SCQRPA and Thermal Pairing in Nuclei

Nguyen Dinh Dang

1) Nishina Center for Accelerator-Based Science, RIKEN

Wako city, Saitama - Japan
2) Institute for Nuclear Science \& Technique

Hanoi - Vietnam

Collaborator

Nguyen Quang Hung

This talk is based on

1. N. Quang Hung \& NDD, PRC 76 (2007) 054302, 77 (2008) 029905(E)
2. NDD \& N. Quang Hung, PRC 77 (2008) 064315
3. N. Quang Hung \& NDD, PRC 78 (2008) 064315
4. N. Quang Hung \& NDD, PRC 79 (2009) 054328
(His PhD thesis, defended in November 2009)

Plan

Motivation

1. SCQRPA at zero T
2. SCQRPA at finite T
3. SCQRPA at $T \neq 0$ \& $\mathrm{M} \neq 0$
4. Pairing gap from odd-even mass formula at $T \neq 0$
5. Canonical ensemble treatment of pairing within SCQRPA

Conclusions

Motivation

Infinite systems

(metal superconductors, ultra-cold gases, liquid helium, etc.)

- Superfuild-normal, liquid-gas, shape phase transitions, etc.
- Fluctuations are absent or negligible
- Described well by many-body theories such as BCS, RPA or QRPA

Finite systems

(atomic nuclei, ultra-small metallic grains, etc.)

- Phase transitions are smoothed out
- Strong quantal and thermal fluctuations
- The conventional BCS, RPA or QRPA fail in a number of cases (collapsing points, in light systems, at $\mathrm{T} \neq 0$, at strong or weak interaction, etc.)

When applied to finite small systems, to be reliable, the BCS, RPA and/or QRPA need to be corrected to take into account the effects due to quantal and thermal fluctuations.

THE SELFCONSISTENT QRPA (SCQRPA)

Testing ground: Pairing model

$$
\begin{gathered}
H=\sum_{j} \varepsilon_{j} \hat{N}_{j}-G \sum_{j, j j} \hat{P}_{j}^{+} \hat{P}_{j b}, \\
\hat{N}_{j}=\sum_{m}^{\Omega} a_{j m}^{+} a_{j m}, \hat{P}_{j}^{+}=\frac{1}{\sqrt{\Omega}} \sum_{m=1}^{\Omega} a_{j m}^{+} a_{j \tilde{m}}^{+}, \hat{P}_{j}=\left(\hat{P}_{j}^{\dagger}\right)^{+}, \\
\Omega{ }_{j}=j+\frac{1}{2}, \mathrm{O}_{j \tilde{m} \bar{m}}(-)^{j-m} \mathrm{O}_{j-m} .
\end{gathered}
$$

$$
\begin{gathered}
{\left[\hat{P}_{j}, \hat{P}_{k}^{+}\right]=\delta_{j k}\left(1-\frac{\hat{N}_{j}}{\Omega_{j}}\right),} \\
{\left[\hat{N}_{j}, \hat{P}_{k}^{+}\right]=2 \delta_{j k} \hat{P}_{j}^{+},\left[\hat{N}_{j}, \hat{P}_{k}\right]=-2 \delta_{j k} \hat{P}_{j} .}
\end{gathered}
$$

Exact solutions:

A. Volya, B.A. Brown, V. Zelevinsky, PLB 509 (2001) 37 Shortcoming: impracticable at $\mathrm{N}>14$

BCS :

Bogoliubov transformation: $\quad a_{j m}^{+}=u_{j} \alpha_{j m}^{+}+v_{j} \alpha_{j \tilde{m}}, a_{j \tilde{m}}=u_{j} \alpha_{j \tilde{m}}-v_{j} \alpha_{j m}^{+}, u_{j}^{2}+v_{j}^{2}=1$, Qp. pair and qp. number operators: $\quad \mathrm{A}_{j}{ }^{+}=\Omega_{j}^{-1 / 2} \sum_{m} \alpha_{j m}^{+} \alpha_{j \tilde{m}}^{+}, \mathrm{N}_{j}=\sum_{m} \alpha_{j m}^{+} \alpha_{j m}$,

$$
\left[\mathrm{A}_{j}, \mathrm{~A}_{j^{\prime}}^{+}\right]=\delta_{j j} \mathrm{D}_{j}, \mathrm{D}_{j}=1-\mathrm{N}_{j} / \Omega_{j}
$$

$$
\left[\mathrm{N}_{j}, \mathrm{~A}_{j^{+}}^{+}\right]=2 \delta_{i j} \mathrm{~A}_{j}^{+},\left[\mathrm{N}_{j}, \mathrm{~A}_{j^{\prime}}\right]=-2 \delta_{j j} \mathrm{~A}_{j}
$$

