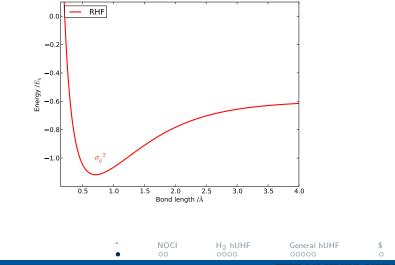
Holomorphic HF and NOCI

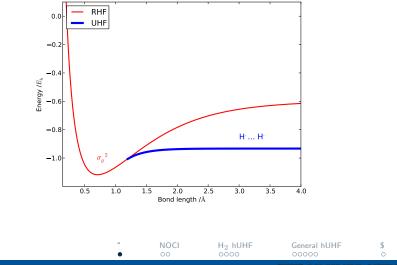
Alex Thom, Hamish Hiscock, James Farrell, Hugh Burton

CECAM VB/NonorCI Workshop, Institut Henri Poincaré, Paris

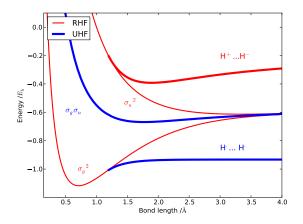
SCF Solutions of H₂



SCF Solutions of H_2



SCF Solutions of H_2



AJWT, M. Head-Gordon Phys. Rev. Lett. 101, 193001 (2008)

Thom, Hamish Hiscock, James Farrell,	ion		RSITY O		
	•	00	0000	00000	0
	^	NOCI	H_2 hUHF	General hUHF	\$

Non-orthogonal Configuration Interaction

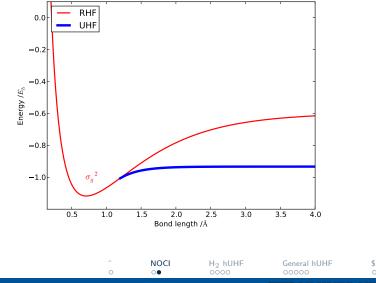
Different SCF solutions (${}^{x}\Psi$ and ${}^{y}\Psi$) are not orthogonal, nor are their orbitals.

- We can still evaluate matrix elements $H_{xy} = \langle {}^x\!\Psi | \hat{H} | {}^y\!\Psi
 angle$
- Need overlap matrix elements $S_{xy} = \langle {}^x\!\Psi | {}^y\!\Psi \rangle$
- Solve generalized eigenvalue problem Hv = ESv to get energies.
- ► Scaling: O(n²_s max{N³, M²}) much like an SCF step per pair of solutions.

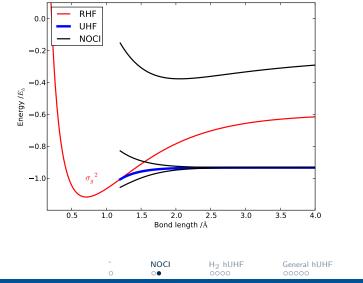
AJWT and M. Head-Gordon, J. Chem. Phys. 131 124113-1-5, (2009)

	Ô	NOCI ●○	H_2 hUHF 0000	General hUHF 00000	\$ 0
Alex Thom, Hamish Hiscock, James Far Holomorphic Hartree-Fock and Non-Ortl		RSITY OF			

H_2 UHF NOCI



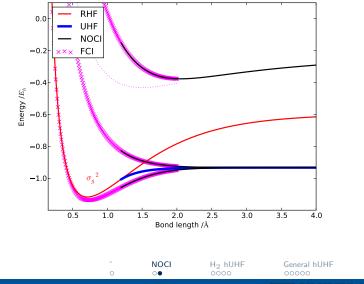
H_2 UHF NOCI



Alex Thom, Hamish Hiscock, James Farrell, Hugh Burton Holomorphic Hartree-Fock and Non-Orthogonal Configuration Interaction

