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SYSTEMATIC INVESTIGATION OF RPA
OR
OUTLINE OF MY TALK!

Review of RPA
Overview of previous “"benchmarking” of RPA
Configuration-interaction (CI) calculations and our code SHERPA

Two tests:

(1) Correlation energies
(2) Transitions in RPA and pnRPA
"Collapse” of RPA

Conclusions ... and future work
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Computational

Review of RPA

RPA models excited states as
small oscillations about the mean-field.

One can put RPA in the same framework
as configuration-interaction (CI) calculations

using an occupation-space (shell-model) basis
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Computational

THE NUCLEAR LANDSCAPE

Hartree-Fock based upon variational principle:

minimize <1P H lIJ>

. . a 0s,,, M=+ %
Here VY is a Slater determinant,
a product of single-particle wfns

— 1
081/2, m_‘ /2

each of which can be written — (A
as a vector : ; 0p;,,, m=+ 3/2
aN
Unfilled states
A Slater determinant is a product wavefunction, ( C, \ labeled by
by filling single-particle states . m, n
2
AfALA G A+ C3 | Filled states
‘1P> =C,C,C;...C, O> | labeled by
I, J
C
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THE NUCLEAR LANDSCAPE

There are many ways to derive the random phase approximation (RPA):
egns of motion, time-dependent Hartree-Fock, linear response...

I prefer quantization of the energy surface:

In occupation space, the second
derivatives are given by the A and
Y, - B matrices:

Tl

HF)

11" 2 ‘ml_1> = 61:161
V(x) =V (x) + 3V (% )(x = X;)

We often approximate a potential B
by a harmonic oscillator

= (mi 'nj” |H HF
HF)

mi,nj
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THE NUCLEAR LANDSCAPE

For details, see the excellent monograph The Nuclear Many-Body
Problem by P. Ring and P. Schuck

brought into diagonal form using a

A N \
Bogoliubov (quasiboson) E(O) — %TI"A + Z hQA Qj; ﬁ)t + %)

transformation

mi

/S))L = E Xmi,),[;mi - Ymi,AI;+.

and — =
A B \(X, X, The RPA
_B" —A° Y;L . hQA ?)L matrix equation

There is a correction to the Hartree-Fock energy due to
“zero-point motion” or, correlations among the nucleons:

Epy = E(0) _%T”A"' Zhg/x(%)
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Historical validation of RPA
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BENCHMARKING RPA

Despite its widespread use, RPA has generally been only
tested against toy models (in nuclear physics)

A typical exampe are Lipkin-type models:
Parikh & Rowe, Phys Rev 175 (1968) 1293
Hagino & Bertsch, PRC C 61 (2000) 024307

acts like parity conservation

"he 2-body interaction promotes’
: particles at a

v vovo v Your basic Lipkin model has
N particles, each either only 2 independent parameters:
up or down... N, the number of particles and
simple quasispin ratio of 2-body to single-particle
Hamiltonian spitting, V/¢
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BENCHMARKING RPA

Computational

Despite its widespread use, RPA has generally been only
tested against toy models

A typical exampe are Lipkin-type models:

N

([ ) 175 (1968) 1293
H MG = EJ -V + J 61 (2000) 024307

acts like parity conservation

z

I-T——T—j

_ 1 ~+ A AT /S raction promotesor
2 Eamam 4,9 @

v
N particles, each
up or down...
simple quasispin
Hamiltonian

T Your basic Lipkin model has

independent parameters:

j — & + & number of particles and
i1 1] ¥ 2-body to single-particle

I g, Ve
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BENCHMARKING RPA

I’1l return
to this point
later...
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Computational

BENCHMARKING RPA

Other tests of RPA...

two-level pairing Hagino & Bertsch, Nucl. Phys. A679 (2000) 163

schematic interaction
in small SM space Ullah & Rowe, Phys. Rev. 188 (1969) 1640.

+ handful of others...

