Symmetry broken&restored MBPT/CC formalisms

One possible strategy for ab-initio calculations of **near-degenerate** and **open-shell** systems

- I. Let the reference state spontaneously break symmetry(ies)
- II. Safely expand the exact solution around it
- III. Restore the symmetry(ies) at any truncation order

Thomas DUGUET

CEA, Saclay, France KU Leuven, Belgium Michigan State University, USA

With my warm thank you to Georges Ripka

RPA workshop, Jussieu, Paris, May 2017

Introduction

• Why breaking and restoring symmetries?

• Status of existing single-reference many-body methods based on breaking and restoring symmetries

• Symmetry broken&restored MBPT and CC formalisms – basic concepts and equations

Symmetry broken and restored coupled cluster theory: I. Rotational symmetry and angular momentum T. Duguet, J. Phys. G: Nucl. Part. Phys. 42 (2015) 025107

Symmetry broken and restored coupled cluster theory: II. Global gauge symmetry and particle number T. Duguet, A. Signoracci, J. Phys. G: Nucl. Part. Phys. 44 (2016) 015103

Onclusions and perspectives

Introduction

- Why breaking and restoring symmetries?
- Status of existing single-reference many-body methods based on breaking and restoring symmetries

• Symmetry broken&restored MBPT and CC formalisms – basic concepts and equations

Symmetry broken and restored coupled cluster theory: I. Rotational symmetry and angular momentum T. Duguet, J. Phys. G: Nucl. Part. Phys. 42 (2015) 025107

Symmetry broken and restored coupled cluster theory: II. Global gauge symmetry and particle number T. Duguet, A. Signoracci, J. Phys. G: Nucl. Part. Phys. 44 (2016) 015103

Occursion of the second sec

Ab initio nuclear chart

Breaking (+ restoring) or not [SU(2) and/or U(1)] symmetries, that is the question/dilemma...

(Near-)degenerate systems via expansion methods

• Expansion around a symmetry adapted determinant $|\Phi\rangle$ captures correlations via ph excitations

- > High-order non-perturbative single-determinant method if near-degeneracy = slow convergence
- > Multi-reference/configuration methods, e.g. MR-MBPT, MR-CC, MR-IMSRG, valence-space CI
- > Expand around a symmetry-breaking reference product state $|\Phi
 angle$ (non-perturbative static correlations)

Single-reference many-body methods and symmetries

Single-reference many-body methods and symmetries

Introduction

- Why breaking and restoring symmetries?
- Status of existing single-reference many-body methods based on breaking and restoring symmetries

• Symmetry broken&restored MBPT and CC formalisms – basic concepts and equations

Symmetry broken and restored coupled cluster theory: I. Rotational symmetry and angular momentum T. Duguet, J. Phys. G: Nucl. Part. Phys. 42 (2015) 025107

Symmetry broken and restored coupled cluster theory: II. Global gauge symmetry and particle number T. Duguet, A. Signoracci, J. Phys. G: Nucl. Part. Phys. 44 (2016) 015103

Occursion of the second sec

Basic ingredients

Nuclear grand potential

Nuclear Hamiltonian

 $H \equiv \frac{1}{(1!)^2} \sum_{pq} t_{pq} c_p^{\dagger} c_q$ + $\frac{1}{(2!)^2} \sum_{pqrs} \overline{v}_{pqrs} c_p^{\dagger} c_q^{\dagger} c_s c_r$ + $\frac{1}{(3!)^2} \sum_{pqrstu} \overline{w}_{pqrstu} c_p^{\dagger} c_q^{\dagger} c_r^{\dagger} c_u c_t c_s$

 $\Omega \equiv H - \lambda A$

$$[H, S(\varphi)] = [A, S(\varphi)] = [\Omega, S(\varphi)] = 0$$

U(1) symmetry group $U(1) \equiv \left\{ S(\varphi) = e^{iA\varphi}; \varphi \in [0, 2\pi] \right\}$

Bogoliubov transformation

 $\begin{pmatrix} \beta \\ \beta^{\dagger} \end{pmatrix} = \begin{pmatrix} U^{\dagger} & V^{\dagger} \\ V^{T} & U^{T} \end{pmatrix} \begin{pmatrix} c \\ c^{\dagger} \end{pmatrix}$

 $\langle \Psi^{\rm A}_{\mu}|S\left(\varphi\right)|\Psi^{\rm A'}_{\mu'}\rangle\equiv e^{i{\rm A}\varphi}\,\delta_{{\rm A}{\rm A}'}\,\delta_{\mu\mu'}$

Quasi-particle excitations

1p1h <-> 2qp

2ph2h <-> 4qp

$$\Phi^{\alpha\beta\dots}\rangle \equiv \beta^{\dagger}_{\alpha}\beta^{\dagger}_{\beta}\dots|\Phi\rangle$$

Manifold of gauge-rotated Bogoliubov states

$$\mathcal{M}_{U(1)} \equiv \left\{ |\Phi(\varphi)\rangle \equiv S(\varphi)|\Phi\rangle; \varphi \in [0, 2\pi] \right\}$$

