Holomorphic HF and NOCl

Alex Thom, Hamish Hiscock, James Farrell, Hugh Burton

CECAM VB/NonorCI Workshop, Institut Henri Poincaré, Paris

SCF Solutions of H_{2}

SCF Solutions of H_{2}

SCF Solutions of H_{2}

AJWT, M. Head-Gordon Phys. Rev. Lett. 101, 193001 (2008)
OO

Non-orthogonal Configuration Interaction

Different SCF solutions (${ }^{x} \Psi$ and ${ }^{y} \Psi$) are not orthogonal, nor are their orbitals.

- We can still evaluate matrix elements $H_{x y}=\left\langle{ }^{x} \Psi\right| \hat{H}\left|{ }^{y} \Psi\right\rangle$
- Need overlap matrix elements $S_{x y}=\left\langle\left.{ }^{x} \Psi\right|^{y} \Psi\right\rangle$
- Solve generalized eigenvalue problem $\mathbf{H v}=E \mathbf{S v}$ to get energies.
- Scaling: $\mathcal{O}\left(n_{s}^{2} \max \left\{N^{3}, M^{2}\right\}\right)$ much like an SCF step per pair of solutions.

AJWT and M. Head-Gordon, J. Chem. Phys. 131 124113-1-5, (2009)

H_{2} UHF NOCl

H_{2} UHF NOCI

H_{2} UHF NOCI

H_{2} UHF Energy Surface

The Fundamental Theorem of Algebra

Every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots.

The Fundamental Theorem of Algebra

Every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots.

- Can we apply this to the solutions $\frac{d E}{d \mathbf{C}}=0$?

The Fundamental Theorem of Algebra

Every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots.

- Can we apply this to the solutions $\frac{d E}{d \mathbf{C}}=0$?
- No. Only for a single variable z.

The Fundamental Theorem of Algebra

Every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots.

- Can we apply this to the solutions $\frac{d E}{d \mathbf{C}}=0$?
- No. Only for a single variable z.
- Requires that E is a function of z with no dependence on \bar{z}.

The Fundamental Theorem of Algebra

Every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots.

- Can we apply this to the solutions $\frac{d E}{d \mathbf{C}}=0$?
- No. Only for a single variable z.
- Requires that E is a function of z with no dependence on \bar{z}.
- However $E=\langle\Psi| \hat{H}|\Psi\rangle$ contains Ψ^{*} so depends on \bar{z}.

The Fundamental Theorem of Algebra

Every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots.

- Can we apply this to the solutions $\frac{d E}{d \mathbf{C}}=0$?
- No. Only for a single variable z.
- Requires that E is a function of z with no dependence on \bar{z}.
- However $E=\langle\Psi| \hat{H}|\Psi\rangle$ contains Ψ^{*} so depends on \bar{z}.
- For RHF \rightarrow UHF symmetry breaking, we can parameterize with a single parameter, z, and just remove the complex conjugates. $\tilde{E}=\left\langle\Psi^{*}\right| \hat{H}|\Psi\rangle$.

The Fundamental Theorem of Algebra

Every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots.

- Can we apply this to the solutions $\frac{d E}{d \mathbf{C}}=0$?
- No. Only for a single variable z.
- Requires that E is a function of z with no dependence on \bar{z}.
- However $E=\langle\Psi| \hat{H}|\Psi\rangle$ contains Ψ^{*} so depends on \bar{z}.
- For RHF \rightarrow UHF symmetry breaking, we can parameterize with a single parameter, z, and just remove the complex conjugates. $\tilde{E}=\left\langle\Psi^{*}\right| \hat{H}|\Psi\rangle$.
- Search for stationary points of holomorphic energy, \tilde{E}.

Holomorphic H_{2} UHF

H. G. Hiscock, AJWT J. Comput. Theor. Chem. 10, 4795 (2014)

Holomorphic H_{2} UHF

H. G. Hiscock, AJWT J. Comput. Theor. Chem. 10, 4795 (2014)

Holomorphic H_{2} UHF

H. G. Hiscock, AJWT J. Comput. Theor. Chem. 10, 4795 (2014)

Holomorphic H_{2} UHF

H. G. Hiscock, AJWT J. Comput. Theor. Chem. 10, 4795 (2014)

Holomorphic H_{2} UHF

H. G. Hiscock, AJWT J. Comput. Theor. Chem. 10, 4795 (2014)

SCF Energy

- Conventional:

$$
\begin{gathered}
E_{\mathrm{SCF}}=v_{\mathrm{nuc}}+\sum_{\mu \nu}^{2 m} h_{\mu \nu} P_{\nu \mu}+\sum_{\mu \nu \sigma \tau}^{2 m} P_{\nu \mu}(\mu \nu \| \sigma \tau) P_{\tau \sigma} . \\
P_{\mu \nu}=\sum_{i}^{n} C_{\mu i} C_{\nu i}^{*} . \text { Constrain }\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\sum_{\mu} C_{\mu i}^{*} C_{\mu j}=\delta_{i j}
\end{gathered}
$$

