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Systematic Investigation of RPA 
or 

Outline of my talk! 

Review of RPA 

Overview of previous “benchmarking” of RPA 

Configuration-interaction (CI) calculations and our code SHERPA 

Two tests: 

              (1)  Correlation energies 

 (2) Transitions in RPA and pnRPA 

“Collapse” of RPA  

Conclusions ... and future work 

UPMC, Paris, 26-29 Jan 2010 
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Review of RPA  
RPA models excited states as  
small oscillations about the mean-field. 

One can put RPA in the same framework  
as configuration-interaction (CI) calculations 

using an occupation-space (shell-model) basis 

UPMC, Paris, 26-29 Jan 2010 
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The nuclear landscape 

Hartree-Fock based upon variational principle: 
minimize  

Here Ψ is a Slater determinant,  
a product of single-particle wfns  
each of which can be written  
as a vector : 
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The nuclear landscape 

There are many ways to derive the random phase approximation (RPA): 
eqns of motion, time-dependent Hartree-Fock, linear response...  

I prefer quantization of the energy surface: 

ΨHF 

We often approximate a potential 
by a harmonic oscillator 

In occupation space, the second  
derivatives are given by the A and  
B matrices: 

€ 

Ami,nj ≅ mi−1 H nj−1

€ 

mi−1 = ˆ c m
+ ˆ c i HF

€ 

Bmi,nj ≅ mi−1nj−1 H HF

UPMC, Paris, 26-29 Jan 2010 
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The nuclear landscape 

and  
The RPA 
matrix equation 

There is a correction to the Hartree-Fock energy due to  
“zero-point motion” or, correlations among the nucleons:  

brought into diagonal form using a 
Bogoliubov (quasiboson) 
transformation 

For details, see the excellent monograph The Nuclear Many-Body 
Problem by P. Ring and P. Schuck  

UPMC, Paris, 26-29 Jan 2010 
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Historical validation of RPA 

UPMC, Paris, 26-29 Jan 2010 
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Benchmarking RPA 

Despite its widespread use, RPA has generally been only 
tested against toy models (in nuclear physics) 

A typical exampe are Lipkin-type models:     
  Parikh & Rowe, Phys Rev  175 (1968) 1293 
  Hagino & Bertsch, PRC C 61 (2000) 024307   

2e 

N particles, each either  
up or down... 
simple quasispin  
Hamiltonian 

The 2-body interaction promotes or  
demotes 2 particles at a time 

Your basic Lipkin model has  
only 2 independent parameters: 
N, the number of particles and  
ratio of 2-body to single-particle 
spitting, V/ε 

acts like parity conservation 

UPMC, Paris, 26-29 Jan 2010 
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Benchmarking RPA 

I’ll return  
to this point 
later... 

UPMC, Paris, 26-29 Jan 2010 
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Benchmarking RPA 

Other tests of RPA... 

two-level pairing         Hagino & Bertsch, Nucl. Phys. A679 (2000) 163 

schematic interaction 
in small SM space         Ullah & Rowe,  Phys. Rev. 188 (1969) 1640. 

+ handful of others... 

UPMC, Paris, 26-29 Jan 2010 
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The Shell-Model Basis  and 
configuration-interaction calculations 

and a flexible RPA code in the shell model 

Diagonalization of a Hamiltonian in a shell-model basis   
(a.k.a. configuration-interaction or CI)  
yields “exact” (for that space) and nontrivial numerical results 

Let’s compare RPA against 
these numerical CI results 

UPMC, Paris, 26-29 Jan 2010 
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How a CI code works 

Nuclear CI codes, such as OXBASH, ANTOINE,  
or REDSTICK/BIGSTICK, (also called ‘shell-model codes’ 
in the nuclear structure community) writes the Schrodinger eqn as a  
matrix eigenvalue equations 

One defines a  
single-particle  
basis ... 

...selects a valence space... 

....puts in valence nucleons... 

...possibly assuming  
an inert core. 

UPMC, Paris, 26-29 Jan 2010 
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The basis is the set of Slater determinants 
of all (sort of) possible configurations 
in the valence space 

The interaction Hamiltonian 
is specified as  

single-particle energies 
plus 

two-body matrix elements 
(the “residual interaction”) 

These are read in to the  
program as a list of numbers 

How a CI code works 

UPMC, Paris, 26-29 Jan 2010 
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We solve 

in a large but finite-dimension space (eigenvalue problem) 

basis states are Slater determinants 

single particle states taken from 
the valence space 

i = (0s1/2,1/2)π, etc. 