$\mathrm{H} \rightarrow \mathrm{H}=\mathrm{H}-\lambda \mathrm{N}$, variational procedure:

$$
\langle\ldots\rangle=\langle\mathrm{BCS}| \ldots|\mathrm{BCS}\rangle \text {, i.e. }\left\langle\mathrm{N}_{j}\right.
$$

$\square=0$

$$
\left.\frac{\partial\langle\mathrm{H}\rangle}{\partial u_{j}}+\frac{\partial\langle\mathrm{H}\rangle}{\partial v_{j}} \frac{\partial v_{j}}{\partial u_{j}} \equiv\left\langle\left[\mathrm{H}, \mathrm{~A}_{j}^{+}\right]\right\rangle=0, \mathrm{~T}=0\right)
$$

QRPA

$$
\left.Q_{v}^{+}=\sum_{j}\left(X_{j}^{v} \mathrm{~A}_{j}^{+}-Y_{j}^{v} \mathrm{~A}_{j}\right), Q_{v}=\left[Q_{v}^{+}\right]^{+} . \quad\langle\ldots\rangle=\langle\text { QRPA }| \ldots \mid \text { QRPA }\right\rangle
$$

Quasiboson approximation (QBA): $\left\langle\left[\mathrm{A}_{j}, \mathrm{~A}_{j^{\prime}}{ }^{+}\right]\right\rangle=\delta_{i j^{\prime}}$, i.e. $\left\langle\mathrm{D}_{j}\right\rangle=1$,

$$
\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right)\binom{X^{v}}{Y^{v}}=\omega_{v}\binom{X^{v}}{-Y^{v}}, \begin{aligned}
& A_{i j}=\left\langle\left[\mathrm{A}_{i}\left[\mathrm{H}, \mathrm{~A}_{j}^{+}\right]\right]\right\rangle \\
& B_{i j}=\left\langle\left[\mathrm{A}_{i}\left[\mathrm{H}, \mathrm{~A}_{j}\right]\right]\right\rangle
\end{aligned} \quad \begin{gathered}
\left\langle Q_{\mu}, Q_{v}^{+}\right]=\delta_{\mu v} \rightarrow \\
\sum_{j}\left(X_{j}^{\mu} X_{j}^{v}-Y_{j}^{\mu} Y_{j}^{v}\right)=\delta_{\mu v} .
\end{gathered}
$$

QRPA reduces to (pp)RPA at $G \leq \mathrm{G}_{\mathrm{c}}$

Shortcomings of BCS

$\mathrm{T}=0$

$\mathrm{G}>\mathrm{G}_{\mathrm{c}}: \mathrm{T} \neq 0$

Violation of particle number
\rightarrow PNF: $\delta \mathrm{N}^{2}=\left\langle\mathrm{N}^{2}\right\rangle-\langle\mathrm{N}\rangle^{2}$
\rightarrow Collapse of BCS at $\mathrm{G} \leq \mathrm{G}_{\mathrm{c}}$
Δ

Omission of QNF:
$\delta \mathrm{N} \square=\left\langle\mathrm{N} \quad \square \square-\langle\mathrm{N}\rangle^{2}\right.$
\rightarrow Collapse of BCS gap at $T=T_{c}$

Shortcomings of (pp)RPA and QRPA:

- QBA: Violation of Pauli principle \rightarrow Collapse of RPA at $G \geq G_{c}$
- QRPA is valid only when BCS is valid: Collapse of QRPA at $\mathrm{G} \leq \mathrm{G}_{\mathrm{c}}$

Works in this direction

These shortcomings have been partially removed by:

Pairing:

- PNP (Ring, Rossignoli, Dobacewski, Egido, et al)

TALafpidilxtheory of phase transition (Moretto, Goodman)

- SPA (Ring, Rossignoli, NDD, et al)
- SMCC (Dean, Koonin, Alhassid et al)
- MBCS (NDD, Zelevinsky, Arima)
\rightarrow macroscopic
\rightarrow exact at high T
\rightarrow complex

$R P \bar{A}$ decreases with N in half-filled cases

RRPA (Hara, Rowe, Catara, Sambataro, NDD, et al)
SCRPA (Dukelsky, Schuck, et al)
G
\rightarrow deviates from exact at $\mathrm{G}>\mathrm{G}_{\mathrm{c}}$

Creating a Dumbo

a selfconsistent approach that works for any value of \square pairing interaction G, \square temperature T , \square angular momentum \mathbf{M}, ■ particle number \mathbf{N}

Obviously such approach should contain the RPA and QRPA as its limits.