 $|\Phi^{\alpha\beta\dots}(\varphi)\rangle \equiv \beta^{\dagger}_{\alpha}\beta^{\dagger}_{\beta}\dots|\Phi(\varphi)\rangle$ Unrotated quasi-particle creation operators

Schroedinger equation

$$\begin{aligned} & \left[\Omega | \Psi_{\mu}^{\mathrm{A}} \rangle = \Omega_{\mu}^{\mathrm{A}} | \Psi_{\mu}^{\mathrm{A}} \rangle \\ & A | \Psi_{\mu}^{\mathrm{A}} \rangle = \mathrm{A} | \Psi_{\mu}^{\mathrm{A}} \rangle \end{aligned} \right.$$

with $\Omega^{\rm A}_{\mu} \equiv {\rm E}^{\rm A}_{\mu} - \lambda {\rm A}$

Bogoliubov vacuum

Master equations

Bogoliubov coupled cluster scheme – end result (1)

... after working out BMBPT and CC many-body expansions (derivations, diagrammatics etc see [T. Duguet, A. Signoracci (2016)])...

Off-diagonal operator kernels

Gauge-rotated Bogoliubov coupled cluster amplitudes

$$\mathcal{A}(\varphi) \equiv a(\varphi) \mathcal{N}(\varphi)$$

$$\Omega(\varphi) \equiv \omega(\varphi) \mathcal{N}(\varphi)$$

Linked/connected kernels

$$\mathcal{T}(\varphi) \equiv \sum_{n \in \mathbb{N}} \mathcal{T}_{n}(\varphi) \qquad \begin{array}{c} \mathsf{S} <-> 2\mathsf{qp} \\ \mathsf{D} <-> 4\mathsf{qp} \\ \mathsf{T} <-> 6\mathsf{qp} \\ \vdots \end{array}$$
$$\mathcal{T}_{n}(\varphi) \equiv \frac{1}{(2n)!} \sum_{k_{1} \dots k_{2n}} \mathcal{T}_{k_{1} \dots k_{2n}}(\varphi) \beta_{k_{1}}^{\dagger} \dots \beta_{k_{2n}}^{\dagger}$$

Off-diagonal linked-connected energy and amplitude equations

Linke@fediaganalgWiClCtbepartsion Diagonal (standard) Wick theorem

Gauge-rotated operators

 $\tilde{\Omega}(\varphi) \equiv M(\varphi)\Omega M^{-1}(\varphi)$ $\tilde{A}(\varphi) \equiv M(\varphi)AM^{-1}(\varphi)$

Non-unitary transformation

$$\begin{split} \omega(\varphi) &= \frac{\langle \Phi(\varphi) | \Omega e^{\mathcal{T}(\varphi)} | \Phi \rangle_c}{\langle \Phi(\varphi) | \Phi \rangle} \qquad \Phi | \tilde{\Omega}(\varphi) e^{\mathcal{T}(\varphi)} | \Phi \rangle_c \\ 0 &= \frac{\langle \Phi^{\alpha\beta} ...(\varphi) | \Omega e^{\mathcal{T}(\varphi)} | \Phi \rangle_c}{\langle \Phi(\varphi) | \Phi \rangle} = \langle \Phi^{\alpha\beta} ... | \tilde{\Omega}(\varphi) e^{\mathcal{T}(\varphi)} | \Phi \rangle_c \end{split}$$

Off-diagonal Bogoliubov coupled cluster kernels with original Hamiltonian

Diagonal (standard) Bogoliubov coupled cluster kernels with gaugerotated Hamiltonian!

Rich algebraic form e.g. $\omega(\phi)$ contains 20 diagrams Same algebraic form as BCC e.g. $\omega(\phi)$ contains 4 diagrams

Coupled cluster scheme – end result (2)

Introduction

• Why breaking and restoring symmetries?

• Status of existing single-reference many-body methods based on breaking and restoring symmetries

• Symmetry broken&restored MBPT and CC formalisms – basic concepts and equations

Symmetry broken and restored coupled cluster theory: I. Rotational symmetry and angular momentum T. Duguet, J. Phys. G: Nucl. Part. Phys. 42 (2015) 025107

Symmetry broken and restored coupled cluster theory: II. Global gauge symmetry and particle number T. Duguet, A. Signoracci, J. Phys. G: Nucl. Part. Phys. 44 (2016) 015103

Conclusions and perspectives

Conclusions and perspectives

Formulation of symmetry broken&restored BMBPT and BCC theory

- Offer a consistent way to capture static and dynamical correlations along with their interference
- The formalism is valid (i.e. can be adapted) to any symmetry
- First step is to implement the symmetry broken theory for U(1) in semi-magic nuclei

Particle-number restored BCC [next]

Collaborators on ab initio nuclear many-body calculations

P. Arthuis M. Drissi J. Ripoche V. Somà J. P. Ebran

R. Lasseri D. Lacroix

C. Barbieri

P. Navratil

G. Hagen

S. Lecluse

A. Tichai R. Roth