How a CI code works 

UPMC, Paris, 26-29 Jan 2010 
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The Vijkl enter the code as pre-computed numbers, so there is no limitation  
on the form of the interaction.  

How a CI code works 

UPMC, Paris, 26-29 Jan 2010 
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The hard part is actually computing efficiently  
the many-body matrix elements  
from the two-body matrix elements 

The final result is the low-lying energy spectrum 
and the corresponding wavefunctions  
(the coefficients in the Slater determinant basis) 

That is,  from the Vijkl 

How a CI code works 

UPMC, Paris, 26-29 Jan 2010 
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I have an idea! Let’s  
write an RPA code using 
exactly the same  
shell-model input! 

Diagonalization of a Hamiltonian in a shell-model basis  
yields “exact” (for that space) and nontrivial numerical results 

UPMC, Paris, 26-29 Jan 2010 
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SHEll-model RPA code (Stetcu PhD LSU 2003) 

Shell-model input compatible with REDSTICK: 
 list of single-particle orbits (0s1/2, 0p3/2 etc.) 
 list of two-body matrix elements < ab; JT |H|cd;JT > 
 fair to compare output with REDSTICK results 

Fully self-consistent Hartree-Fock: 
 no restrictions on Slater determinant → arbitrary deformations within model space 
 (except, wfns purely real) 

Standard RPA: 
 solve matrix RPA equations 
 see rotation of deformed HF state as zero-frequency modes; 
 option to do pnRPA 

UPMC, Paris, 26-29 Jan 2010 
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RPA Correlation Energies 

(g.s. Binding energies beyond the mean-field) 

UPMC, Paris, 26-29 Jan 2010 
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Results: Correlation energies 

All energies relative to “exact” SM diagonalization g.s. 

Upper energies = HF energy 

Lower energies = HF+RPA correlation energy 

Poorest results for single-species calculations (oxygen, calcium isotopes) 

UPMC, Paris, 26-29 Jan 2010 
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Results: Correlation energies 

space  # nuclides  rms err (keV) 
sd (p+n)     41     870 
sd oxygen    6                 1800 
pf  (p+n)     11                  480 
pf  calcium   7                  730 

UPMC, Paris, 26-29 Jan 2010 
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Transitions 

UPMC, Paris, 26-29 Jan 2010 
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RPA transition strengths  
“exact” shell model 
results 

RPA  results 

UPMC, Paris, 26-29 Jan 2010 

Appendix: the standard  
energy-weighted RPA sum  
rule is wrong (in the presence  
of Goldstone modes) 
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We also looked at Gamow-Teller transitions in pnRPA 

here there have been previous detailed comparisons with 
the shell model, but using spherical pnQRPA 

the central question: which is more important,  

or          pairing deformation? 

UPMC, Paris, 26-29 Jan 2010 
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What is pnRPA? 

So far we had separate proton and neutron Slater determinants 

The particle-hole operators conserved charge: 

pn operators change charge 

UPMC, Paris, 26-29 Jan 2010 
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Other’s Previous Work: pn-QRPA 

A number of papers compared spherical pn-QRPA against  
“exact” shell –model calculations of Gamow-Teller strengths 

Laurtizen, Nucl Phys A489 (1988) 237. Zhao & Brown, PRC 47 (1993) 2641 

Running sum of GT strength 

UPMC, Paris, 26-29 Jan 2010 
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Other’s Previous Work: pn-QRPA 

Most likely explanation: pn-QRPA fails to sufficiently smear  
the Fermi surface           insufficient fragmentation of GT strength 

Auerbach, Bertsch, Brown & Zhao, Nucl Phys A556 (1993) 190 

QRPA ≈ 2p-2h 
in spherical SM 

UPMC, Paris, 26-29 Jan 2010 
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Our Calculations: Deformed pn-RPA 

We redid this work, eschewing pairing correlations in favor 
of unrestricted deformations 

exact shell model our pn-RPA 
pn-QRPA (Lauritzen) 

UPMC, Paris, 26-29 Jan 2010 
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Our Calculations: Deformed pn-RPA 

Not only deformation, but triaxiality improves the result 

UPMC, Paris, 26-29 Jan 2010 
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“Collapse” of RPA 

at “phase transitions” 

UPMC, Paris, 26-29 Jan 2010 
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“Collapse” at “phase transitions” 

Example from the Lipkin model.... 