RPA

1. SCQRPA at $T=0$

BCS equations with SCQRPA corrections

$$
\langle\ldots\rangle=\langle\text { SCQRPA }| \ldots \mid \text { SCQRPA }\rangle\left\langle D_{j}\right\rangle=\frac{1}{1+\frac{2}{\Omega_{j}} \sum_{,}\left(Y_{j}^{\prime}\right)^{2}} .
$$

$$
\begin{aligned}
& \left.\left.\Delta_{j}=\Delta+\underline{\delta \Delta_{j}}, \quad N=2 \sum_{j} \Omega_{j}\left[\underline{\left\langle\mathrm{D}_{j}\right.}\right\rangle v_{k}^{2}+\frac{1}{2}\left(1-\underline{\left\langle\mathrm{D}_{j}\right.}\right\rangle\right)\right] \text {, } \\
& \left.\Delta=G \sum_{j} \Omega_{j} u_{j} v_{j} \underline{\left\langle\mathrm{D}_{j}\right.}\right\rangle, \quad \delta \Delta{ }_{j}=2 G u_{j} v_{j} \delta \mathrm{~N}_{j}{ }^{2} /\left\langle\mathrm{D}_{j}\right\rangle, \\
& \left\langle\mathrm{D}_{j}\right\rangle=1-2 n_{j}, \delta \quad ?=n_{j}\left(1-n_{j}\right), n_{j} \equiv\left\langle\mathrm{~N}_{j}\right\rangle /\left(2 \Omega_{j}\right) \text {. } \\
& u_{j}^{2}=\frac{1}{2}\left(1+\frac{\varepsilon_{j}^{\prime}-\lambda}{E_{j}}\right) \quad \Delta_{j}=\frac{G}{\left\langle\mathcal{D}_{j}\right\rangle} \sum_{j^{\prime}} \Omega_{j^{\prime}}\left\langle\mathcal{D}_{j} \mathcal{D}_{j^{\prime}}\right\rangle u_{j^{\prime}} v_{j^{\prime}}, \quad \overline{\left.G v_{j}^{2}\right)^{2}+\Delta_{j}^{2}} \\
& \left.\left.\varepsilon_{j}^{\prime}=\varepsilon_{j}+\quad\left\langle\mathcal{D}_{j} \mathcal{D}_{j^{\prime}}\right\rangle=\left\langle\mathcal{D}_{j}\right\rangle\left\langle\mathcal{D}_{j^{\prime}}\right\rangle+\frac{\delta \mathcal{N}_{j j^{\prime}}}{\Omega_{j} \Omega_{j^{\prime}}}, \quad\right\rangle\right\rangle . \\
& \delta \mathcal{N}_{j j^{\prime}}=\left\langle\mathcal{N}_{j} \mathcal{N}_{j^{\prime}}\right\rangle-\left\langle\mathcal{N}_{j}\right\rangle\left\langle\mathcal{N}_{j^{\prime}}\right\rangle, \\
& \left.\mathrm{Q}_{v}{ }^{+}=\sum_{j} \frac{1}{\sqrt{\underline{\left(\mathrm{D}_{j}\right\rangle}}}\left\langle\mathrm{X}_{j}{ }^{v} \mathrm{~A}_{j}{ }^{+} \quad \delta \mathcal{N}_{j j^{\prime}} \simeq 2 \Omega_{j} \delta \mathcal{N}_{j}^{2} \delta_{j j^{\prime}}, \quad \delta \mathcal{N}_{j}^{2} \equiv n_{j}\left(1-n_{j}\right), \quad \mathrm{A}_{j^{\prime}}{ }^{+}\right]\right\rangle=\delta_{j j^{\prime}}\left\langle\underline{\mathrm{D}_{j}}\right\rangle .
\end{aligned}
$$

SCQRPA at $T=0$ (continued)

$$
\begin{aligned}
& \left\langle\mathcal{A}_{j}^{\dagger} \mathcal{A}_{j^{\prime}}\right\rangle \equiv\langle\overline{0}| \mathcal{A}_{j}^{\dagger} \mathcal{A}_{j^{\prime}}|\overline{0}\rangle=\sqrt{\left\langle\mathcal{D}_{j}\right\rangle\left\langle\mathcal{D}_{j^{\prime}}\right\rangle} \sum_{\mu} \mathcal{Y}_{j}^{\mu} \mathcal{Y}_{j^{\prime}}^{\mu}, \\
& \left\langle\mathcal{A}_{j} \mathcal{A}_{j^{\prime}}\right\rangle \equiv\langle\overline{0}| \mathcal{A}_{j} \mathcal{A}_{j^{\prime}}|\overline{0}\rangle=\sqrt{\left\langle\mathcal{D}_{j}\right\rangle\left\langle\mathcal{D}_{j^{\prime}}\right\rangle} \sum_{\mu} \mathcal{X}_{j}^{\mu} \mathcal{Y}_{j^{\prime}}^{\mu} . \\
& b_{j}=\left(\varepsilon_{i}-\lambda\right)\left(u_{j}^{2}-v_{j}^{2}\right)+2 G u_{j} v_{j} \Sigma_{i} u_{i} v_{k}+G v_{j}^{4}, \\
& d_{j i}=-G \sqrt{\Omega_{j} \Omega_{j}}\left(u_{j}^{2} u_{j^{2}}^{2}+v_{j}^{2} v_{j}^{2}\right), \quad h_{j j}=\frac{1}{2} G \sqrt{\Omega_{j} \Omega_{j}}\left(u_{j}^{2} v_{j}^{2}+v_{j}^{2} u_{j}^{2}\right), \quad q_{j j}=-G u_{j} u v_{j} u_{j} v_{j}{ }^{\prime} \text {. }
\end{aligned}
$$

