

Faculty of Science

Weak intramolecular OH $\cdots \pi$ hydrogen bonding in methallyl- and allyl-carbinol

Kasper Mackeprang
QSD group
Department of Chemistry, University of Copenhagen
Workshop on "Topological approaches to intermolecular interactions"

Introduction

Hydrogen bond. The IUPAC definition[1]:

"The hydrogen bond is an attractive interaction between a hydrogen atom from a molecule or a molecular fragment X–H in which X is more electronegative than H, and an atom or a group of atoms in the same or a different molecule, in which there is evidence of bond formation"

Bond critical points

Our study

Study of intramolecular hydrogen bonding in methallylcarbinol and allyl-carbinol

We expect an increase of the interaction due to the methyl group donating electron density into the double bond

Conformers

14 unique conformers exist for both molecules

One conformer has approximatly 30-40 % abbundance

Tools for investigating hydrogen bonding

Experimental:

- Vibrational OH-stretching overtone spectroscopy

Topological analyses:

- AIM
- NCI

Tools for investigating hydrogen bonding

Experimental:

- Vibrational OH-stretching overtone spectroscopy

Topological analyses:

- AIM
- NCI

Vibrational OH-stretching overtone spectroscopy

- Anharmonicity
- Coupling

Local mode approach

$$\widehat{H}_{vib} = \frac{1}{2} \sum_{i} G_{ii} p_i^2 + \sum_{i} V(q_i)$$

Normal mode approach

$$\widehat{H}_{vib} = \frac{1}{2} \sum_{i} P_i^2 + \frac{1}{2} \sum_{i} F_{ii} Q_i^2$$

Vibrational OH-stretching overtone spectroscopy

Vibrational transitions between the ground state and an excited state

We are looking at the OH-stretch: Anharmonic

Local mode description

Vibrational OH-stretching overtone spectroscopy

Vibrational coordinate

Vibrational overtone spectrum of methallylcarbinol and allyl-carbinol

Band assignment is based on local mode calculation at the CCSD(T)-F12a/VDZ-F12 level.

Vibrational overtone spectrum of methallylcarbinol and allyl-carbinol

Tools for investigating hydrogen bonding

Experimental:

- Vibrational OH-stretching overtone spectroscopy

Topological analyses:

- **AIM**
- NCI

MIA

Very popular tool for investigating hydrogen bonding

In 2011 an account and revised definition of the hydrogen bond is made by IUPAC[1]

 Bond critical points are discussed. It is stated that they are usually found in hydrogen-bonded systems

Debated in the litterature whether they are nessecary or not [2,3]

^[1] E. Arunan, et al., Pure Appl. Chem., 2011, 83, 1619-1636

^[2] R. A. Klein, J. Comput. Chem. 2002, 23, 585-599

^[3] D. L. Howard, et.al., J. Am. Chem. Soc. 2005, 127, 17096-17103

MIA

No bond critical point is found between the O-H group and the π -electrons in either of the two molecules

10 % increase in electron density

Summary

Experimental observations indicates hydrogen bond formation between the alchol group and the π -electrons in methallyl-carbinol and allyl-carbinol

The experiments predicts that the interaction is increased in methallyl-carbinol relative to that in allyl-carbinol

These observations are supported by theoretical NCI analysis, which as well predict increased intramolecular interaction in methallyl carbinol

Acknowledgement

Sidsel D. Schrøder

Henrik G. Kjaergaard

Joseph R. Lane

QSD group, Department of Chemistry, University of Copenhagen

