Fine-tuning of the conformation of expanded porphyrins using conceptual DFT descriptors and noncovalent index

Mercedes Alonso, Frank De Proft and Paul Geerlings

Topological Approaches to Intermolecular Interactions, Paris 2013

Overview

- Introduction
- Computational approach
- Results and discussion
- Conclusions

Expanded Porphyrins

A. Osuka et al. *Angew. Chem. Int. Ed.* 2011, 50, 4342 L. Latos-Grazyński *et al. Angew. Chem. Int. Ed.* 2008, 47, 193, 50, 4288

Molecular switches

S. Saito, A. Osuka Angew. Chem. Int. Ed. 2011, 50, 4342

H. S. Rzepa et al. J. Am. Chem. Soc. 2008, 130, 7613

Hückel and Möbius aromaticity

APPROACH

Optimum conditions for **Möbius aromatic compounds** and **topological switches** with unique magnetic properties using DFT

Hückel-Möbius topology switch

Protonation is an effective way for controlling the conformation! Paris 2013

Aromaticity descriptors

Aromaticity is a **multidimensional** property cannot be quantified with a single-index

MAGNETIC

A : Diamagnetic Susceptibility Exaltation $\Lambda = \chi_M - \chi_{M'}$

 $\Lambda < 0$: aromatic $\Lambda > 0$: antiaromatic

H. J. Dauben et al. J. AmRE/AG DDV. 1088, 90, 811

 $\Delta \eta : \text{Relative hardness} \qquad \eta = I - A \approx \mathcal{E}_{\text{LUMO}} - \mathcal{E}_{\text{HOMO}} \qquad \Delta \eta > 0 : \text{aromatic}$ F. De Proft, P. Geerlings, *Phys. Chem. Chem. Phys.* 2004, 6, $\Delta \eta < 0 : \text{antiaromatic}$ 242. $\Delta \eta < 0 : \text{antiaromatic}$ Lenso *et.al Phys. Chem. Chem. Phys.* 2010, 12, 1305; *J. Comput. Chem.* 2010, 31, 917. First time that these descriptors are computed for expanded porphyrins 12013

Aromaticity descriptors

Performance of these indices to describe Möbius aromaticity??

Aromaticity of [32]heptaphyrin

triprotonated

A. Glase relationship betweens, the stopology and aromaticity

Correlation between aromaticity

Øp indnootrsizle tilepse betewte en de easily tici tyoimpines!

Contormational control by substituents $R = CF_3$ figure-eight

Möbius

 $\mathbf{R} = \mathbf{C}_6 \mathbf{F}_5$

 $\Delta E_{M-F} = 2.8$

 $\Delta E_{(M-F)^+} = -2.8$

C

TFA

A. Osuka, Angew. Chem. Int. E 2006, 12, 9095

 $\varDelta E_{M-F}$ is the energy difference between the Möt

 $\mathbf{R} = \mathbf{C}_{6}\mathbf{C}\mathbf{I}_{2}\mathbf{H}_{3}$

Excelent agreement with the experiment!

NCI index in heptaphyrins

Aronhyticitgerobondingheoretinfdsnthetiling of tripitotolr[30] thepitabhyrin!

W. Yang *et al. J. Am. Chem. Soc.* 2010, *132*, 6498 J. Contreras-García *et al. Chem. Theory Comput.* 2011, *7*, 625

Performance of density

functionals B3LYP \rightarrow lack of medium and long-range dispersion \rightarrow M06-2X and DFT-D

A. Osuka et al **B3** A Pushows, the best overall performance

[22]- and [24]pentaphyrins

Conformations of [22]pentaphyrins

T0^{4,D} conformer does not undergo the N-fusion reaction Paris 2013

Conformations of [24]pentaphyrins

Möbius confatigers with goess befosignic exection aticity

Conformation controlled by substituents R = C₆F₅, N = 4

T0^{A,D}

N = 4

N = 5

Four aryl groups
> Non-fused [22]pentaphyrins

Conclusions

Conformation strongly depends on the oxidation state and *meso*-substituents

[32]heptaphyrin is a promising molecular switch, that can be induced by protonation

A close relationship exist between molecular topology and aromaticity

Magnetic descriptors and $\Delta\eta$ are the best indices to quantify Möbius and Hückel aromaticity

B3LYP shows the best overall performance for geometries and thermochemistry of expanded porphyrins

NCI is a powerful tool to analyze the steric effects

Aromatic Möbius structures are easily achievable by [32]heptaphyrin and [28]hexaphyrin

M. Alonso, P. Geerlings, F. De Proft *Chem. Eur. J.* 2012, *18*, 10916-10928.
M. Alonso, P. Geerlings, F. De Proft *Chem. Eur. J.* 2013, *19*, 1617-1628.
M. Alonso, P. Geerlings, F. De Proft. *J. Org. Chem.* 2013, 78, 4419-443.

Acknowledgments

Prof. Paul Geerlings Prof. Frank De Proft Dr. Julia Contreras-García

ALGC group (Vrije Universiteit Brussels)

FP7-PEOPLE-2010-IEF-273527

Thank you very much for your attention!