SCQRPA = BCS + QRPA + Corrections Due To Quantal Fluctuations

GSC beyond the QRPA

PNP \rightarrow SCQRPA + Lipkin Nogami

Coupling to pair vibrations

Doubly-folded equidistant multilevel pairing model Ω levels, N particles

Ground-state energy
Energy of first excited state

2. SCQRPA at $\mathrm{T}=0$

FT-BCS equations with QNF

Thermal average in the GCE: $\langle\mathrm{O}\rangle=\operatorname{Tr}\left[\mathrm{Oe}^{-\beta \mathrm{H}}\right] / \operatorname{Tr} \mathrm{e}^{-\beta \mathrm{H}}$

$$
\begin{gathered}
\Delta_{j}=\Delta+\delta \Delta_{j}, \quad N=2 \sum_{j} \Omega_{j}\left[\left\langle\mathrm{D}_{j}\right) v_{k}^{2}+\frac{1}{2}\left(1-\left\langle\mathrm{D}_{j}\right\rangle\right)\right], \\
\Delta=G \sum_{j} \Omega_{j} u_{j} v_{j}\left(\mathrm{D}_{j}\right\rangle, \quad \delta \Delta_{j}=2 G u_{j} v_{j} \delta \mathrm{~N}_{j}{ }^{2} /\left\langle\mathrm{D}_{j}\right\rangle, \\
\left\langle\mathrm{D}_{j}\right\rangle=1-2 n_{j}, \quad \delta \mathrm{~N}_{j}{ }^{2}=n_{j}\left(1-n_{j}\right) . \\
\varepsilon_{j}^{\prime}=\varepsilon_{j}+\frac{G}{\sqrt{\Omega_{j}}\left\langle\mathrm{D}_{j}\right\rangle} \sum_{j^{\prime}}\left(u_{j^{\prime}}^{2}-v_{j^{2}}^{2}\right)\left(\left\langle\mathrm{A}_{j}{ }^{+} \mathrm{A}_{j^{+} \neq j}^{+}\right\rangle+\left\langle\mathrm{A}_{j}{ }^{+} \mathrm{A}_{j^{\prime}}\right\rangle\right) .
\end{gathered}
$$

$x_{j j^{\prime}} \equiv \frac{\left\langle\mathcal{A}_{j}^{\dagger} \mathcal{A}_{j^{\prime}}\right\rangle}{\sqrt{\left\langle\mathcal{D}_{j}\right\rangle\left\langle\mathcal{D}_{j^{\prime}}\right\rangle}}=\sum_{\mu} \mathcal{Y}_{j}^{\mu} y_{j^{\prime}}^{\mu}$
$+\sum_{\mu \mu^{\prime}}\left(U_{i j^{\prime}}^{\mu \mu^{\prime}}\left\langle\mathcal{Q}_{\mu}^{\dagger} \mathcal{Q}_{\mu^{\prime}}\right\rangle+Z_{j j^{\prime}}^{\mu \mu^{\prime}}\left\langle\mathcal{Q}_{\mu}^{\dagger} \mathcal{Q}_{\mu^{\prime}}^{\dagger}\right\rangle\right)$,
$\left\langle\mathcal{Q}_{\mu}^{\dagger} \mathcal{Q}_{\mu^{\prime}}\right\rangle=\sum_{j} \mathcal{Y}_{j}^{\mu} \mathcal{y}_{j}^{\mu^{\prime}}+\sum_{j j^{\prime}}\left(U_{j j^{\prime}}^{\mu \mu^{\prime}} x_{i j^{\prime}}-W_{i j^{\prime}}^{\mu \mu^{\prime}} y_{j j^{\prime}}\right)$,
$\left\langle\mathcal{Q}_{\mu}^{\dagger} \mathcal{Q}_{\mu^{\prime}}^{\dagger}\right\rangle=-\sum_{j} \mathcal{Y}_{j}^{\mu} \mathcal{X}_{j}^{\mu^{\prime}}+\sum_{j j^{\prime}}\left(U_{i j^{\prime}}^{\mu j^{\prime}} y_{j j^{\prime}}-W_{i j^{\prime}}^{\mu \mu^{\prime}} x_{j j^{\prime}}\right)$,
$\begin{aligned} y_{j j^{\prime}} \equiv & \frac{\left\langle\mathcal{A}_{j}^{\dagger} \mathcal{A}_{j-\lambda}^{\dagger}\right\rangle}{\sqrt{\left\langle\mathcal{D}_{j}\right\rangle\left\langle\mathcal{D}_{\left.j^{\prime}\right\rangle}^{\prime}\right.}}=\sum_{\mu} \mathcal{Y}_{j}^{\mu} \mathcal{X}_{j^{\prime}}^{\mu} \\ & +\sum_{\mu \mu^{\prime}}\left(U_{j j^{\prime}}^{\mu \mu^{\prime}}\left\langle\mathcal{Q}_{\mu}^{\dagger} \mathcal{Q}_{\mu^{\prime}}^{\dagger}\right\rangle+Z_{j j^{\prime}}^{\mu \mu^{\prime}}\left(\mathcal{Q}_{\mu}^{\dagger} \mathcal{Q}_{\mu^{\prime}}\right\rangle\right),\end{aligned}$
$U_{i j^{\prime}}^{\mu \mu^{\prime}}=\mathcal{X}_{j}^{\mu} \mathcal{X}_{j^{\prime}}^{\mu^{\prime}}+\mathcal{Y}_{j^{\prime}}^{\mu} y_{j}^{\mu^{\prime}}, \quad Z_{j j^{\prime}}^{\mu \mu^{\prime}}=\mathcal{X}_{j}^{\mu} \mathcal{Y}_{j^{\prime}}^{\mu^{\prime}}+\mathcal{Y}_{j}^{\mu^{\prime}} \mathcal{X}_{j^{\prime}}^{\mu}$,

