Multidisciplinary Workshop on RPA UPMC Paris, 26-29 Jan 2010

How APPROXIMATE IS THE RANDOM PHASE APPROXIMATION? COMPARING RPA AGAINST FULL CONFIGURATION-INTERACTION CALCULATIONS

Calvin W. Johnson San Diego State University

Ionel Stetcu Louisiana State University & University of Washington

I. Stetcu and C. W. Johnson, Phys. Rev. C 66 034301 (2002)

I. Stetcu and C. W. Johnson, Phys. Rev. C. 67, 043315 (2003)

I. Stetcu and C. W. Johnson, Phys Rev. C 69, 024311 (2004)

C. W. Johnson and I. Stetcu, Phys. Rev. C 80, 024320 (2009)

This work was supported by grants from the Department of Energy

SYSTEMATIC INVESTIGATION OF RPA OR OUTLINE OF MY TALK!

Review of RPA

Overview of previous "benchmarking" of RPA

Configuration-interaction (CI) calculations and our code SHERPA

Two tests:

(1) Correlation energies

(2) Transitions in RPA and pnRPA

"Collapse" of RPA

Conclusions ... and future work

Review of RPA

RPA models excited states as small oscillations about the mean-field.

One can put RPA in the same framework as configuration-interaction (CI) calculations

using an occupation-space (shell-model) basis

THE NUCLEAR LANDSCAPE

THE NUCLEAR LANDSCAPE

There are many ways to derive the random phase approximation (RPA): eqns of motion, time-dependent Hartree-Fock, linear response...

I prefer quantization of the energy surface:

We often approximate a potential by a harmonic oscillator

In occupation space, the second derivatives are given by the **A** and **B** matrices:

$$A_{mi,nj} \approx \left\langle mi^{-1} \left| H \right| nj^{-1} \right\rangle$$
$$\left| mi^{-1} \right\rangle = \hat{c}_{m}^{+} \hat{c}_{i} \left| HF \right\rangle$$
$$B_{mi,nj} \approx \left\langle mi^{-1} nj^{-1} \left| H \right| HF \right\rangle$$

THE NUCLEAR LANDSCAPE

For details, see the excellent monograph *The Nuclear Many-Body Problem* by P. Ring and P. Schuck

brought into diagonal form using a Bogoliubov (quasiboson) transformation $E(0) - \frac{1}{2}TrA + \sum_{\lambda} \hbar\Omega_{\lambda} \left(\hat{\beta}_{\lambda}^{+} \hat{\beta}_{\lambda} + \frac{1}{2} \right)$ $\hat{\beta}_{\lambda} = \sum_{i} X_{mi,\lambda} \hat{b}_{mi} - Y_{mi,\lambda} \hat{b}_{mi}^{+}$

and

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ -\mathbf{B}^* & -\mathbf{A}^* \end{pmatrix} \begin{pmatrix} \vec{X}_{\lambda} \\ \vec{Y}_{\lambda} \end{pmatrix} = \hbar \Omega_{\lambda} \begin{pmatrix} \vec{X}_{\lambda} \\ \vec{Y}_{\lambda} \end{pmatrix}$$

The RPA matrix equation

There is a correction to the Hartree-Fock energy due to "zero-point motion" or, correlations among the nucleons:

$$E_{RPA} = E(0) - \frac{1}{2}Tr\mathbf{A} + \sum_{\lambda} \hbar\Omega_{\lambda}\left(\frac{1}{2}\right)$$

Historical validation of RPA

Despite its widespread use, RPA has generally been only tested against toy models (in nuclear physics)

A typical exampe are Lipkin-type models:

Parikh & Rowe, Phys Rev **175** (1968) 1293 Hagino & Bertsch, PRC C **61** (2000) 024307

acts like parity conservation

N particles, each either up or down... simple quasispin Hamiltonian The 2-body interaction promotes or demotes 2 particles at a time

Your basic Lipkin model has only 2 independent parameters: N, the number of particles and ratio of 2-body to single-particle spitting, V/ ϵ

Despite its widespread use, RPA has generally been only tested against toy models

A typical exampe are Lipkin-type models:

$$\hat{H}_{LMG} = \varepsilon \hat{J}_z - V \left(\hat{J}_+^2 + \hat{J}_-^2 \right) \begin{bmatrix} 175 \ (1968) \ 1293 \\ 61 \ (2000) \ 024307 \\ acts \ like \ parity \ conservation \end{bmatrix}$$

$$\hat{J}_{z} = \frac{1}{2} \sum_{i} \hat{a}_{i\uparrow}^{+} \hat{a}_{i\uparrow} - \hat{a}_{i\downarrow}^{+} \hat{a}_{i\downarrow}$$
 raction promotes or les at a time set of the set of

I'll return to this point later...