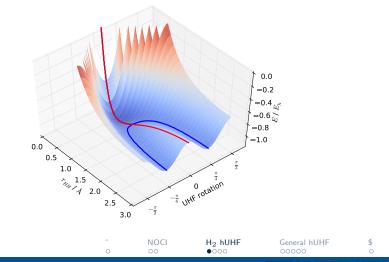
\$

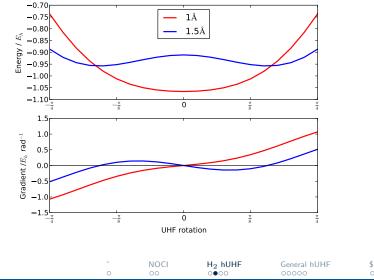
H_2 UHF NOCI

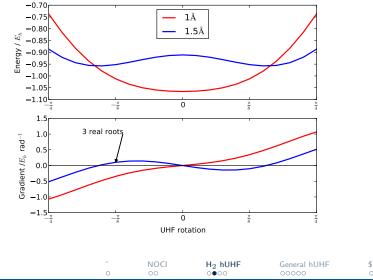


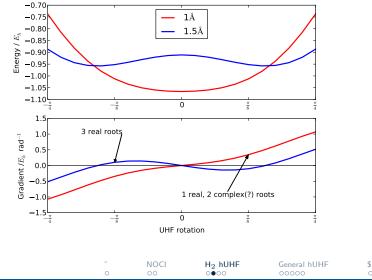
Alex Thom, Hamish Hiscock, James Farrell, Hugh Burton Holomorphic Hartree-Fock and Non-Orthogonal Configuration Interaction

\$









Every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n roots.

• Can we apply this to the solutions $\frac{dE}{dC} = 0$?

- Can we apply this to the solutions $\frac{dE}{dC} = 0$?
- ▶ No. Only for a single variable *z*.

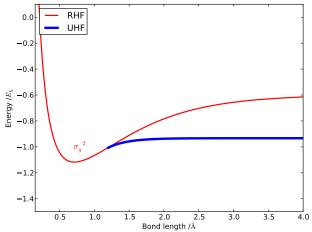
- Can we apply this to the solutions $\frac{dE}{dC} = 0$?
- ▶ No. Only for a single variable *z*.
- Requires that E is a function of z with no dependence on \overline{z} .

- Can we apply this to the solutions $\frac{dE}{dC} = 0$?
- No. Only for a single variable z.
- Requires that E is a function of z with no dependence on \overline{z} .
- However $E = \langle \Psi | \hat{H} | \Psi \rangle$ contains Ψ^* so depends on \bar{z} .

- Can we apply this to the solutions $\frac{dE}{dC} = 0$?
- ▶ No. Only for a single variable z.
- Requires that E is a function of z with no dependence on \overline{z} .
- However $E = \langle \Psi | \hat{H} | \Psi \rangle$ contains Ψ^* so depends on \bar{z} .
- ► For RHF→UHF symmetry breaking, we can parameterize with a single parameter, z, and just remove the complex conjugates. $\tilde{E} = \langle \Psi^* | \hat{H} | \Psi \rangle$.

- Can we apply this to the solutions $\frac{dE}{dC} = 0$?
- No. Only for a single variable z.
- Requires that E is a function of z with no dependence on \overline{z} .
- However $E = \langle \Psi | \hat{H} | \Psi \rangle$ contains Ψ^* so depends on \bar{z} .
- ► For RHF→UHF symmetry breaking, we can parameterize with a single parameter, z, and just remove the complex conjugates. $\tilde{E} = \langle \Psi^* | \hat{H} | \Psi \rangle$.
- Search for stationary points of holomorphic energy, \tilde{E} .

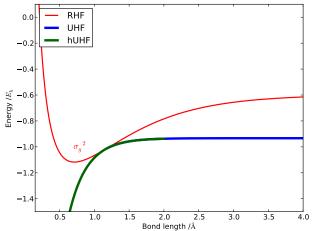
Holomorphic H₂ UHF



H. G. Hiscock, AJWT J. Comput. Theor. Chem. 10, 4795 (2014)

x Thom, Hamish Hiscock, James Fa omorphic Hartree-Fock and Non-Ort	ion	UNIVERSITY O			
	0	00	0000	00000	0
	^	NOCI	H_2 hUHF	General hUHF	\$

Holomorphic H₂ UHF

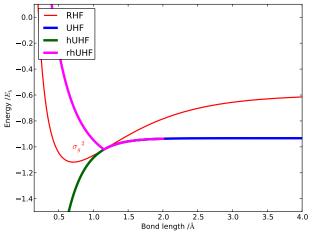


H. G. Hiscock, AJWT J. Comput. Theor. Chem. 10, 4795 (2014)

Holo

	Ô	NOCI 00	$H_2 hUHF$	General hUHF 00000	\$ 0
Thom, Hamish Hiscock, James Farrell, morphic Hartree-Fock and Non-Orthog	ion		RSITY OF		

