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Electronic Structure Methods
Quantum Chemistry Methods ∼ 200 developers and 2000 users.
Hartree-Fock (HF), Many-Body Perturbation Theory (MBPT), Configuration
Interaction (CI), Coupled Cluster (CC)
Systematically improveable (require double limit of ∞ single-particle basis
(F12 helps!) and all excitation levels) but computational cost is prohibitive,
e.g., Full Configuration Interaction (FCI) is rarely done since cost is O(eN),
CCSD(T) is popular and scales as O(N7).

Density Functional Theory ∼ 400 developers and 10000 users.
Exact in principle, but in practice one uses approximate exchange-correlation
functionals and they are not systematically improvable. Scales as O(N3).

Quantum Monte Carlo ∼ 20 developers and 100 users.
Can be used both at zero and at finite temperatures, and, for finite and for
periodic systems. Some QMC methods work directly with infinite basis.
Low-order polynomial cost if fixed-node or similar approximation is used. FN
approximation is often accurate if well-optimized trial wavefunctions are
used. Some observables easier to compute than others. Requires ingenuity to
have statistical errors small.
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Monte Carlo Methods
Monte Carlo methods: A class of computational algorithms that rely on
repeated random sampling to compute results.
A few broad areas of applications are:

1. physics
2. chemistry
3. engineering
4. social sciences
5. finance and risk analysis

When are MC methods likely to be the methods of choice?

1. When the state space is discrete and very large, say > 1010.
2. When the state space is continuous and high dimensional, say > 8.

Obvious drawback of MC methods: There is a statistical error.
In QMC methods, frequently there is a tradeoff between statistical error and
systematic error and one needs to find the best compromise.
In particular, Fermions are antisocial and have a Fermion Sign Problem.
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Physics/Chemistry applications of Quantum Monte
Carlo

Some systems to which they have been applied are:

I strongly correlated systems (Hubbard, Anderson, t-J, ... models)
I quantum spin systems (Ising, Heisenberg, xy, ... models),
I liquid and solid helium, liquid-solid interface, droplets
I energy and response of homogeneous electron gas in 2-D and 3-D
I nuclear structure
I lattice gauge theory
I atomic clusters
I electronic structure calculations of atoms, molecules, solids, quantum

dots, quantum wires

I both to zero temperature (pure states) and finite temperature problems,
but in this lecture we will discuss only zero temperature methods
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Central Limit Theorem
de Moivre (1733), Laplace (1812), Lyapunov (1901), Pólya (1920)

Let X1,X2,X3, · · · ,XN be a sequence of N independent random variables
sampled from a probability density function with a finite expectation value,
µ, and variance σ2. The central limit theorem states that as the sample size
N increases, the probability density of the sample average of these random
variables approaches the normal distribution, 1√

2πσ
e−(x−µ)2/(2σ2/N), with a

mean µ, and variance σ2/N, irrespective of the original probability density
function.
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Monte Carlo versus Deterministic Integration
methods

Deterministic Integration Methods:
Integration Error, ε, using Nint integration points:
1-dim Simpson rule: ε ∝ N−4

int , (provided derivatives up to 4th exist)

d-dim Simpson rule: ε ∝ N
−4/d
int , (provided derivatives up to 4th exist)

For a given error, N and so the computer time increases exponentially with
d , since Nint ∝ ( 1

ε )d/4.

Monte Carlo:
ε ∼ σ(Tcorr/Nint)

1/2, independent of dimension!, according to the central
limit theorem since width of gaussian decreases as (Tcorr/Nint)

1/2 provided
that the variance of the integrand is finite. (Tcorr is the autocorrelation

time.) Nint ∝ (σ
2Tcorr

ε2 ).

Roughly, Monte Carlo becomes advantageous for d > 8.
For a many-body wavefunction d = 3N and can be a few thousand!
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Scaling with number of electrons

Simpson’s rule integration

ε =
c

N
4/d
int

=
c

N
4/3Nelec

int

Nint =
(c
ε

) 3Nelec
4

exponential in Nelec

Monte Carlo integration

ε = σ

√
Nelec

NMC

NMC =
(σ
ε

)2
Nelec linear in Nelec

(For both methods, computational cost is higher than this since the cost of
evaluating the wavefunction increases with Nelec, e.g., as N3

elec, (better if one
uses “linear scaling”; worse if one increases Ndet with Nelec.))
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Quantum Monte Carlo Methods
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What is Variational Quantum Monte Carlo?
Monte Carlo evaluation of the many-dimensional integrals needed for
computing quantum mechanical expectation values for a trial
wavefunction ΨT.