SCQRPA at $\mathrm{T} \neq 0$ (continued)

Some limits:

FTBCS:

$$
n_{j}=n_{j}^{F D}=\frac{1}{e^{\beta E_{j}}+1}, \delta \mathrm{~N}_{j}^{2}=0,\left\langle\mathrm{~A}_{j}^{+} \mathrm{A}_{j^{+} \neq j}^{+}\right\rangle=\left\langle\mathrm{A}_{j}^{+} \mathrm{A}_{j^{\prime}}\right\rangle=0 .
$$

FTBCS1

$$
n_{j}=n_{j}^{F D}=\frac{1}{e^{\beta E_{j}}+1}, \delta \mathrm{~N}_{j}{ }^{2} \neq 0,\left\langle\mathrm{~A}_{j}^{+} \mathrm{A}_{j^{\prime} \neq j}^{+}\right\rangle=\left\langle\mathrm{A}_{j}^{+} \mathrm{A}_{j^{\prime}}\right\rangle=0 .
$$

FTLN1 = FTBCS1 + Lipkin-Nogami PNP

Dynamic coupling to SCQRPA vibrations

$$
\begin{aligned}
& G_{j}(E)=\frac{1}{2 \pi} \frac{1}{E-\tilde{E}_{j}-M_{j}(E)}, \\
& \tilde{E}_{j}=b_{j}^{\prime}+q_{i j}, \\
& b_{j}^{\prime}=\left(\varepsilon_{j}-\lambda\right)\left(u_{j}^{2}-v_{j}^{2}\right)+2 G \quad w_{j} \sum_{j} u_{j^{\prime}} v_{j^{\prime}}+G \quad \oint \\
& q_{j j}=-G \quad j_{j}^{2}, \quad g_{j}\left(j^{\prime}\right)=G \quad \mu_{j}\left(u_{j^{\prime}}^{2}-v_{j^{\prime}}^{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& M_{j}(\omega)=\sum_{\mu}\left(V_{j}^{\mu}\right)^{2}\left[\frac{\left(1-n_{j}+v_{\mu}\right)\left(\omega-\widetilde{E}_{j}-\omega_{\mu}\right)}{\left(\omega-\widetilde{E}_{j}-\omega_{\mu}\right)^{2}+\varepsilon^{2}}+\frac{\left(n_{j}+v_{\mu}\right)\left(\omega-\widetilde{E}_{j}+\omega_{\mu}\right)}{\left(\omega-\widetilde{E}_{j}+\omega_{\mu}\right)^{2}+\varepsilon^{2}}\right], \\
& V_{j}^{\mu}=\sum_{j^{\prime}} g_{j}\left(j^{\prime}\right) \sqrt{\left\langle\mathrm{D}_{j^{\prime}}\right\rangle}\left(\mathrm{X}_{j^{\prime}}{ }^{\mu}+\mathrm{Y}_{j^{\prime}}{ }^{\mu}\right), \quad \gamma_{j}(\omega)=-\mathfrak{m}\left[M_{j}(\omega \pm i \varepsilon)\right] .
\end{aligned}
$$

$$
\text { FTBCS1(FTLN1) + SCQRPA } n_{j}=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\gamma_{j}(\omega)\left(e^{\beta \omega}+1\right)^{-1}}{\left[\omega-\tilde{E}_{j}-M_{j}(\omega)\right]^{2}+\gamma_{j}^{2}(\omega)} d \omega
$$

$$
N=10
$$

Realistic nuclei

3. Pairing in hot rotating systems

Magnetic field H

Superconductor

T

Angular velocity (momentum) field

T
B. Mottelson and J. Valatin, PRL 5 (1960) 511
A. Goodman, NPA 369 (1981) 365

Hot rotating finite systems

S. Frauendorf et al. , PRB 68, (2003) 024518
 (the dashed line) particle numbers, and the mean-field gap $\Delta_{\operatorname{mf}}(T, \omega)$ (dotted line -BCS) v $\$$ the temperature T for a spherical shell.