“spherical”                                                                       “deformed” 

Egs 

“collapse” of RPA 

UPMC, Paris, 26-29 Jan 2010 



Computational 
    Nuclear Structure 

33 

“Collapse” at “phase transitions” 

Example from the Lipkin model.... 

“spherical”                                                                       “deformed” 

Egs 

“collapse” of RPA 

At the transition point several things happen: 

-- At least one RPA frequency ⇒ 0 
-- the corresponding h-p amplitudes Ymi ⇒ ∞ 
-- the correlation energy ⇒ - ∞  
     while other observables go to ±∞ 

UPMC, Paris, 26-29 Jan 2010 
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“Collapse” at “phase transitions” 

We induced a shape transition  
in 28Si (which normally has an  
oblate HF state) by lowering  
the 0d5/2

  single-particle energy 
until it became spherical 

Do we see this with SHERPA? 

spherical deformed 

No collapse of RPA!  
What’s going on?  

UPMC, Paris, 26-29 Jan 2010 
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“Collapse” at “phase transitions” 

No collapse of RPA!  
What’s going on?  

I know what’s happening! I wrote about it in 
D.Thouless, Nucl. Phys. 22, 78 (1961) 

UPMC, Paris, 26-29 Jan 2010 
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“Collapse” at “phase transitions” 

First order: coexistence of stable  
solutions, no collapse 

Second order: no coexistence   
collapse!! 

There are first-order and second-order transitions! 

UPMC, Paris, 26-29 Jan 2010 
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“Collapse” at “phase transitions” 

First order: coexistence of stable  
solutions, no collapse 

Second order: no coexistence   
= collapse!! 

There are first-order and second-order transitions! 

Even-parity transitions 
(such as quadrupole) 
should be first order! 

while odd-parity 
transitions should be 

second order! 

UPMC, Paris, 26-29 Jan 2010 
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“Collapse” at “phase transitions” 

Quadrupole shape transitions are first order 

Lipkin model is 2nd order and is more analogous to mixing of  
parity across major shells 

Example: 0p1/2-0d5/2 model space displays true “collapse” 

UPMC, Paris, 26-29 Jan 2010 
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CONCLUSIONS 

We have realized RPA in a non-trivial shell model framework 

Tests of RPA show it to be a modest approximation to the  
full many-body diagonalization 

We have also investigated “collapse” of RPA 

We are extending this work to generator coordinate calculations,  
HFB+QRPA (especially for neutrinoless double-beta decay), and  
possibly extensions of RPA, e.g. second RPA, etc.  

UPMC, Paris, 26-29 Jan 2010 



Computational 
    Nuclear Structure 



Computational 
    Nuclear Structure 

47 

Sum Rules and Rule-Breakers  

Let F be a transition operator; then the  
energy-weighted sum rule states that 

This theorem is proven in many text-books...but is wrong! 
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Sum Rules and Rule-Breakers  

The  “proof” assumes no Goldstone 
(zero-energy) modes 

if one rederives it using those  
Goldstone modes one gets a correction 

Correction term 
(Stetcu, 2003) 
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Sum Rules and Rule-Breakers  

The  “proof” assumes no Goldstone 
(zero-energy) modes 

if one rederives it using those  
Goldstone modes one gets a correction 

Correction term 
(Stetcu, 2003) 

The missing strength can be interpreted as  
transitions within a rotational band (that is,  

within the intrinsic state) while RPA models 
transitions within a vibrational band 

This is bolstered by the fact that we see  
missing strength (in even-even nuclides)  

for E2 transitions but not for, say,  
spin-flip (ΔJ=1) transitions  

(because rotational band only allows ΔJ ≥2 ) 
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Sum Rules and Rule-Breakers  

The  “proof” assumes no Goldstone 
(zero-energy) modes 

The missing strength can be interpreted as  
transitions within a rotational band (that is,  

within the intrinsic state) while RPA models 
transitions within a vibrational band 

In addition, if we choose  
a spherical state (no 
Goldstone modes) rather than 
a deformed state, we regain 
the missing strength 