ΨT may contain many variational parameters which need to be optimized.

The optimized ΨT will also be used in Projector Quantum Monte Carlo.
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What is Projector Quantum Monte Carlo?

Stochastic implementation of the power method for projecting out the
dominant eigenvector of a matrix or integral kernel.

“Dominant state” means state with largest absolute eigenvalue.

If we repeatedly multiply an arbitrary vector, not orthogonal to the dominant
state, by the matrix, we will eventually project out the dominant state.

QMC methods are used only when the number of states is so large (> 1010)
that it is not practical to store even a single vector in memory. Otherwise use
exact diagonalization method, e.g., Lanczos or Davidson. So, at each MC
generation, only a sample of the states is stored.

QMC methods are used not only in a large discrete space but also in a
continuously infinite space. Hence “matrix or integral kernel” above. In the
interest of brevity I will use either discrete or continuous language (sums and
matrices or integrals and integral kernels), but much of what is said will
apply to both situations.
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Definitions
Given a complete or incomplete basis: {|φi 〉}, either discrete or continuous

Exact wavefunction |Ψ0〉 =
∑
i

ei |φi 〉, where, ei = 〈φi |Ψ0〉

Trial wavefunction |ΨT 〉 =
∑
i

ti |φi 〉, where, ti = 〈φi |ΨT 〉

(If basis incomplete then “exact” means “exact in that basis”.)

Cyrus J. Umrigar



Variational MC

EV =
〈ΨT|Ĥ|ΨT〉
〈ΨT|ΨT〉

=

∑Nst

ij 〈ΨT|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

i 〈ΨT|φk〉 〈φk |ΨT〉

=

∑Nst

ij tiHij tj∑Nst

k t2
k

=
Nst∑
i

t2
i∑Nst

k t2
k

∑Nst

j Hij tj

ti

=
Nst∑
i

t2
i∑Nst

k t2
k

EL(i) =

[∑NMC

i EL(i)
]

Ψ2
T

NMC
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Projector MC

Pure and Mixed estimators for energy are equal: E0 =
〈Ψ0|Ĥ|Ψ0〉
〈Ψ0|Ψ0〉

=
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

Projector: |Ψ0〉 = P̂(∞) |ΨT〉 = lim
n→∞

P̂n(τ) |ΨT〉

E0 =
〈Ψ0|Ĥ|ΨT〉
〈Ψ0|ΨT〉

=

∑Nst

ij 〈Ψ0|φi 〉 〈φi |Ĥ|φj〉 〈φj |ΨT〉∑Nst

k 〈Ψ0|φk〉 〈φk |ΨT〉

=

∑Nst

ij eiHij tj∑Nst

k ektk
=

Nst∑
i

ei ti∑Nst

k ektk

∑Nst

j Hij tj

ti

=
Nst∑
i

ei ti∑Nst

k ektk
EL(i) =

[∑NMC

i EL(i)
]

ΨTΨ0

NMC

Cyrus J. Umrigar



Variational Monte Carlo in Real Space

EV =

∫
dRψT(R) H ψT(R)∫

dRψ2
T(R)

=

∫
dR

ψ2
T(R)∫

dRψ2
T(R)

HψT(R)

ψT(R)

=
1

NMC

NMC∑
i

HΨT(Ri )

ΨT(Ri )
=

1

NMC

NMC∑
i

EL(Ri )

Energy is obtained as an arithmetic sum of the local energies EL(Ri )
evaluated for configurations sampled from ψ2

T(R) using a generalization of
the Metropolis method. If ψT is an eigenfunction, the EL(Ri ) do not
fluctuate. Accuracy of VMC depends crucially on the quality of ψT(R).
Diffusion MC does better by projecting onto ground state.
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Three ingredients for accurate Variational Monte
Carlo

1. A method for sampling the square of an arbitrary wave function with
small auto-correlation time. Metropolis-Hastings.

2. A functional form for the trial wavefunction that is capable of describing
the correct physics/chemistry.

3. An efficient method for optimizing the parameters in the wave functions.
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Metropolis-Hastings Monte Carlo
Metropolis, Rosenbluth2, Teller2, JCP, 21 1087 (1953)

W.K. Hastings, Biometrika, 57 (1970)

Metropolis method originally used to sample the Boltzmann distribution.
This is still one of its more common uses.