SCQRPA at $\mathrm{T} \neq 0$ \& $\mathrm{M} \neq 0$

Pairing Hamiltonian including z-projection of total angular momentum:

$$
\begin{aligned}
& H^{\prime}=H-\lambda \hat{N}-\gamma \hat{M}, \\
& M=\sum m_{k}\left(a_{k+}^{+} a_{k+}-a_{k-}^{+} a_{k-}\right) .
\end{aligned}
$$

Bogoliubov transformation + variational procedure:

$$
\begin{array}{cc}
\Delta_{k}=\Delta+\delta \Delta_{k}, & N=2 \sum_{k}\left[v_{k}^{2}+\frac{1}{2}\left(1-2 v_{k}^{2}\right)\left(n_{k}^{+}+n_{k}^{-}\right)\right] \\
\Delta=G \sum_{k} u_{k} v_{k}\left\langle\mathrm{D}_{k}\right\rangle, & M=\sum_{k} m_{k}\left(n_{k}^{+}-n_{k}^{-}\right) \\
\left.\delta \Delta_{k}=G u_{k} v_{k} \delta \mathrm{~N}_{k}\right) /\left\langle\mathrm{D}_{k}\right\rangle, & u_{k}^{2}=\frac{1}{2}\left(1+\frac{\varepsilon_{k}^{\prime}-\lambda}{E_{k}}\right), v_{k}^{2}=\frac{1}{2}\left(1-\frac{\varepsilon_{k}^{\prime}-\lambda}{E_{k}}\right) \\
\left\langle\mathrm{D}_{k}\right\rangle=1-n_{k}^{+}-n_{k}^{-}, & E_{k}=\sqrt{\left(\varepsilon_{k}^{\prime}-\lambda-G v_{k}^{2}\right)^{2}+\Delta_{k}^{2}}
\end{array}
$$

QNP:
$\left.\left.\delta \mathbf{N}_{k}{ }^{2}=n_{k}^{+}\left(1-n_{k}^{+}\right)+n_{k}^{-}\left(1-n_{k}^{-}\right) \quad \varepsilon_{k}^{\prime}=\varepsilon_{k}+\frac{G}{\left\langle\mathrm{D}_{k}\right.} \sum_{k^{\prime}}\left(u_{k^{\prime}}^{2}-v_{k}^{2}\right) \right\rvert\,\left(\mathrm{A}_{k}{ }^{+} \mathrm{A}_{k^{\prime}}{ }^{\dagger}\right\rangle+\left\langle\mathrm{A}_{k}{ }^{+} \mathrm{A}_{k^{\prime}}\right\rangle\right)$.
FTBCS1: $\left\langle\mathrm{A}_{k}{ }^{+} \mathrm{A}_{k^{\prime}}{ }^{+}\right\rangle=\left\langle\mathrm{A}_{k}{ }^{+} \mathrm{A}_{k^{\prime}}\right\rangle=0, \quad n_{k}^{ \pm}=\frac{1}{1+\exp \left[\beta\left(E_{k} \mp \gamma m_{k}\right)\right]}$.

Dynamic coupling to SCQRPA vibrations ($\mathrm{T} \neq 0$ \& $\mathrm{M} \neq 0$)