UPMC, Paris, 26-29 Jan 2010 11



The Shell-Model Basis and

configuration-interaction calculations
and a flexible RPA code in the shell model

Diagonalization of a Hamiltonian in a shell-model basis
(a.k.a. configuration-interaction or CI)
yields “exact” (for that space) and nontrivial numerical results

Let’s compare RPA against
these numerical CI results
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Computational

How A Cl CODE WORKS

Nuclear CI codes, such as OXBASH, ANTOINE,
or REDSTICK/BIGSTICK, (also called ‘shell-model codes’

in the nuclear structure community) writes the Schrodinger eqn as a
matrix eigenvalue equations

...selects a valence space...
One defines a

single-particle
basis ...

....puts in valence nucleons...

...possibly assuming
an inert core.
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Computational

How A Cl CODE WORKS

The basis is the set of Slater determinants
of all (sort of) possible configurations
in the valence space

The interaction Hamiltonian
is specified as
single-particle energies
plus
two-body matrix elements
(the “residual interaction”)

These are read 1n to the
program as a list of numbers
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Computational

How A Cl CODE WORKS

weore H| W) = E| W)

in a large but finite-dimension space (eigenvalue problem)

‘ ‘P> = E Ca ‘ O{><— basis states are Slater determinants

‘ 0{> = &Jr single particle states taken from
‘ ‘ ! the valence space

i = (0s1/2,1/2)n, ete.
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Computational

H = ES za 2 l]klaz
Y

Vo = [dxds 9] () (X)W (x,x >[¢ (), () - ¢, ()5, ()]

The V;, enter the code as pre-computed numbers, so there is no limitation
on the form of the interaction.
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Computational

How A Cl CODE WORKS

The hard part is actually computing efficiently
the many-body matrix elements
from the two-body matrix elements

N

H /3> from the V;

That is, (O

The final result is the low-lying energy spectrum
and the corresponding wavefunctions
(the coefficients in the Slater determinant basis)
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Computational

Diagonalization of a Hamiltonian in a shell-model basis
yields “exact” (for that space) and nontrivial numerical results

4 N

I have an 1dea! Let’s
write an RPA code using
exactly the same
shell-model mput!

/
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Computational

SHEIl-model RPA code (Stetcu PhD LSU 2003)

Shell-model input compatible with REDSTICK:
list of single-particle orbits (Os;,,, Ops,, etc.)
list of two-body matrix elements <ab; JT |H|cd;JT >
fair to compare output with REDSTICK results

Fully self-consistent Hartree-Fock:

no restrictions on Slater determinant — arbitrary deformations within model space
(except, wfns purely real)

Standard RPA:
solve matrix RPA equations
see rotation of deformed HF state as zero-frequency modes;
option to do pnRPA
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RPA Correlation Energies

(9.s. Binding energies beyond the mean-field)
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AE (MeV)

Computational

RESULTS: CORRELATION ENERGIES

Upper energies = HF ener
pp " g gy \

o 28 / 82 E 6 —\;_9 ?]33 e
L = 34 - L = 27 35 -
6 — 36 - 3 L - ¥ 7 a7
L Si S T -~ L Si P S Cl —
3 r B Ar = 3 ¢ _T — M .
0 B— \‘ ﬁ\\ — § — = _
8 H 2L1 24 5 - Lél 6:‘ F2_3 212_32325 25 27 27 -
G:QQ_Q B 3% 27 Ne Naze M9 AlS
4 Mg i © —
2 :— L Ne . _: 0 :__ = - ___
g L — - -8 B i

All energies relative to {exact” SM diagonalization g.s.