General method for sampling any known discrete or continuous probability
density.

Samples are sequentially correlated, but, freedom of choice of the proposal
probabilities allows one to sample efficiently with very small autocorrelation
time.
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Functional form of Trial Wave Function

ΨT =

(∑
n

dnD↑n D↓n

)
× J (ri , rj , rij)

• Determinants:
∑

n dnD↑n D↓n
D↑ and D↓ are determinants of single-particle orbitals φ for up (↑) and down
(↓) spin electrons respectively.
The single-particle orbitals φ are given by:

φ(ri ) =
∑
αk

ckα Nkαr
nkα−1
iα e−ζkα riα Ylkαmkα

(̂riα)

• Jastrow: J (ri , rj , rij) =
∏
αi exp (Aαi )

∏
ij exp (Bij)

∏
αij exp (Cαij)

Aαi ⇒ electron-ion correlation
Bij ⇒ electron-electron correlation
Cαij ⇒ electron-electron-ion correlation

dn, ckα , ζkα and parms in J are optimized.

∼ Natomtype of J parms.
∼ Natomtype of ζkα parms.
∼ N2

atom of ckα parms.
∼ eNatom of dn parms.
Power of QMC:
J parms. do work of dn parms.
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Optimization of Wavefunctions
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Choices to be made when optimizing trial
wavefunctions

1. What precisely do we want to optimize – the objective function or
measure of goodness?

2. What method do we use to do the optimization? If more than one
method is applied to the same objective function, they will of course
give the same wavefunction, but the efficiency with which we arrive at
the solution may be much different.
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Measures of goodness of variational wave functions

min EVMC =
〈ψT|H|ψT〉
〈ψT|ψT〉

= 〈EL〉|ψT|2

min σ2
VMC =

〈ψT|(H − ET)2|ψT〉
〈ψT|ψT〉

=
〈
E 2
L(Ri )

〉
|ψT|2

− 〈EL(Ri )〉2|ψT|2

max Ω2 =
| 〈ψFN|ψT〉 |2

〈ψFN|ψFN〉 〈ψT|ψT〉
=

〈
ψFN
ψT

〉2

|ψT|2〈∣∣∣ψFN
ψT

∣∣∣2〉
|ψT|2

min EDMC =
〈ψFN|H|ψT〉
〈ψFN|ψT〉

= 〈EL〉|ψFNψT|

For an infinitely flexible wave function all optimizations will yield the exact

wavefunction (except that minimizing σ could yield an excited state) but for
the imperfect functional forms used in practice they differ.
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Progress in optimization of Many-Body
Wavefunctions

Naive energy optim. → Variance optim. → Efficient energy optim.

− 1988 naive energy optimization, few (∼ 3) parameters

1988 − 2001 variance optimization, ∼ 100 parameters
could be used for more, but, variance does not couple strongly to some parameters

R. Coldwell, IJQC (1977)

CJU, Wilson, Wilkins, Phys. Rev. Lett. (1988)

2001 − efficient energy optimization, ∼ 1000’s of parameters
as many as 500,000
M. P. Nightingale and Alaverdian, Phys. Rev. Lett. (2001)

CJU, C. Filippi, Phys. Rev. Lett. (2005)

J. Toulouse, CJU, J. Chem. Phys. (2007)

CJU, J. Toulouse, C. Filippi, S. Sorella, Phys. Rev. Lett. (2007)

S. Sorella, M. Casula, D. Rocca, J. Chem. Phys. (2007)

J. Toulouse, CJU, J. Chem. Phys. (2008)

J. Toulouse, CJU, J. Chem. Phys. (2008)

E. Neuscamma, CJU, G. Chan, J. Chem. Phys. (2012)
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Variance vs. Energy

σ2 =

Nconf∑
i=1

(HΨT(Ri )

ΨT(Ri )
− Ē

)2

Ē =

Nconf∑
i=1

HΨT(Ri )

ΨT(Ri )

Optimized

Variance

Energies

Original

Energies

Energy
Optimized

Energies

E
av

E
av Eexact
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Projector Monte Carlo Methods
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Projector MC

Projector: |Ψ0〉 = lim
n→∞

P̂n(τ) |ΨT〉

Projector is any function of the Hamiltonian that maps the ground state
eigenvalue of Ĥ to 1, and the highest eigenvalue of Ĥ to an absolute value
that is < 1 (preferably close to 0).