$$
\begin{aligned}
& G_{k}^{ \pm}(E)=\frac{1}{2 \pi} \frac{1}{E-\tilde{E}_{k} \mp \gamma m_{k}-M_{k}^{ \pm}(E)}, \\
& \tilde{E}_{k}=b_{k}^{\prime}+q_{k k} \text {, } \\
& b_{k}^{\prime}=\left(\varepsilon_{k}-\lambda\right)\left(u_{k}^{2}-v_{k}^{2}\right)+2 G \quad y v_{k} \sum_{k^{\prime}} u_{k^{\prime}} v_{k^{\prime}}+G \quad k_{k}^{t}, \\
& q_{k k}=-G \quad \psi_{k}^{2}, \quad g_{k}\left(k^{\prime}\right)=G \quad u v_{k}\left(u_{k^{\prime}}^{2}-v_{k^{\prime}}^{2}\right) \text {, } \\
& M_{k}^{ \pm}(E)=\sum_{\mu}\left(V_{k}^{\mu}\right)^{2}\left[\frac{1-n_{k}^{ \pm}+v_{\mu}}{E-\widetilde{E}_{k} \mp \gamma m_{k}-\omega_{\mu}}+\frac{n_{k}^{ \pm}+v_{\mu}}{E-\widetilde{E}_{k} \mp \gamma m_{k}+\omega_{\mu}}\right] \text {, } \\
& V_{k}^{\mu}=\sum_{k^{\prime}} g_{k}\left(k^{\prime}\right) \sqrt{\left\langle\mathrm{D}_{k^{\prime}}\right\rangle}\left(\mathrm{X}_{k^{\prime}}{ }^{\mu}+\mathrm{Y}_{k^{\prime}}{ }^{\mu}\right), \gamma_{k}^{ \pm}(\omega)=-\Im m\left[M_{k}^{ \pm}(\omega \pm i \varepsilon)\right] \text {. } \\
& n_{k}^{ \pm}=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\gamma_{k}(\omega)\left(e^{\beta \omega}+1\right)^{-1}}{\left[\omega-\tilde{E}_{k} \mp \gamma m_{k}-M_{k}(\omega)\right]^{2}+\gamma_{k}^{2}(\omega)} d \omega
\end{aligned}
$$

FTBCS1: $\quad n_{k}^{ \pm}=\frac{1}{1+\exp \left[\beta\left(E_{k} \mp \gamma m_{k}\right)\right]}, \quad\left\langle\mathrm{A}_{k}{ }^{+} \mathrm{A}_{k^{\prime}}{ }^{+}\right\rangle=\left\langle\mathrm{A}_{k}{ }^{+} \mathrm{A}_{k^{\prime}}\right\rangle=0$.

Thermally assisted pairing
Thermally assisted pairing

$\mathrm{N}=10$

FTBCS

$\mathrm{M} \geq 0$

(e)

Back bending

Back bending

$J=M / \gamma$

Back bending

4. Odd-even mass formula at $\mathrm{T} \neq 0$

$$
\begin{aligned}
& \Delta^{(3)}(\beta, N) \simeq \frac{(-1)^{N}}{2}[\langle\mathcal{E}(N+1)\rangle-2\langle\mathcal{E}(N)\rangle+\langle\mathcal{E}(N-1)\rangle] \\
& \Delta^{(4)}(\beta, N)=\frac{1}{2}\left[\Delta^{(3)}(N)+\Delta^{(3)}(N-1)\right]
\end{aligned}
$$

Uncorrelated s.p energy

$$
\begin{aligned}
& \langle\mathcal{E}(N)\rangle=\langle\mathcal{E}(N)\rangle^{(0)}-\frac{\Delta^{2}(\beta, N)}{G} \\
& \langle\mathcal{E}\rangle^{(0)} \equiv 2 \sum_{j} \Omega_{j} \epsilon_{j} f_{j}-G \sum_{j} \Omega_{j} f_{j}^{2}
\end{aligned}
$$

$\widetilde{\Delta}^{(3)}(\beta, N)=(-1)^{N}\left\{\frac{1}{2}[\langle\mathcal{E}(N+1)\rangle+\langle\mathcal{E}(N-1)\rangle]-\langle\mathcal{E}\rangle^{0}+\frac{\left[\widetilde{\Delta}^{(3)}(\beta, N)\right]^{2}}{G}\right\}$
$\widetilde{\Delta}^{(3)}(\beta, N)=\frac{G}{2}\left[(-1)^{N}+\sqrt{1-4 \frac{S}{G}}\right]$

$$
S=\frac{1}{2}[\langle\mathcal{E}(N+1)\rangle+\langle\mathcal{E}(N-1)\rangle]-\langle\mathcal{E}(N)\rangle^{(0)}
$$

Odd-even mass formula at $\mathrm{T} \neq 0$

5. Latest development:

- Current problems in the study of nuclear pairing at $\mathrm{T} \neq 0$

Exact solutions

- Impracticable at $\mathrm{N}>14$ (for $\mathrm{N}=\Omega=16: 5,196,627$ states, i.e. a square matrix of order $\sim 2.7 \times 10^{13}$)
- Differences between the predictions within GCE, CE and MCE in small systems
- Ambiguity in the temperature extracted from MCE (negative temperatures)

Theoretical approximations

- Derived within the GCE
- Results are compared with exact solutions in CE
- Workable for wide range of mass
- Differences between theoretical (GCE) and exact CE pairing gap at high T

Because N is fixed, CE should be used in application to nuclei

It is therefore desirable to construct an approach based on the CE, which offers results in good agreement with the exact CE ones for any
(or at least larger) values of N .

