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Overview

RPA and GW a first look
� Diagrammatic representation of both theories
� Achieving good scaling with system size

Relation between RPA and GW / forces in the RPA

Few (very few) examples
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Overview: Theory

Random Phase Approximation

RPA → screened exchange
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Outline of typical computational procedures

RPA is a perturbation theory usually performed on top of 
density functional theory 
(and that is the only way it should be done)

Calculate the DFT ground-state

Calculate all orbitals including unoccupied orbitals

Calculate RPA total energy and/or GW QP-energies

In the latest version of vasp (vasp.6)
this can be comfortably done in a single steps

� ALGO = GWr or

� ALGO = ACFDTr ; LRPAFORCES = .TRUE.
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Most elegant derivation using 2nd quantization

� Gell-Mann Low theorem: adiabatic switching ��� → ��
� Time-order to normal-order using Wick’s theorem

� Linked cluster theorem

� Graphical representation: Goldstone diagrams

Møller–Plesset PT is a special case starting from HF

Adiabatic connection fluctuation dissipation theorem and 
Görling-Levy perturbation theory

� More involved algebra, different pathway

Coupled cluster theory using an exponential ansatz for the 
wavefunction

RPA Derivation RPA Force Exampl.



dRPA: all bubble diagrams 
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Diagrams and single particle Green’s function

Single particle Green’s function: � � � �� � � � �� � ������
Straight line = Green’s function describing the propagation of 
an electron or hole from position and time (
�, ��) to (
�, ��)
Particle propagator G�1,2�= G�
1, 
2, �2 � �1� �2> �1
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There are two limits to consider

Large gap systems: exchange is hardly screened

Small gap: exchange tiny, and bubbles need to be 
summed to infinite order
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dRPA: all bubble diagrams 
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Perturbation theory: Σ is a “function” of G

All “Feynman” diagrams with one in-going and one out-going line 
yield the self-energy (properly amputed)
� 1,2 � 	 Ψ�|�# 1 #$�2�|Ψ� and apply Wick theorem

#$�2� creates particle at 
2, �2 ; #�1� annihilate particle at 
1, �1
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Low scaling dRPA and GW

256 Si atoms: 50 million particle-hole channels (scaling N5-N6)

Low complexity RPA & GW code using plane waves

Desired: Cubic system size scaling N3 (as DFT)

How do we achieve this:

Point wise multiplications in real space
scales only quadratic with # of grid points
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Dyson equations

However, many calculation steps are more conveniently done in 
frequency and reciprocal space:

We need an

• Optimal time grid and optimal frequency grid

• Fourier transformations to go forth and back 
time ↔ frequency

Kaltak M., Klimeš J., Kresse G. , JCTC 10, 2498 (2014)
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Optimal time grids are known from Laplace transformed 
MP2

Minimize error function (L2-norm, or maximum norm)

Optimum time grid from second order MP2
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J. Almlöf (1991), Chem. Phys. Lett. 181, 319–320 and many more

i

discretization

Laplace transform



Optimal frequency grids determined in analogous manner

Minimize error function (L2 norm, or maximum norm)

Optimal frequency grid
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Kaltak M., Klimeš J., Kresse G. , JCTC 10, 2498 (2014)
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How good are the grids: solid ZnO and Si
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• N4 RPA calculations entirely in frequency 
� N2 calculation of polarizability in time, then transformation to frequency

200 atoms on 200 cores in about 1 hours

Kaltak, Klimeš, Kresse, JCTC 10, 2498 (2014), Kaltak, Klimeš, Kresse, PRB 90, 054115 (2014).



GW QP energies 

Code works in imaginary time and frequency

Requires analytic continuation to real frequencies
P. Liu, J. Klimes, M. Kaltak, Kresse, PRB 94, 165109 (2016).
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Overview

RPA and GW a first look
� Diagrammatic representation of both theories
� Achieving good scaling with system size

Relation between RPA and GW / forces in the RPA

Few (very few) examples
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Derivative of Hartree-Fock energy

Hartree and exact exchange energy

Derivative with respect to G
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Hartree exchange

Hartree exchange
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RPA and GW: %&'( � ln 1 � 	
0 � 	
0
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RPA and GW: %&'( � ln 1 � 	
0 � 	
0
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GW is the derivative of the RPA with respect to �
� Polarizability  
 � � �� � � ��
� Derivative 
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� Putting pieces together
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Relation between RPA and GW
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Comparison DFT and many-body perturbation theory
<%>?0�@A

<� 0� 2� BC � �@A 																 <%./0
<� �� � Σ-= �

Relations are „similar“

Self-consistency using Σ-= as a generalized KS-potential is 
a „possible“ prescription

� � � �� � � � �� � Σ-= � ���
Just be aware that 
 � � �� � � �� is not the proper 
irreducible polarizability (violates sum rules, not conserving)
The calculated fluctuation contributions are in-accurate
Can be “fixed” by including additional terms in irreducible P

<�%./0
<�� 	 � <Σ-=

<� 					vertex	in	GW/BSE	theory	
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Forces can generally be written as

Hellman-Feynman “theorem”: if Ψ	is an eigenstate of S,
the second and third term are zero

In Green’s function theory the equation above becomes

RPA-forces from RPA density matrix
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ΨΨ+ΨΨ+ΨΨ= ddddE HHH

Ramberger, Schäfer, & Kresse (2017). PRL, 118, 106403.
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RPA and GW a first look
� Diagrammatic representation of both theories
� Achieving good scaling with system size

Relation between RPA and GW / forces in the RPA

Few (very few) examples
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Forces: phonons in graphite and diamond 
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Turbomol: Burow et al., J. Chem. Theory 
Comput., 2014, 10 (1), pp 180–194

Ramberger, et al. PRL, 118, 106403.

Cubic scaling



Forces: phonons in graphite and diamond 
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Graphite LDA at exp. lattice const.

Diamond LDA at exp. lattice const. 

Turbomol: Burow et al., J. Chem. Theory 
Comput., 2014, 10 (1), pp 180–194



Molecular Dynamics: diamond

� Fully integrated in VASP

� Energy stability as good as 
for DFT (almost ☺)

� Of course much, much 
slower than DFT

� Three orders of magnitude,
since forces are about 
a factor 10 slower than 
RPA energies

� For forces factor 10 slower 
than HSE

� Self-energy more involved 
than RPA correlation 
energy
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Ramberger, Schäfer, & Kresse (2017). PRL, 118, 106403.



Conclusion

Relation between RPA and GW: Forces in the RPA
Currently the RPA is the only (tracktable) 
alternative to DFT
Few things to keep in mind:
� Functional derivative of RPA energy is the 

GW self-energy
� This allows to calculate forces straightforwardly
� Self-consistent GW uses a non-physical polarizability 

(which is not the functional derivative of the RPA)

Underestimates fluctuation contributions severely
which is sometimes hidden by the neglect of exchange
diagrams
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