 2) .  

5) 1 = nn n   pn n   np n  2 pp n   nn p  2 pn p  2 np p  3 pp p  

1 = 22 pp n 2 nn p  

In the same way, one shows that 2 = 22 pp n 2 nn p . It follows that : 

(1 2) nn p  (lowest ionized state in MO theory) 

(1 2) pp n  (higher ionized state in MO theory) . 
 
It is concluded that 1) VB theory yields two ionization potentials for H2O, in 
agreement with experiment, and 2) that these ionization potentials are exactly the 
same as the ones found in elementary MO theory. 
  
 

 
 



 
 
 