Exponential projector: P̂ = eτ(ET 1̂−Ĥ) (Imaginary-time propagator)

Linear projector: P̂ = 1̂ + τ(ET 1̂− Ĥ)

If spectrum is bounded and τ ≤ 1

Emax − Emin
.
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Taxonomy of Projector Monte Carlo Methods
The amplitudes of Ψ0 in the chosen basis are obtained by using a “Projector”, P̂,
that is a function of the Hamiltonian, Ĥ, and has Ψ0 as its dominant state.

Various Projector Monte Carlo Methods differ in:
a) form of the projector, and,
b) space in which the walk is done (single-particle basis and quantization).
(1st-quantized ≡ unsymmetrized basis, 2nd -quantized ≡ antisymmetrized basis.)

Method Projector SP Basis Quantiz

Diffusion Monte Carlo eτ(ET 1̂−Ĥ) r 1st

GFMC (Kalos, Ceperley, Schmidt) eτ(ET 1̂−Ĥ) (samp. τ) r 1st

LRDMC (Sorella, Casula) eτ(ET 1̂−Ĥ) (samp. τ) ri 1st

FCIQMC/SQMC 1̂ + τ(ET 1̂− Ĥ) φorthogi 2nd

phaseless AFQMC (Zhang, Krakauer) eτ(ET 1̂−Ĥ) φnonorthogi 2nd

1 + τ(ET 1̂− Ĥ) and 1
1̂−τ(ET 1̂−Ĥ)

can be used only if the spectrum of Ĥ is bounded.
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Linear Projector in a Discrete Space

P̂ = 1̂ + τ(ET 1̂− Ĥ), space is: 2nd -quant. space of φorthogi , i.e., determinants

e.g. Full Configuration Interaction Quantum Monte Carlo (FCIQMC)
Booth, Thom, Alavi, JCP (2009), Cleland, Booth, Alavi, JCP (2010)

States are represented as bit-packed orbital occupation numbers.

Although Hilbert space can be huge, since Ĥ and therefore P̂ is sparse in the
chosen basis, it is possible to sample from all connected states.

1. Starting from state i , sample state j 6= i with probability Tji .
(Tji 6= 0, if Pji 6= 0)

2. Reweight state j by Pji/Tji

3. Reweight state i by Pii

4. Branch states with appropriate probabilities to have unit weight walkers.

If this were the entire algorithm, there would be a fatal sign problem.
Discuss this later.
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Diffusion Monte Carlo – Short-time Green’s function
P̂(τ) = exp(τ(ET 1̂− Ĥ)), |φi 〉 = |R〉 , walkers are 1st-quantized

−1

2
∇2ψ(R, t) + (V(R)− ET)ψ(R, t) = −∂ψ(R, t)

∂t

Combining the diffusion Eq. and the rate Eq. Green’s functions:

〈R′ |P̂(τ)|R〉 ≡ G (R
′
,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R
′
−R)2

2τ
+

{
ET− (V(R

′
)+V(R))
2

}
τ

]

Columns of G (R
′
,R, τ) not normalized to 1, so weights and/or branching needed.

Potential energy V → ±∞, so fluctuations in weights and/or population are huge!
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Expectation values

There is an additional problem that the contribution that various MC points
make to expectation values is proportional to ΨT(R):

E =

∫
dR Ψ0(R)H(R)ΨT(R)∫

dR Ψ0(R)ΨT(R)

≈
∑NMC

i H(R)ΨT(R)∑NMC
i ΨT(R)

Inefficient for Bosonic systems because sampled ΨT(R) varies by many orders
of magnitude, and impossible for Fermionic systems since one gets 0/0.
The problems on previous viewgraph and this one are solved (at the price of
biased expectation values) by using importance sampling and fixed-node
boundary conditions with the approximate wavefunctions ΨT(R). In the limit
that ΨT → Ψ0 the weights of the walkers do not fluctuate at all and every
MC point contributes equally to the expectation values.

