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RPA-like methods based upon time-dependent density-functional theory (TDDFT) [1] in its linear
response formulation [2] have become a method of choice in the study of excited state properties
of medium- and large-sized molecules. Though successful in many cases, TDDFT is not a black
box method.[3, 4] The origin of the difficulty lies in the adiabatic approximation of the exchange-
correlation kernel,

fHxc(r, r′, t− t′) ≈ δ(t− t′)
δ2Exc[ρt]

δρt(r)δρt(r′)
, (1)

which assumes that the self-consistent (Hxc) field responds instantaneously and without memory to
any temporal changes in the external perturbation. As a consequence of this approximation, one-
electron excitations are essentially decoupled from higher-order excitations. This is too crude an
approximation for many problems, including organic chromophores with conjugated π systems, de-
scribing bond rupture in photochemistry, and representing the spectra of open-shell molecules. The
analytical form of a post-adiabatic approximation of the kernel is obtained by extracting fHxc(ω)
from an exact Dyson-like equation for the kernel,

fHxc(r, r′;ω) = χ−1
s (r, r′;ω)− χ−1(r, r′;ω) , (2)

in which we apply many-body perturbation theory (MBPT) techniques.[5] The kernel has a similar
structure to the dressed-TDDFT kernel.[6, 7] Some preliminary computational results with the non-
adiabatic kernel will also be presented.
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