Holomorphic H₂ UHF

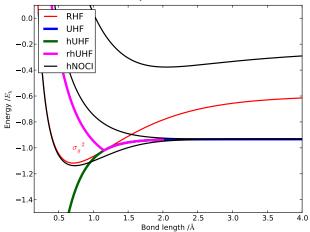


H. G. Hiscock, AJWT J. Comput. Theor. Chem. 10, 4795 (2014)

Alex Th

hom, Hamish Hiscock, James Farre	ion)F		
	0	00	0000	00000	0	
	^	NOCI	H_2 hUHF	General hUHF	\$	

Holomorphic H_2 UHF

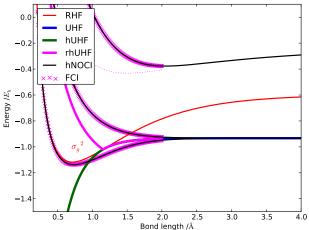


H. G. Hiscock, AJWT J. Comput. Theor. Chem. 10, 4795 (2014)

Alex T

hom, Hamish Hiscock, James Farr orphic Hartree-Fock and Non-Orth	UNIVERSITY				
	0	00	0000	00000	0
	^	NOCI	H_2 hUHF	General hUHF	\$

Holomorphic H_2 UHF



H. G. Hiscock, AJWT J. Comput. Theor. Chem. 10, 4795 (2014)

	ô	NOCI 00	$H_2 hUHF$	General hUHF 00000	\$ 0
Thom, Hamish Hiscock, James Farr morphic Hartree-Fock and Non-Orth		RSITYOF			

SCF Energy

Conventional:

$$E_{\rm SCF} = v_{\rm nuc} + \sum_{\mu\nu}^{2m} h_{\mu\nu} P_{\nu\mu} + \sum_{\mu\nu\sigma\tau}^{2m} P_{\nu\mu}(\mu\nu||\sigma\tau) P_{\tau\sigma}.$$

 $P_{\mu\nu} = \sum_{i}^{n} C_{\mu i} C_{\nu i}^{*}$. Constrain $\langle \phi_i | \phi_j \rangle = \sum_{\mu} C_{\mu i}^{*} C_{\mu j} = \delta_{ij}$

SCF Energy

Conventional:

$$E_{\rm SCF} = v_{\rm nuc} + \sum_{\mu\nu}^{2m} h_{\mu\nu} P_{\nu\mu} + \sum_{\mu\nu\sigma\tau}^{2m} P_{\nu\mu}(\mu\nu||\sigma\tau) P_{\tau\sigma}.$$

 $P_{\mu\nu} = \sum_{i}^{n} C_{\mu i} C_{\nu i}^{*}$. Constrain $\langle \phi_{i} | \phi_{j} \rangle = \sum_{\mu} C_{\mu i}^{*} C_{\mu j} = \delta_{ij}$ \blacktriangleright Holomorphize (remove complex conjugation):

$$\tilde{E}_{\rm SCF} = v_{\rm nuc} + \sum_{\mu\nu}^{2m} h_{\mu\nu} \tilde{P}_{\mu\nu} + \sum_{\mu\nu\sigma\tau}^{2m} \tilde{P}_{\mu\nu}(\mu\nu||\sigma\tau) \tilde{P}_{\sigma\tau}.$$

 $\tilde{P}_{\mu\nu} = \sum_{i}^{n} C_{\mu i} C_{\nu i}$. Constrain $\sum_{\mu} C_{\mu i} C_{\mu j} = \delta_{ij}$

SCF Energy

Conventional:

$$E_{\rm SCF} = v_{\rm nuc} + \sum_{\mu\nu}^{2m} h_{\mu\nu} P_{\nu\mu} + \sum_{\mu\nu\sigma\tau}^{2m} P_{\nu\mu}(\mu\nu||\sigma\tau) P_{\tau\sigma}.$$

 $P_{\mu\nu} = \sum_{i}^{n} C_{\mu i} C_{\nu i}^{*}$. Constrain $\langle \phi_{i} | \phi_{j} \rangle = \sum_{\mu} C_{\mu i}^{*} C_{\mu j} = \delta_{ij}$ \blacktriangleright Holomorphize (remove complex conjugation):

$$\tilde{E}_{\rm SCF} = v_{\rm nuc} + \sum_{\mu\nu}^{2m} h_{\mu\nu} \tilde{P}_{\mu\nu} + \sum_{\mu\nu\sigma\tau}^{2m} \tilde{P}_{\mu\nu}(\mu\nu||\sigma\tau)\tilde{P}_{\sigma\tau}.$$