Lower energies = HF+RPA correlation energy

Poorest results for single-species calculations (oxygen, calcium isotopes)
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Computational

RESULTS: CORRELATION ENERGIES

space # nuclides rms err (keV)
sd (p+tn) 41 870
sd oxygen 6 1800
pf (ptn) 11 480
pf calcium 7 730
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Transitions
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Computational
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RPA TRANSITION STRENGTHS
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- “exact” shell model
results
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Appendix: the standard
energy-weighted RPA sum
rule is wrong (in the presence
of Goldstone modes)

N
RPA results
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Computational

We also looked at Gamow-Teller transitions in pnRPA

here there have been previous detailed comparisons with
the shell model, but using spherical pnQRPA

the central question: which is more important,

pairing or deformation?
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Computational

What is pnRPA?

So far we had separate proton and neutron Slater determinants
W) =) \v),

, T + T +
The particle-hole operators conserved charge: JU mﬂ,’ 5 — Y)L,miﬂ ; JU -

A,mi

pn operators change charge Xf’;,iﬂ tyy _ VP gty

A,mi
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Computational

OTHER’S PREVIOUS WORK: PN-QRPA

A number of papers compared spherical pn-QRPA against
“exact” shell -model calculations of Gamow-Teller strengths

o b G Vi, AU W i 54 - 208 = I I
i B PnQRPA
[ *Mg > *Na
| —_— shel! medel
-~ — a_ i
B e e g
WA | ] <
:: ! 1 ¢ -mmmme ]
g 2 . . g ! _
m | 4 _l 4
(X | r_I | P J
| 1 I ! =
% : g E 3 ]
: , : Lo -
I e ] U'JAL i [ PP
R AR SO O NI S L = £ = B(®Sc1t) - E(*TLO)
8 10 12 14 16 18 re !
E (MeV) FIG. 1. Running sum of the Gamow-Teller strength
Ehriign v 1og : B(GT*, Em) for ““Ti —*'Sc as a function of the 8¢ 1t
Fig. 3. Summed Gamow-Teller strength for the transition **Mg- “*Na. See caption to fig. 2. excitation energies relative to the 4Tt ground etate.
Laurtizen, Nucl Phys A489 (1988) 237. Zhao & Brown, PRC 47 (1993) 2641

Running sum of GT strength
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Computational

OTHER’S PREVIOUS WORK: PN-QRPA

Most likely explanation: pn-QRPA fails to sufficiently smear
the Fermi surface == insufficient fragmentation of GT strength

2 SM 0p—0h ]
s|-*Mg > *Na =
= i
[—:’ & .
= | sz QRPA=~2p-2h
m - i' I el e . ] ) )
b n ~ T QRPA in spherical SM
- A s o
i [ P e i
_ 1 1
o Bt il Lo dhe o o 1 g g
0 5 10 15 20 25 -
E (MeV)

Fig. 1. Running sum of the B{GT4 )} values for My vs. excilation energy. S is the total value
at £x = 25 MeV. The labels correspond 1o the headings in table 1.

Auerbach, Bertsch, Brown & Zhao, Nucl Phys A556 (1993) 190
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We redid this work, eschewing pairing correlations in favor

OUR CALCULATIONS: DEFORMED PN-RPA

of unrestricted deformations

1.0

0.8

—

'r-
S 0.6
= 04
A

0.2

o
(=

fllllllllllIl_.I._I_.IIIIIIIIE | I P B | llllllll_ 30
E L e = B E : i .
[ - rrasl . ‘4 -
E ﬁ : 24 = = : ? S
- - Ne = N e )
=5 v = e P » J15 O
— — e | 1.5 5’
S Y I i
= :"‘;' =] . 1.0
A '\—— RPA 3 - ___;_,' o L
SN | 1T QRPA 3 A A 3 —1 05
111 1'{‘||||||L||||||||F |"i"i||| I R
10 1520 23 30 35 5 10 S 20

£ (MeV) E (MeV))

' \

. our I}n RPA exact shell model
pn-QRPA (Lauritzen)
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X B(GT)

OUR CALCULATIONS: DEFORMED PN-RPA

Computational
rStru

E (MeV)

Not only deformation, but triaxiality improves the result
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"Collapse” of RPA

at "phase transitions”
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Computational

“COLLAPSE” AT “PHASE TRANSITIONS”

Example from the Lipkin model....