Other tests of RPA...

two-level pairing	Hagino & Bertsch, Nucl. Phys. A679 (2000) 163
schematic interaction in small SM space	Ullah & Rowe, Phys. Rev. 188 (1969) 1640.
+ handful of others	

+ nanotul of others...

The Shell-Model Basis and configuration-interaction calculations and a flexible RPA code in the shell model

Diagonalization of a Hamiltonian in a shell-model basis (a.k.a. configuration-interaction or CI) yields **"exact"** (for that space) and **nontrivial** numerical results

Let's compare RPA against these numerical CI results

How a CI code works

Nuclear CI codes, such as OXBASH, ANTOINE, or REDSTICK/BIGSTICK, (also called 'shell-model codes' in the nuclear structure community) writes the Schrodinger eqn as a matrix eigenvalue equations

One defines a single-particle basis ...

...selects a valence space...

....puts in valence nucleons...

...possibly assuming an inert core.

How a CI code works

The basis is the set of Slater determinants of all (sort of) possible configurations in the valence space

The interaction Hamiltonian is specified as *single-particle energies* plus *two-body matrix elements* (the "residual interaction")

These are read in to the program as a list of numbers

How a Clode works We solve $\mathbf{H}|\Psi\rangle = E|\Psi\rangle$

Computational Nuclear Structure

in a large but finite-dimension space (eigenvalue problem)

i = $(0s_{1/2,1/2})_{\pi}$, etc.

How A Cl code works $\hat{H} = \sum_{i} \varepsilon_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i} + \frac{1}{4} \sum_{ij \, kl} V_{ij \, kl} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{l} \hat{a}_{j}$ $V_{ij \, kl} = \int dx dx' \phi_{i}^{*}(x) \phi_{j}^{*}(x') V(x, x') \left[\phi_{k}(x) \phi_{l}(x') - \phi_{l}(x) \phi_{k}(x') \right]$

The V_{ijkl} enter the code as *pre-computed numbers*, so there is *no* limitation on the form of the interaction.

How a CI code works

The hard part is actually computing *efficiently* the many-body matrix elements from the two-body matrix elements

That is,
$$ig\langle lpha ig| \hat{H} ig| eta ig
angle$$
 from the V $_{
m ijkl}$

The final result is the low-lying energy spectrum and the corresponding wavefunctions (the coefficients in the Slater determinant basis)

Diagonalization of a Hamiltonian in a shell-model basis yields **"exact"** (for that space) and **nontrivial** numerical results

I have an idea! Let's write an RPA code using exactly the same shell-model input!

SHEII-model RPA code (Stetcu PhD LSU 2003)

Shell-model input compatible with REDSTICK: list of single-particle orbits (Os_{1/2}, Op_{3/2} etc.) list of two-body matrix elements < ab; JT |H|cd;JT > fair to compare output with REDSTICK results

Fully self-consistent Hartree-Fock:

no restrictions on Slater determinant \rightarrow arbitrary deformations within model space (except, wfns purely real)

Standard RPA:

solve matrix RPA equations see rotation of deformed HF state as zero-frequency modes; option to do pnRPA

RPA Correlation Energies

(g.s. Binding energies beyond the mean-field)

RESULTS: CORRELATION ENERGIES

Poorest results for single-species calculations (oxygen, calcium isotopes)

UPMC, Paris, 26-29 Jan 2010

Computational

uclear Structure

RESULTS: CORRELATION ENERGIES

space # nuclides	rms err (keV)
sd (p+n) 41	870
sd oxygen 6	1800
pf (p+n) 11	480
pf calcium 7	730

Transitions

We also looked at Gamow-Teller transitions in pnRPA

here there have been previous detailed comparisons with the shell model, but using spherical pnQRPA

the central question: which is more important,

pairing or deformation?

What is pnRPA?