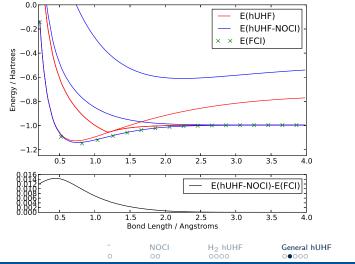
$$\tilde{P}_{\mu\nu} = \sum_{i}^{n} C_{\mu i} C_{\nu i}$$
. Constrain $\sum_{\mu} C_{\mu i} C_{\mu j} = \delta_{ij}$

E not variational, but has constant number of stationary points.

$$E = E \text{ for real coefficients.}$$

$$C = E \text{ for real coefficients.}$$

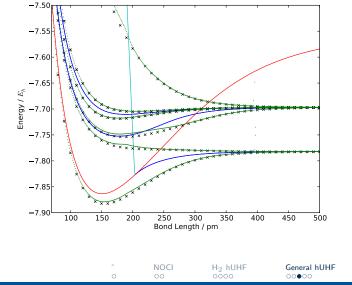
H₂ 6-31G



Alex Thom, Hamish Hiscock, James Farrell, Hugh Burton Holomorphic Hartree-Fock and Non-Orthogonal Configuration Interaction

\$

LiH STO-3G



Alex Thom, Hamish Hiscock, James Farrell, Hugh Burton Holomorphic Hartree-Fock and Non-Orthogonal Configuration Interaction

\$

 Bézout's Theorem generalizes the Fundamental Theorem of Algebra to the intersection of polynomials of several variables.

- Bézout's Theorem generalizes the Fundamental Theorem of Algebra to the intersection of polynomials of several variables.
- e.g. RHF 2e in 2 orbitals:

$$\mathbf{C} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \qquad \mathbf{C}_{\perp} = \begin{pmatrix} -c_2 \\ c_1 \end{pmatrix}$$

- Bézout's Theorem generalizes the Fundamental Theorem of Algebra to the intersection of polynomials of several variables.
- e.g. RHF 2e in 2 orbitals:

$$\mathbf{C} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \qquad \mathbf{C}_{\perp} = \begin{pmatrix} -c_2 \\ c_1 \end{pmatrix}$$

SCF Equations amount to

$$\mathbf{C}_{\perp}^{T} \frac{\partial E}{\partial \mathbf{C}} = 0$$

with the orthogonality constraint is $c_1^2 + c_2^2 = c_0^2$ where $c_0=1$

- Bézout's Theorem generalizes the Fundamental Theorem of Algebra to the intersection of polynomials of several variables.
- e.g. RHF 2e in 2 orbitals:

$$\mathbf{C} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \qquad \mathbf{C}_{\perp} = \begin{pmatrix} -c_2 \\ c_1 \end{pmatrix}$$

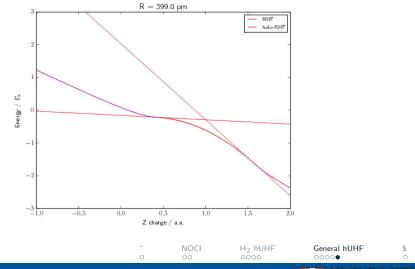
SCF Equations amount to

$$\mathbf{C}_{\perp}^{T} \frac{\partial E}{\partial \mathbf{C}} = 0$$

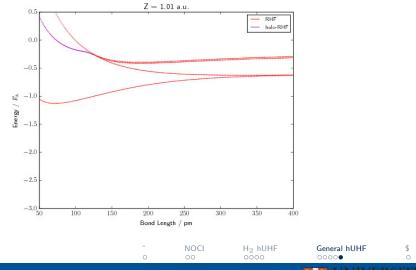
with the orthogonality constraint is $c_1^2 + c_2^2 = c_0^2$ where $c_0=1$

 Overall the intersection of a 2nd order and 4th order polynomial give 2 × 4 = 8 solutions.
 Considering ±(c₁, c₂) equivalent, that is the 4 RHF solutions for all 2-orbital 2-electron systems.

ΗZ



ΗZ



Directions

- Understand solutions.
- Bigger systems Modify real QC code.
- Complex basis functions.
- SCF Solutions vs VB states?
- Dynamic correlation.
- Extend Bézout.

Funding

