Symmetry broken\&restored MBPT/CC formalisms

One possible strategy for ab-initio calculations of near-degenerate and open-shell systems
I. Let the reference state spontaneously break symmetry(ies)
II. Safely expand the exact solution around it
III. Restore the symmetry(ies) at any truncation order

Thomas DUGUET

CEA, Saclay, France KU Leuven, Belgium Michigan State University, USA

RPA workshop, Jussieu, Paris, May 2017

With my warm thank you to Georges Ripka

Contents

© Introduction

- Why breaking and restoring symmetries?
- Status of existing single-reference many-body methods based on breaking and restoring symmetries
© Symmetry broken\&restored MBPT and CC formalisms - basic concepts and equations

Symmetry broken and restored coupled cluster theory: I. Rotational symmetry and angular momentum
T. Duguet, J. Phys. G: Nucl. Part. Phys. 42 (2015) 025107

Symmetry broken and restored coupled cluster theory: II. Global gauge symmetry and particle number
T. Duguet, A. Signoracci, J. Phys. G: Nucl. Part. Phys. 44 (2016) 015103
© Conclusions and perspectives

Contents

© Introduction

- Why breaking and restoring symmetries?
- Status of existing single-reference many-body methods based on breaking and restoring symmetries
© Symmetry broken\&restored MBPT and CC formalisms - basic concepts and equations

Symmetry broken and restored coupled cluster theory: I. Rotational symmetry and angular momentum
T. Duguet, J. Phys. G: Nucl. Part. Phys. 42 (2015) 025107

Symmetry broken and restored coupled cluster theory: II. Global gauge symmetry and particle number
T. Duguet, A. Signoracci, J. Phys. G: Nucl. Part. Phys. 44 (2016) 015103
© Conclusions and perspectives

Ab initio nuclear chart

© Single-reference expansion methods

- (G)SCGF, (B)CC, IMSRG
- Polynomial scaling

O Multi-reference methods

- Valence space CI, MR-IMSRG, MCPT
- Mixed scaling
© "Exact" ab initio approaches - GFMC, NCSM, FY, HH
- Factorial scaling

Breaking (+ restoring) or not $[S U(2)$ and/or $\mathrm{U}(1)]$ symmetries, that is the question/dilemma...

(Near-)degenerate systems via expansion methods

© Expansion around a symmetry adapted determinant $|\Phi\rangle$ captures correlations via ph excitations Closed-shell
 non degenerate

Sub-closed shell

near degenerate

Open-shell

degenerate
$\uparrow E[p ; \mid q]$

E.g. consider MBPT(2) $\Delta E^{(2)}=-\frac{1}{4} \sum_{a b i j} \frac{\left|\bar{v}_{a b i j}\right|^{2}}{e_{a}+e_{b}-e_{i}-e_{j}}$ Expansion breaks down when $e_{a}+e_{b} \approx e_{i}+e_{j}$
© Possible ways out
> High-order non-perturbative single-determinant method if near-degeneracy = slow convergence
> Multi-reference/configuration methods, e.g. MR-MBPT, MR-CC, MR-IMSRG, valence-space CI
> Expand around a symmetry-breaking reference product state $|\Phi\rangle$ (non-perturbative static correlations)
\rightarrow Lifts the degeneracy, e.g. BMBPT(2) [U(1) group]

$$
\Delta E^{(2)}=-\frac{1}{4!} \sum_{k_{1} k_{2} k_{3} k_{4}} \frac{\left|\Omega_{k_{1} k_{2} k_{3} k_{4}}\right|^{2}}{E_{k_{1}}+E_{k_{2}}+E_{k_{3}}+E_{k_{4}}}>0
$$

Single-reference many-body methods and symmetries

Nuclear Many-Body Methods

Recently implemented
[Somà et al. 2011] [Signoracci et al. 2014]

Single-reference many-body methods and symmetries

Nuclear Many-Body Methods

Open shells
Restored sym.
:---:
Broken sym.
:---:
Conserved sym.

Contents

© Introduction

- Why breaking and restoring symmetries?
- Status of existing single-reference many-body methods based on breaking and restoring symmetries
© Symmetry broken\&restored MBPT and CC formalisms - basic concepts and equations

Symmetry broken and restored coupled cluster theory: I. Rotational symmetry and angular momentum
T. Duguet, J. Phys. G: Nucl. Part. Phys. 42 (2015) 025107

Symmetry broken and restored coupled cluster theory: II. Global gauge symmetry and particle number
T. Duguet, A. Signoracci, J. Phys. G: Nucl. Part. Phys. 44 (2016) 015103
© Conclusions and perspectives