In order to have finite variance, it is necessary that ΨT never be nonzero where ΨG is zero. In fact
the usual practice in DMC is ΨG = ΨT and so in this section we will not distinguish between them.
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Diffusion Monte Carlo – Importance Sampled
Fixed-Node Green’s Function

Importance sampling: Multiply imaginary-time the Schrödinger equation

−1

2
∇2Ψ(R, t) + (V(R)− ET)Ψ(R, t) = −∂Ψ(R, t)

∂t

by ΨT(R) and rearranging terms we obtain

−∇
2

2
(ΨΨT) + ∇ ·

(∇ΨT

ΨT
ΨΨT

)
+

(
−∇2ΨT

2ΨT
+ V︸ ︷︷ ︸

EL(R)

−ET

)
(ΨΨT) = −∂(ΨΨT)

∂t

defining f (R, t) = Ψ(R, t)ΨT(R), this is

−1

2
∇2f︸ ︷︷ ︸

diffusion

+ ∇ ·
(∇ΨT

ΨT
f

)
︸ ︷︷ ︸

drift

+ (EL(R)− ET) f︸ ︷︷ ︸
growth/decay

= −∂f
∂t

Since we know the exact Green function for any one term on LHS, an approximation is:

G̃(R
′
,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R
′
−R−Vτ)2

2τ
+

{
ET−

(EL(R
′

)+EL(R))
2

}
τ

]
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Diffusion Monte Carlo with Importance Sampling

G̃ (R
′
,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R
′
−R−Vτ)2

2τ
+

{
ET−

(EL(R
′

)+EL(R))

2

}
τ

]

The importance-sampled Green function has EL(R) in the reweighting factor,
which behaves MUCH better than the potential, V (R). V (R) diverges to
±∞ at particle coincidences whereas EL(R) goes to a constant, E0, as
ΨT → Ψ0. In addition it has a drift term that keeps the particles in the
important regions, rather than relying on the reweighting to achieve that.

Even this does not always work. Why?

The above importance sampled Green function leads to an “infinite variance”
estimate for systems other than Bosonic ground states!!
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Diffusion Monte Carlo with Importance Sampling

G̃ (R
′
,R, τ) ≈ 1

(2πτ)3N/2
e

[
− (R
′
−R−Vτ)2

2τ
+

{
ET−

(EL(R
′

)+EL(R))

2

}
τ

]

The importance-sampled Green function has EL(R) in the reweighting factor,
which behaves MUCH better than the potential, V (R). V (R) diverges to
±∞ at particle coincidences whereas EL(R) goes to a constant, E0, as
ΨT → Ψ0. In addition it has a drift term that keeps the particles in the
important regions, rather than relying on the reweighting to achieve that.

Even this does not always work. Why?
The above importance sampled Green function leads to an “infinite variance”
estimate for systems other than Bosonic ground states!!
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Schematic of VMC and PMC
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Sign Problem

The nature of the sign problem is different in the various methods,
depending on the space in which the walk is done.
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Sign Problem in DMC

P̂(τ) = eτ(ET 1̂−Ĥ)

Walk is done in the basis of the 3N coordinates of the N electrons.

〈R|P̂(τ)|R′〉 ≈ e

−
(

R−R
′)2

2τ +

(
ET−

V(R)+V(R
′

)
2

)
τ

(2πτ)3N/2 is nonnegative.

Problem: However, since the Bosonic energy is always lower than the
Fermionic energy, the projected state is the Bosonic ground state.

Fixed-node approximation
All except a few calculations (release-node, Ceperley) are done using FN
approximation. Instead of doing a free projection, impose the boundary
condition that the projected state has the same nodes as the trial state
ΨT(R).
This gives an upper bound to the energy and becomes exact in the limit that
ΨT has the same nodes as Ψ0.

Cyrus J. Umrigar



Sign Problem in 1st Quantization and R space

Fermi ground state
Bose ground state

Trial state
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Sign Problem in 1st Quantization and R space

Start with equal + and - walkers, so no Bosonic component.