Method: Embedding the eigenvalues at $\mathrm{T}=0$ in the CE

Partition function: $Z(\beta)=\sum_{s=0,2,4}^{\Omega} d_{s} e^{-\boldsymbol{E _ { S }}}$, Total energy $\langle\mathbf{E}\rangle=-\frac{\partial \ln Z(\beta)}{\partial \beta}=Z(\beta)^{-1} \sum_{s} d_{s} E_{s} e^{-\beta E_{s}}$ Heat capacity $C=\frac{\partial\langle\mathbf{E}\rangle}{\partial T}, \quad$ Pairing gap $\Delta=\sqrt{-G\left(\langle\mathbb{E}\rangle-2 \sum_{j} \Omega_{j} \varepsilon_{j} f_{j}+G \sum_{j} \Omega_{j} f_{j}^{2}\right)}$

CE-BCS

Gap and number equations at $\mathrm{T}=0$:

$$
\Delta=G \sum_{j} \Omega_{j} u_{j} v_{j}, \quad N=2 \sum_{j} \Omega_{j} v_{j}^{2} .
$$

Ground-state energy (at $\mathrm{T}=0$):

$$
\mathrm{E}_{S}^{B C S}=2 \sum_{j} \Omega_{j} \varepsilon_{j} v_{j}^{2}-G^{-1} \Delta^{2}-G \sum_{j} \Omega_{j} v_{j}^{4}
$$

Solve BCS equations for each set of total seniority S to get $\Delta_{S}^{B C S}, E_{S}^{B C S}$ CE partition function, energy and pairing gap

$$
Z_{C E-B C S}(\beta)=\sum_{s} 2^{S} e^{-\beta E E_{s}^{B C}}
$$

$$
\langle\mathrm{E}(\beta)\rangle=\frac{1}{Z} \sum_{S} 2^{S} \mathrm{E}_{S}{ }^{B C S} e^{-\beta \mathrm{E}_{S}^{B C S}}\langle\Delta(\beta)\rangle=\frac{1}{Z} \sum_{S} 2^{S} \Delta_{S}^{B C S} e^{-\beta \mathrm{E}_{S}^{B C S}}
$$

CE-LNQRPA = CE-BCS (QRPA) + LN particle number projection CE-SCQRPA = CE-LNQRPA + ground-state correlations

Numbers of eigenstates for $N=\Omega=10$

S	Exact	CE-(LN)BCS	CE-(LN)QRPA \quad spurious) \quad (excluding
0	$\mathrm{C}_{5}{ }^{10}=252$	1	10
2	$\mathrm{C}_{2}{ }^{10} \mathrm{C}_{4}{ }^{8}=3150$	45	360
4		$\sum_{2}^{210} C_{0}^{s}$	$\sum C_{S}^{\Omega}(\Omega-S)$
6	$\mathrm{C}_{8}{ }^{10} \mathrm{C}_{1}{ }^{2}=90$	45	s 90
8		1	1
10	8953	512	2561
Total	$\mathrm{n}_{\text {CE-BCS(QRPA) }} / \mathrm{n}_{\text {ex }}$	decreases as	Vincreases.

Computing time

\mathbf{N}	Exact	SQMC (estimated)	Present approach
10	1 hour	1 hour	1 second
12	10 hours	10 hours	10 seconds
14	1 day	1 day	1 minute
16	impossible	3 days	10 minutes
28	impossible	10 days	1 day

$N=\Omega=10 \sim 14, \quad G=1 \mathrm{MeV}$

Conclusions

- A microscopic selfconsistent approach to pairing called the SCQRPA is developed. It includes the effects of QNF and dynamic coupling to pair vibrations.
- Microscopic confirmation: Because of QNF, the sharp SN phase transition is smoothed out in finite systems, and a tiny rotating system in the normal state (at $M>M_{c}$ and $T=0$) can turn superconducting at $\mathrm{T} \neq 0$.
- The SCQRPA with LN PNP works for any values of G, N, T and M, even at large N, where the exact solutions are impracticable because of the huge size of the matrix to be diagonalized.
- A modified formula is suggested for extracting the pairing gap from the differences of total energies of odd and even systems at $\mathrm{T} \neq 0$. By subtracting the uncorrelated single-particle motion, the new formula produces a pairing gap in reasonable agreement with the exact results.
- A novel approach called CE-LNSCQRPA is proposed, which embeds the LNSCQRPA eigenvalues into the CE, and gives results very close to exact solutions as well as the FTQMC ones. It is simple and workable for a wider range of mass ($\mathrm{N} \leq 28$), where the exact solution is impracticable and/or the FTQMC are time consuming. At $\mathrm{N}>28$ large HD and memory are required (for $N=\Omega=28$, CE-BCS (CE-LNBCS): 10^{9} eigenstates $\rightarrow 10 \mathrm{~Gb}$ of data file; CE-QRPA (CE-LNSQRPA): ~ 10^{11} eigenstates $\rightarrow 100 \mathrm{~Gb}$ of data file.