Basic ingredients

Nuclear Hamiltonian

$$
\begin{aligned}
H \equiv & \frac{1}{(1!)^{2}} \sum_{p q} t_{p q} c_{p}^{\dagger} c_{q} \\
& +\frac{1}{(2!)^{2}} \sum_{\text {pqrs }} \bar{v}_{p q r s} c_{p}^{\dagger} c_{q}^{\dagger} c_{s} c_{r} \\
& +\frac{1}{(3!)^{2}} \sum_{\text {pqrstu }} \bar{w}_{p q r s t u} c_{p}^{\dagger} c_{q}^{\dagger} c_{r}^{\dagger} c_{u} c_{t} c_{s}
\end{aligned}
$$

Bogoliubov transformation
$\binom{\beta}{\beta^{\dagger}}=\left(\begin{array}{cc}U^{\dagger} & V^{\dagger} \\ V^{T} & U^{T}\end{array}\right)\binom{c}{c^{\dagger}}$

Nuclear grand potential

$$
\begin{aligned}
& \Omega \equiv H-\lambda A \\
& {[H, S(\varphi)]=[A, S(\varphi)]=[\Omega, S(\varphi)]=0}
\end{aligned}
$$

U(1) symmetry group
$U(1) \equiv\left\{S(\varphi)=e^{i A \varphi} ; \varphi \in[0,2 \pi]\right\}$ $\left\langle\Psi_{\mu}^{\mathrm{A}}\right| S(\varphi)\left|\Psi_{\mu^{\prime}}^{\mathrm{A}^{\prime}}\right\rangle \equiv e^{i \mathrm{~A} \varphi} \delta_{\mathrm{AA}^{\prime}} \delta_{\mu \mu^{\prime}}$

Quasi-particle excitations

$$
\left|\Phi^{\alpha \beta \ldots}\right\rangle \equiv \beta_{\alpha}^{\dagger} \beta_{\beta}^{\dagger} \ldots|\Phi\rangle
$$

Schroedinger equation
$\left\{\begin{array}{l}\Omega\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle=\Omega_{\mu}^{\mathrm{A}}\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle \\ A\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle=\mathrm{A}\left|\Psi_{\mu}^{\mathrm{A}}\right\rangle\end{array}\right.$
with $\Omega_{\mu}^{\mathrm{A}} \equiv \mathrm{E}_{\mu}^{\mathrm{A}}-\lambda \mathrm{A}$

Bogoliubov vacuum

$$
|\Phi\rangle \equiv C \prod_{\alpha} \beta_{\alpha}|0\rangle
$$

$$
\beta_{k}|\Phi\rangle=0 \forall k
$$

$\left\{\begin{array}{l}A|\Phi\rangle \neq \mathrm{A}|\Phi\rangle \\ \text { Breaks } \mathrm{U} \text { (1) symmetry }\end{array}\right.$

Master equations

Bogoliubov coupled cluster scheme - end result (1)

...after working out BMBPT and CC many-body expansions (derivations, diagrammatics etc see [T. Duguet, A. Signoracci (2016])...

Off-diagonal operator kernels

$$
\begin{aligned}
& \mathcal{A}(\varphi) \equiv a(\varphi) \mathcal{N}(\varphi) \\
& \Omega(\varphi) \equiv \omega(\varphi) \mathcal{N}(\varphi) \quad \text { Linked/connected kernels }
\end{aligned}
$$

Gauge-rotated Bogoliubov coupled cluster amplitudes

$$
\begin{aligned}
& \mathcal{T}_{n}(\varphi) \equiv \frac{1}{(2 n)!} \sum_{k_{1} \ldots k_{2 n}} \mathcal{T}_{k_{1} \ldots k_{2 n}}(\varphi) \beta_{k_{1}}^{\dagger} \ldots \beta_{k_{2 n}}^{\dagger}
\end{aligned}
$$

Off-diagonal linked-connected energy and amplitude equations

$$
\begin{aligned}
\omega(\varphi) & \left.=\frac{\langle\Phi(\varphi)| \Omega e^{\mathcal{T}(\varphi)}|\Phi\rangle_{c}}{\langle\Phi(\varphi) \mid \Phi\rangle} \quad \Phi\left|\tilde{\Omega}(\varphi) e^{\mathcal{T}(\varphi)}\right| \Phi\right\rangle_{c} \\
0 & =\frac{\left\langle\Phi^{\alpha \beta \ldots}(\varphi)\right| \Omega e^{\mathcal{T}(\varphi)}|\Phi\rangle_{c}}{\langle\Phi(\varphi) \mid \Phi\rangle}=\left\langle\Phi^{\alpha \beta \ldots}\right| \tilde{\Omega}(\varphi) e^{\mathcal{T}(\varphi)}|\Phi\rangle_{c}
\end{aligned}
$$

Off-diagonal Bogoliubov Diagonal (standard) Bogoliubov coupled cluster kernels with coupled cluster kernels with gaugeoriginal Hamiltonian rotated Hamiltonian!