Plus walkers

Minus walkers
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state

Cyrus J. Umrigar



Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state
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Sign Problem in 1st Quantization and R space

Plus walkers

Minus walkers

Fermionic state

Problem: In large space walkers rarely meet and cancel!
Worse Problem: Eventually + or - walkers dominate, there are no more
cancellations and only one Bosonic component remains!
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Sign Problem in 2nd quantization
Walk is done in the basis of determinants.

Since Bosonic and other symmetry states are eliminated, there is some hope of having a
stable signal to noise, but there is still a sign problem.

Problem: Paths leading from state i to state j can contribute with opposite sign. Further,
Ψ and −Ψ are equally good.

The projector in the chosen 2nd -quantized basis does not have a sign problem if:
The columns of the projector have the same sign structure aside from an overall sign, e.g.

PΨ =


+ − + +
− + − −
+ − + +
+ − + +




+
−
+
+

 =


+
−
+
+


or equivalently:
It is possible to find a set of sign changes of the basis functions such that all elements of
the projector are nonnegative.

The sign problem is an issue only because of the stochastic nature of the algorithm.
Walkers of different signs can be spawned onto a given state in different MC generations.
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Sign Problem in orbital space and 2nd Quantization

FCIQMC (Booth, Thom, Alavi, JCP 2009, Ohtsuka, Nagase, CPL 2008)

P̂ = 1̂ + τ(ET 1̂− Ĥ), space is: 2nd -quantized φorthogi , i.e., determinants

It is practical to have a population that is sufficiently large that cancellations
in this discrete space can result in a finite signal to noise ratio for small
systems in small basis sets. Once a critical population size is reached the
probability of sign flips of the population rapidly become very small.

Initiator approximation (Cleland, Booth, Alavi, JCP (2010)
The required population size can be greatly reduced by allowing only
determinants occupied by more than a certain number of walkers to spawn
progeny on unoccupied determinants.

Becomes exact in the limit of infinite population size.
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Semistochastic Quantum Monte Carlo (SQMC)

Frank Petruzielo, Adam Holmes, Hitesh Changlani, Peter Nightingale, CJU, PRL 2012

SQMC is hybrid of Exact Diagonalization and QMC

Exact diagonalization has no statistical error or sign problem but is limited to a
small number of states (∼ 1010 on a single core).

QMC has statistical errors and a sign problem but can employ a much larger number
of states, even infinite.

SQMC combines to some extent the advantages of the above by doing a
deterministic projection in a small set of important states and stochastic projection
in the rest of the space. It has a much smaller statistical error than stochastic
projection and can employ a large number of states.

More generally Semistochastic Projection is an efficient way to find the dominant

eigenvalue and corresponding expectation values of any large sparse matrix that has

much of its spectral weight on a manageable number of states.
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Semistochastic Projection

The part of the projection with both indices in the deterministic part is done
deterministically. The part of the projection with either index in the
stochastic part is done stochastically.

P = PD + PS

PDij =

{
Pij , i , j ∈ D

0, otherwise
PS = P − PD
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SQMC
Main differences between SQMC and FCIQMC:

1. Deterministic projection in part of space

2. Multideterminantal ΨT, particularly important for strongly correlated
states

3. Real (rather than integer) weights, |ψ(t)〉 =
∑N

i=1 wi (t)|φi 〉

Cyrus J. Umrigar



Efficiency gain for C2 (3− ζ basis)

from semistochastic projection and ΨT
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Comparison of DMC with FCIQMC/SQMC

DMC (walk in electron coordinate space) FCIQMC/SQMC (walk in determinant space)

Severe Fermion sign problem due to growth Less severe Fermion sign problem due to
of Bosonic component relative to Fermionic. opposite sign walkers being spawned on

the same determinant

Fixed-node approximation needed for Walker cancellation, large population,
stable algorithm. initiator approximation needed for stable

algorithm.
Exact if ΨT nodes exact. Exact in ∞-population limit.

Infinite basis. Finite basis. (Same basis set dependence
as in other quantum chemistry methods.

