

Insight From Numbers: Analyzing Intramolecular Non-Covalent Interactions With IntraSAPT

Ewa Pastorczak,

Antonio Prlj, Jerome Gonthier, Clemence Corminboeuf

Intermolecular interactions

van der Waals (dispersion) complexes

Hydrogen bonds

others...

Symmetry-adapted perturbation theory (SAPT)

Treats the interaction between monomers as a perturbation

Interaction energy of dimers:

 $E_{int} = E_{elst} + E_{exch} + E_{ind,resp} + E_{exch-ind,resp} + E_{disp} + E_{exch,disp} + \dots$

SAPT makes it possible to compute, decompose and interpret the intermolecular interaction energy

B. Jeziorski, R. Moszyński, and K. Szalewicz, Chem. Rev. 94, 1887-1930 (1994)

Key features of SAPT

- Interaction energy emerges from a single computation (no BSSE)
- Exchange interaction is introduced through antisymmetrization of the product of the monomer wavefunctions
- Can describe non-covalently bound dimers (or trimers)
- Gives accurate interaction energies
- Non-empirical definition of dispersion at all ranges

Intramolecular interactions

van der Waals (dispersion)

Hydrogen bonds

Charge-transfer

π-π stacking

others...

What are we interested in?

- Computing interaction energies of particular groups
- Exchange/dispersion balance

C. G. Newton et al., J. Am. Chem. Soc. 2016, 138, 3935-3941

P. R. Schreiner et al., Nature, 2011, 477, 308-312

- Explaining stability of certain molecules
- Designing new molecules by promoting some interactions

The challenge for intramolecular SAPT

No monomers, just arbitrarily chosen fragments

How to choose the fragments?

Can we associate the interactions with the fragments?

How to partition the molecule?

- 1. Choose the nuclei
- 2. Take advantage of the atom-centered basis set to partition the basis functions¹
- Localize the orbitals on fragments using strictly localized orbitals²

Removing the interfragment interactions - zeroth order Hamiltonian

The integrals where the product of the operator and the ket represent an interaction between A and B are removed, e.g.

$$-\Sigma_{I\in A}\left\langle \tilde{i} \left| \frac{Z_I}{R_{1I}} \right| b \right\rangle, \ b\in B$$

For integrals representing interactions within fragment B the bra basis functions on fragment A are projected out, e.g.

biorthogonal orbitals

J. Gonthier & C. Corminboeuf, J. Chem. Phys., 140, 154107, 2014

Bring back the interaction - perturbative corrections - single-determinant wavefunction

For interaction \widehat{W}_{AB} between fragments A and B:

Electrostatics + exchange

$$E^{(1)} = \left\langle \tilde{\Psi}_0 \left| \widehat{W}_{AB} \right| \Psi_0 \right\rangle + \sum_{I \in A, J \in B} \frac{Z_I Z_J}{R_{IJ}}$$

Induction (polarization+delocalization) + dispersion

$$E^{(2)} = -\sum_{exc} \frac{\left\langle \tilde{\Psi}_{exc} \left| \widehat{W}_{AB} \right| \Psi_0 \right\rangle \left\langle \tilde{\Psi}_0 \left| \widehat{W}_{AB} \right| \tilde{\Psi}_{exc} \right\rangle}{E_{exc}^{(0)} - E_0^{(0)}}$$

Second order corrections - contributing excitations

Key features of intraSAPT

- Interaction energy emerges from one computation
- Wavefunction is antisymmetric

no need to introduce exchange

- Non-empirical dispersion
- It's an extension of Surjan *et al.*¹ theory for intermolecular interactions

able to treat inter- and intramolecular interactions on equal footing

Hairpin alkanes conformations

Short alkanes prefer a linear conformation, long ones - a folded one.

Why is that?

J.Chem. Theor. Comp. 2015 11(5), pp. 2137-2143

Hairpin alkanes - a classic example of intramolecular dispersion

Number of carbon atoms

- Dispersion between the chains compensates for the Pauli repulsion
- With chain elongation molecule gains more freedom and tends towards its van der Waals minimum

J. Chem. Phys. 143, 224107 (2015)

Intramolecular π-π stacking

- The interaction between the rings is slightly repulsive
- The linker does not significantly influence the π - π interactions
- Dipole-dipole interactions between C-H and C-F pairs lower the repulsion in $E^{(1)}$

Hydrogen bonds in aminoalcohol molecules

- Strong electrostatic attraction
- Induction and dispersion play no role
- Larger rings tend towards the maximization of the NH₂-OH interaction
- Trend consistent with spectroscopic measurements
- Pauli repulsion slightly underestimated

Conclusions

- IntraSAPT is able to describe various types of intramolecular interactions
- A direct computation and interpretation of each energy component is possible
- A spin-coupling scheme is required

Different attempts to develop intramolecular SAPT

 intraSAPT (Corminboeuf): based on Chemical Hamiltonian approach

J. Chem. Phys., 140, 154107, 2014, J. Chem. Phys. 143, 224107 (2015)

 ISAPT (Parrish): SAPT0 & HF-in-HF density matrix embedding

J. Chem. Phys., 143, 051103 (2015)

Hesselmann: incremental fragmentation method

J. Chem. Phys. 144, 084109 (2016)

Funding from EPFL and from National Science Centre of Poland under grant no. DEC-2012/07/E/ST4/03023. is gratefully acknowledged.