Rich algebraic form e.g. $\omega(\varphi)$ contains 20 diagrams

Coupled cluster scheme - end result (2)

Off-diagonal norm kernel

$$
\frac{d}{d \varphi} \mathcal{N}(\varphi)+\underbrace{i a(\varphi) \mathcal{N}(\varphi)}=0
$$

$$
\mathcal{N}(\varphi)=e^{-i \int_{0}^{\varphi} d \phi a(\phi)}
$$

$\ln \mathscr{A}(\varphi)$ has a terminating BCC expansion linked BCC truncated $a(\varphi)$

Particle-number restored energy

$$
\mathcal{A}(\varphi)
$$

$$
h(\varphi) \equiv \omega(\varphi)+\lambda a(\varphi)
$$

$$
\mathrm{A}=\mathrm{A}_{\mathrm{app}}^{\mathrm{A}}=\frac{\int_{0}^{2 \pi} d \varphi e^{i \mathrm{~A} \varphi} \mathcal{A}(\varphi)}{\int_{0}^{2 \pi} d \varphi e^{i \mathrm{~A} \varphi} \mathcal{N}(\varphi)}
$$

-Needs typically 10 discretization points in φ -10 independent BBC-like calculations

Two important limits

1) BMBPT version of the formalism available
2) A symmetry-restored QRPA method can be extracted

Diagonal formalism at $\varphi=0$: standard BCC theory

$$
\begin{aligned}
\omega(0) & =\langle\Phi| \Omega e^{\mathcal{T}}|\Phi\rangle_{c} \\
0 & =\left\langle\Phi^{\alpha \beta \ldots}\right| \Omega e^{\mathcal{T}}|\Phi\rangle_{c}
\end{aligned}
$$

Gives directly the energy $h(0)=\omega(0)+\lambda \mathbf{a}(0)$ as $\mathcal{N}(0)=1$ Off-diagonal theory underlines importance of $\mathcal{N}(\varphi)$

Missing static correlations

Zeroth-order formalism : projected HFB theory

$$
\begin{gathered}
\mathrm{E}_{0}^{\mathrm{A}(0)}=\frac{\int_{0}^{2 \pi} d \varphi e^{i \mathrm{~A} \varphi}\langle\Phi(\varphi)| H|\Phi\rangle}{\int_{0}^{2 \pi} d \varphi e^{i \mathrm{~A} \varphi}\langle\Phi(\varphi) \mid \Phi\rangle}=\frac{\left\langle\Theta^{\mathrm{A}}\right| H\left|\Theta^{\mathrm{A}}\right\rangle}{\left\langle\Theta^{\mathrm{A}} \mid \Theta^{\mathrm{A}}\right\rangle} \\
\left|\Theta^{\mathrm{A}}\right\rangle \equiv P^{\mathrm{A}}|\Phi\rangle \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \varphi e^{-i \mathrm{~A} \varphi} S(\varphi)|\Phi\rangle \\
\text { No dynamical correlations }
\end{gathered}
$$

Contents

© Introduction

- Why breaking and restoring symmetries?
- Status of existing single-reference many-body methods based on breaking and restoring symmetries
© Symmetry broken\&restored MBPT and CC formalisms - basic concepts and equations

Symmetry broken and restored coupled cluster theory: I. Rotational symmetry and angular momentum T. Duguet, J. Phys. G: Nucl. Part. Phys. 42 (2015) 025107

Symmetry broken and restored coupled cluster theory: II. Global gauge symmetry and particle number
T. Duguet, A. Signoracci, J. Phys. G: Nucl. Part. Phys. 44 (2016) 015103
© Conclusions and perspectives

Conclusions and perspectives

© Formulation of symmetry broken\&restored BMBPT and BCC theory

- Offer a consistent way to capture static and dynamical correlations along with their interference
- The formalism is valid (i.e. can be adapted) to any symmetry
© First step is to implement the symmetry broken theory for $\mathrm{U}(1)$ in semi-magic nuclei
- First implementation of BCC [Signoracci et al. 2014]
- On-going implementation of BMBPT [Arthuis et al. 2017]
© Implementation of symmetry restoration step next
- Particle-number restored BMBPT [Arthuis et al. 2018]

- Particle-number restored BCC [next]

Collaborators on ab initio nuclear many-body calculations

P. Arthuis
M. Drissi
J. Ripoche
V. Somà
J. P. Ebran

R. Lasseri
D. Lacroix

UNIVERSITY OF
SURREY
C. Barbieri
P. Navratil
theUNIVERSITYof
TENNESSEE UT
类OAK RIDGE
National Laboratory
G. Hagen
A. Tichai
R. Roth

KU LEUVEN S. Lecluse