Computational cost is low-order polynomial Computational cost is exponential in N but
in N for FN-DMC with much smaller exponent than full CI

Energy is variational Energy not variational but DM variant is

Need to use pseudopotentials for large Z . Can easily do frozen-core
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Applications
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Convergence of C2 and Si2
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Well-depth of C2
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Error in Well-Depth of 1st-Row Diatomic Molecules
Julien Toulouse and CJU, J. Chem. Phys. (2008)
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Atomization energies of the G2 set
F.R. Petruzielo, Julien Toulouse and CJU, J. Chem. Phys. (2012)
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The mean absolute deviation from experiment for the DMC energies using
the FV-CAS trial wave functions is 1.2 kcal/mole.
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Excited states
Previous work: Ceperley & Bernu; Nightingale; Filippi

Excited states that are the lowest state of that symmetry are no harder than
ground states.

True excited states are harder to compute. Options for computing true
excited states:

1. Take determinantal part of wavefunction from another method, e.g,
MCSCF, multiply it by Jastrow factor and rely on fixed-node constraint
to prevent collapse to ground state. Not very satisfactory.

2. Do state-averaged optimization of ground and excited states,
alternating between calculating the linear coefficients of the states and
optimizing the nonlinear (orbital, basis exponent and Jastrow)
coefficients. Guarantees upper bound. (M. P. Nightingale et al. for
bosonic clusters; Claudia Filippi et al. for molecules)

3. Do a state-specific optimization of each state separately. Sometimes has
root-flipping problems but sometimes it works.
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Excited states of methylene (CH2)
Zimmerman, Toulouse, Zhang, Musgrave, CJU, (JCP 2009)

States of methylene (CH2) are:

1 3B2, ground state, single reference

1 1A1, 1st excited state, multi reference

1 1B2, 2nd excited state, single reference

2 1A1, 3rd excited state, multi reference, true excited state
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EFP method for ground and excited states

F. Schautz and C. Filippi, JCP 120, 10931 (2004)

• Excitations of ethene C2H4 → Up to 858 optimized parameters

DMC excitation energies

State Unoptimized Optimized expt. (eV)

11B1u 8.45(2) 7.93(2) >7.7

21Ag 7.96(2) 8.36(2) 8.29

21B1u 9.05(2) 9.37(2) 9.33
Cyrus J. Umrigar



Localization in inhomogeneous quantum wires
Güçlü, Jiang, CJU, Baranger

H = −1

2

N∑
i

52
i +

1

2

N∑
i

ω2(ri − r0)2 +
N∑
i<j

1

rij

+ Vg {tanh [s(θi + θ0)]− tanh [s(θi − θ0)]}
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Localization in inhomogeneous quantum wires
Güçlü, Jiang, CJU, Baranger
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Quantum Zigzag Phase Transition in Quantum Wires
Abhijit Mehta, CJU, Julia Meyer, Harold Baranger

Consider a 2-d wire, along the x direction with a finite width along the y direction.

H = −1

2

N∑
i=1

∇2
i +

1

2

N∑
i=1

ωy2
i +

∑
i<j≤N

e2

ε|ri − rj |
(1)

At low densities electrons form linear Wigner crystal. Two length scales:
rs = 1/(2n), and,
r0: confinement and Coulomb energies are equal (1/2)mω2r2

0 = e2/(εr0).
As density n is raised, expect a transition to a zigzag phase when rs ≈ r0 before
transition to liquid phase.

(a) Linear (b) Zigzag

rs
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Pair densities at ω = 0.1
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Pair densities at ω = 0.6
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Zigzag Correlation Function

CZZ (|i − j |) =
〈
(−1)i (yi − 〈y〉) (−1)j (yj − 〈y〉)

〉
Order electrons along the length of the wire.

Zigzag order is tied to the ordering of the electrons, not their position along
the wire.
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Zigzag Correlation Function ω = 0.1, 0.6
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Zigzag Order Parameter

CZZ (|i − j |) =
〈
(−1)i (yi − 〈y〉) (−1)j (yj − 〈y〉)

〉
Zigzag order parameter, MZZ . M2

ZZ , is average of zigzag correlation
function, CZZ (|i − j |), for electrons far from the fixed reference electron.

M2
ZZ = 〈CZZ (|i − j |)〉|i−j |>N/4
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Zigzag Order Parameter
M2

ZZ = 〈CZZ (|i − j |)〉|i−j |>N/4
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