SCF Energy

- Conventional:

$$
\begin{gathered}
E_{\mathrm{SCF}}=v_{\mathrm{nuc}}+\sum_{\mu \nu}^{2 m} h_{\mu \nu} P_{\nu \mu}+\sum_{\mu \nu \sigma \tau}^{2 m} P_{\nu \mu}(\mu \nu \| \sigma \tau) P_{\tau \sigma} . \\
P_{\mu \nu}=\sum_{i}^{n} C_{\mu i} C_{\nu i}^{*} . \text { Constrain }\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\sum_{\mu} C_{\mu i}^{*} C_{\mu j}=\delta_{i j}
\end{gathered}
$$

- Holomorphize (remove complex conjugation):

$$
\begin{gathered}
\tilde{E}_{\mathrm{SCF}}=v_{\mathrm{nuc}}+\sum_{\mu \nu}^{2 m} h_{\mu \nu} \tilde{P}_{\mu \nu}+\sum_{\mu \nu \sigma \tau}^{2 m} \tilde{P}_{\mu \nu}(\mu \nu \| \sigma \tau) \tilde{P}_{\sigma \tau} . \\
\tilde{P}_{\mu \nu}=\sum_{i}^{n} C_{\mu i} C_{\nu i} . \text { Constrain } \sum_{\mu} C_{\mu i} C_{\mu j}=\delta_{i j}
\end{gathered}
$$

SCF Energy

- Conventional:

$$
E_{\mathrm{SCF}}=v_{\mathrm{nuc}}+\sum_{\mu \nu}^{2 m} h_{\mu \nu} P_{\nu \mu}+\sum_{\mu \nu \sigma \tau}^{2 m} P_{\nu \mu}(\mu \nu \| \sigma \tau) P_{\tau \sigma}
$$

$P_{\mu \nu}=\sum_{i}^{n} C_{\mu i} C_{\nu i}^{*}$. Constrain $\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\sum_{\mu} C_{\mu i}^{*} C_{\mu j}=\delta_{i j}$

- Holomorphize (remove complex conjugation):

$$
\begin{gathered}
\tilde{E}_{\mathrm{SCF}}=v_{\mathrm{nuc}}+\sum_{\mu \nu}^{2 m} h_{\mu \nu} \tilde{P}_{\mu \nu}+\sum_{\mu \nu \sigma \tau}^{2 m} \tilde{P}_{\mu \nu}(\mu \nu \| \sigma \tau) \tilde{P}_{\sigma \tau} . \\
\tilde{P}_{\mu \nu}=\sum_{i}^{n} C_{\mu i} C_{\nu i} . \text { Constrain } \sum_{\mu} C_{\mu i} C_{\mu j}=\delta_{i j}
\end{gathered}
$$

- \tilde{E} not variational, but has constant number of stationary points.
- $\tilde{E}=E$ for real coefficients.

H_{2} 6-31G

LiH STO-3G

Algebraic Geometry

- Bézout's Theorem generalizes the Fundamental Theorem of Algebra to the intersection of polynomials of several variables.

Algebraic Geometry

- Bézout's Theorem generalizes the Fundamental Theorem of Algebra to the intersection of polynomials of several variables.
- e.g. RHF 2e in 2 orbitals:

$$
\mathbf{C}=\binom{c_{1}}{c_{2}} \quad \mathbf{C}_{\perp}=\binom{-c_{2}}{c_{1}}
$$

Algebraic Geometry

- Bézout's Theorem generalizes the Fundamental Theorem of Algebra to the intersection of polynomials of several variables.
- e.g. RHF 2e in 2 orbitals:

$$
\mathbf{C}=\binom{c_{1}}{c_{2}} \quad \mathbf{C}_{\perp}=\binom{-c_{2}}{c_{1}}
$$

- SCF Equations amount to

$$
\mathbf{C}_{\perp}^{T} \frac{\partial E}{\partial \mathbf{C}}=0
$$

with the orthogonality constraint is $c_{1}^{2}+c_{2}^{2}=c_{0}^{2}$ where $c_{0}=1$

Algebraic Geometry

- Bézout's Theorem generalizes the Fundamental Theorem of Algebra to the intersection of polynomials of several variables.
- e.g. RHF 2e in 2 orbitals:

$$
\mathbf{C}=\binom{c_{1}}{c_{2}} \quad \mathbf{C}_{\perp}=\binom{-c_{2}}{c_{1}}
$$

- SCF Equations amount to

$$
\mathbf{C}_{\perp}^{T} \frac{\partial E}{\partial \mathbf{C}}=0
$$

with the orthogonality constraint is $c_{1}^{2}+c_{2}^{2}=c_{0}^{2}$ where $c_{0}=1$

- Overall the intersection of a 2 nd order and 4 th order polynomial give $2 \times 4=8$ solutions.
Considering $\pm\left(c_{1}, c_{2}\right)$ equivalent, that is the 4 RHF solutions for all 2-orbital 2-electron systems.

HZ

HZ

Alex Thom, Hamish Hiscock, James Farrell, Hugh Burton
Holomorphic Hartree-Fock and Non-Orthogonal Configuration Interaction

Directions

- Understand solutions.
- Bigger systems - Modify real QC code.
- Complex basis functions.
- SCF Solutions vs VB states?
- Dynamic correlation.
- Extend Bézout.

Funding