So far we had separate proton and neutron Slater determinants

$$|\Psi\rangle = |\psi\rangle_{\pi} |\psi\rangle_{\nu}$$

The particle-hole operators conserved charge:

$$X_{\lambda,mi}^{\pi}\pi_{m}^{+}\pi_{i}-Y_{\lambda,mi}^{\pi}\pi_{i}^{+}\pi_{m}$$

pn operators change charge

$$X_{\lambda,mi}^{pn}\pi_m^+\nu_i - Y_{\lambda,mi}^{pn}\pi_i^+\nu_m$$

OTHER'S PREVIOUS WORK: PN-QRPA

A number of papers compared **spherical** pn-QRPA against "exact" shell –model calculations of Gamow-Teller strengths

FIG. 1. Running sum of the Gamow-Teller strength $B(GT^+, E_m)$ for ⁴⁸Ti \rightarrow ⁴⁸Sc as a function of the ⁴⁶Sc 1⁺ excitation energies relative to the ⁴⁶Ti ground state.

Laurtizen, Nucl Phys A489 (1988) 237.

Zhao & Brown, PRC 47 (1993) 2641

Running sum of GT strength

OTHER'S PREVIOUS WORK: PN-QRPA

Most likely explanation: pn-QRPA fails to sufficiently smear the Fermi surface insufficient fragmentation of GT strength

Auerbach, Bertsch, Brown & Zhao, Nucl Phys A556 (1993) 190

OUR CALCULATIONS: DEFORMED PN-RPA

We redid this work, eschewing pairing correlations in favor of unrestricted deformations

UPMC, Paris, 26-29 Jan 2010

Not only deformation, but triaxiality improves the result

"Collapse" of RPA

at "phase transitions"

Example from the Lipkin model....

Example f

Do we see this with SHERPA?

I know what's happening! I wrote about it in D.Thouless, Nucl. Phys. **22**, 78 (1961)

No collapse of RPA! What's going on?

There are *first-order* and *second-order* transitions!

Quadrupole shape transitions are first order

Lipkin model is 2nd order and is more analogous to mixing of parity across major shells

Example: 0p1/2-0d5/2 model space displays true "collapse"

UPMC, Paris, 26-29 Jan 2010

CONCLUSIONS

We have realized RPA in a non-trivial shell model framework

Tests of RPA show it to be a modest approximation to the full many-body diagonalization

We have also investigated "collapse" of RPA

We are extending this work to generator coordinate calculations, HFB+QRPA (especially for neutrinoless double-beta decay), and possibly extensions of RPA, e.g. second RPA, etc.

Let *F* be a transition operator; then the <u>energy-weighted sum rule</u> states that

$$\frac{1}{2}\langle HF|\hat{F}\hat{H},\hat{F}HF\rangle = \sum_{\lambda}\hbar\Omega_{\lambda}\left|\langle 0|\hat{F}|\lambda\rangle_{RPA}\right|^{2}$$

This theorem is proven in many text-books...but is wrong!

The "proof" assumes no Goldstone (zero-energy) modes

if one rederives it using those Goldstone modes one gets a correction

$$\frac{1}{2} \langle HF | \left[\hat{F} \left[\hat{H}, \hat{F} \right] HF \rangle = \sum_{\lambda} \hbar \Omega_{\lambda} | \langle 0 | \hat{F} | \lambda \rangle_{RPA} |^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} + \sum_{\nu, \Omega=0} \frac{1}{2M_{\nu}} | \left[F, \hat{P}_{\nu} \right]^{2} +$$

 $\frac{1}{2}\langle HH$

+ $\sum_{\nu \in \Omega} \frac{1}{2M} \left[F, \hat{P}_{\nu} \right]^{2}$

The missing strength can be interpreted as transitions within a rotational band (that is, within the *intrinsic state*) while RPA models transitions within a vibrational band

This is bolstered by the fact that we see missing strength (in even-even nuclides) for E2 transitions but not for, say, spin-flip (ΔJ=1) transitions (because rotational band only allows ΔJ ≥2)

<u>anives it using those</u>

Correction term (Stetcu, 2003) Computational

dear Structur

I

The missing strength can be interpreted as transitions within a 5

within the *intrinsic* transitions with

In addition, if we choose a spherical state (no Goldstone modes) rather than a deformed state, we regain the missing strength

Computational

clear Structure

2