The lone pairs of H₂O

$$\begin{aligned} &-\lambda |p\overline{n}n\overline{n}| - \lambda^{2} |p\overline{n}p\overline{n}| - \lambda^{2} |p\overline{n}n\overline{p}| - \lambda^{3} |p\overline{n}p\overline{p}| \\ &-\lambda |n\overline{p}n\overline{n}| - \lambda^{2} |n\overline{p}p\overline{n}| - \lambda^{2} |n\overline{p}n\overline{p}| - \lambda^{3} |n\overline{p}p\overline{p}| \\ &+\lambda^{2} |p\overline{p}n\overline{n}| + \lambda^{3} |p\overline{p}p\overline{n}| + \lambda^{3} |p\overline{p}n\overline{p}| + \lambda^{4} |p\overline{p}p\overline{p}| \end{aligned}$$

After eliminating all determinants having two orbitals with the same spin, there remains : $\Psi_{\rm VB} = \lambda^2 |n\overline{n}p\overline{p}| - \lambda^2 |p\overline{n}n\overline{p}| - \lambda^2 |n\overline{p}p\overline{n}| + \lambda^2 |p\overline{p}n\overline{n}|$.

After permuting the columns and changing signs accordingly, there remains : $\Psi_{VB} = 4\lambda^2 |n\overline{n}p\overline{p}| = \Psi_{MO}$ (if one includes normalization factors).

- 3) $\Phi_1 = |(n \lambda p)(\overline{n} \lambda \overline{p})(n + \lambda p)|, \Phi_2 = |(n \lambda p)(\overline{n} + \lambda \overline{p})(n + \lambda p)|$ (putting the orbitals in maximum correspondance).
- 4) Φ₁ and Φ₂ differ by only one orbital, (n-λp) in Φ₁ which becomes (n+λp) in Φ₂. Therefore the matrix element ⟨Φ₁ | H | Φ₂⟩ is a simple β integral, necessarily negative.
 => The lowest ionized state is 1/√2 (Φ₁+Φ₂) while the higher ionized state is 1/√2 (Φ₁-Φ₂).
 5) Φ₁ = |nπn| λ |pπn| λ |npn| + λ² |ppn| + λ |nnp| λ² |pnp| λ² |npp| + λ³ |ppp| Φ₁ = +2λ² |ppn| + 2λ |nnp|
 In the same way, one shows that Φ₂ = -2λ² |ppn| + 2λ |nnp|. It follows that : (Φ₁+Φ₂) ∝ |nnp| (lowest ionized state in MO theory)

 $(\Phi_1 - \Phi_2) \propto |p\bar{p}n|$ (higher ionized state in MO theory).

It is concluded that 1) VB theory yields two ionization potentials for H_2O , in agreement with experiment, and 2) that these ionization potentials are exactly the same as the ones found in elementary MO theory.