“collapse” of RPA
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Computational

“COLLAPSE” AT “PHASE TRANSITIONS”

Example f

g8, energy

-4.4

At the transition point several things happen:

———= -- At least one RPA frequency = 0
-- the corresponding h-p amplitudes Y,; =

-- the correlation energy = - «
B while other observables go to +

— exact
- —- "HF"
-— "HF+RPA"

“collapse” of RPA
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“COLLAPSE” AT “PHASE TRANSITIONS”

Do we see this with SHERPA?

We induced a shape transition
in 28Si (which normally has an

oblate HF state) by lowering "302

the Od5,, single-particle energy
until it became spherical

s |
s -150
23] L

No collapse of RPA!
What’s going on?

-120 E—

-140

spherical

deformed .-~

T T T T

-

-
3 .

-180 —
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Computational

“COLLAPSE” AT “PHASE TRANSITIONS”

I know what’s happening! I wrote about it in
D.Thouless, Nucl. Phys. 22, 78 (1961)

No collapse of RPA!
What’s going on?
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Computational

lill r Structt
A

“COLLAPSE” AT “PHASE TRANSITIONS”

There are first-order and second-order transitions!

First order: coexistence of stable

Second order: no coexistence
solutions, no collapse

collapsel!

&
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Second order: no coexistence

= collapsel!
\ /
: . )
Even-parity transitions while odd-parity
(such as quadrupole) transitions should be
should be first order! second order!

=/

NN
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“COLLAPSE” AT “PHASE TRANSITIONS”

Quadrupole shape transitions are first order

Lipkin model is 2"d order and is more analogous to mixing of
parity across major shells

Example: Op1/2-0d5/2 model space displays true “collapse”
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Computational
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\ — deformed
\ ---- spherical
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Computational
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Computational

160

exact parity
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Computational

CONCLUSIONS

We have realized RPA in a non-trivial shell model framework

Tests of RPA show it o be a modest approximation to the
full many-body diagonalization

We have also investigated "collapse” of RPA

We are extending this work to generator coordinate calculations,
HFB+QRPA (especially for neutrinoless double-beta decay), and
possibly extensions of RPA, e.g. second RPA, etc.
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SUM RULES AND RULE-BREAKERS

Let F be a transition operator; then the
energy-weighted sum rule states that

srffla. s - She

This theorem 1s proven in many text-books...but 1s wrong!

F

2)

RPA
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comnulauonal

SUM RULES AND RULE-BREAKERS

The "proof" assumes no Goldstone
(zero-energy) modes

if one rederives it using those
Goldstone modes one gets a correction

[HF]IHF> - kako FlA

™ \E’ Pﬂ Covectionterm
v Q 0 '

2

L
2

RPA
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comnulauonal

SUM RULES AND RULE-BREAKERS

The missing strength can be interpreted as
transitions within a rotational band (that 1s,

' within the intrinsic state) while RPA models
\\ transitions within a vibrational band
it using those

This is bolstered by the fact that we see \'\
missing strength (in even-even nuclides)
for E2 transitions but not for, say,
spin-flip (AJ=1) transitions
(because rotational band only allows AJ =2 ) -

+ I}? P Correction term
2M (Stetcu, 2003)
% Q 0
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Computational

SUM RULES AND RULE-BREAKERS

The missing strength can be interpreted as
transitions within & ST T T T 71

' within the intrinsic
\\ transitions with

O L S

Transition Strength / MeV

N Or R

In addition, if we choose 4 |\ Deformed HF state—

a spherical state (no 3 i

Goldstone modes) rather than > L .

a deformed state, we regain L N

the missing strength [ SRy e 1 q ]
\ / %0 s 10 15 20

Ex. Energy (MeV)
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