#### Part 2. Ab initio Valence Bond

| 000                                                                                                                                      |                                                                                                                                                                                                                                                                                                                           | VB tutorial - Workshop                                                                           |                                                                                                    |                                                     |                  |                               | H       |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------|-------------------------------|---------|
|                                                                                                                                          | + Ohttps a wiki.lct.jussieu.fr/workshop/index.php/VB_tutoria                                                                                                                                                                                                                                                              | 12                                                                                               |                                                                                                    |                                                     | Ċ                | Lecteur )                     | 0       |
| ↔ C III wos<br>https://wiki.lc                                                                                                           | Scientifiquede données) T Fabrique Scientifiques (Lectures)<br>tjussieu.fr/workshop/images/0/03/Braida_VB_theory_Roscoff_part1.pr                                                                                                                                                                                         | Scientifiques (Biblio) * So                                                                      | rties * Scientifiquesche d'infos) *<br>VB tutorial – Wor                                           | Calculs <b>*</b> Enseignem                          | ent/Jussieu 🔻    | Achats =                      | >       |
| navigation<br>Main page<br>CTTC 2014 Nha Trang<br>VB tutorial center<br>Recent changes<br>Random page                                    | page       discussion       edit       history       delete       move       pro         VB tutorial                                                                                                                                                                                                                      | An Ab Initio Non-orthogon                                                                        | al Valence Bond Program                                                                            | Benoit talk preferences                             | watchlist contri | ibutions log o                | X       |
| = Help<br>search<br>Search<br>Go Search                                                                                                  | Four tutorials ("hands-on" labs) sessions are planned, where partic<br>concepts on some chemical problems of progressive difficulty. Pa<br>book exercises. Rooms will also be at the disposal of participants                                                                                                             | cipants will learn to use the X<br>art of the «hands-on» session<br>during the «hands-on» time f | MVB P program, as well as the BLW<br>s can as well be used by participants<br>or free discussions. | P and HuLis P programs,<br>for questions/answers co | and apply the r  | methods and<br>ain lectures o | i<br>or |
| toolbox<br>What links here<br>Related changes<br>Upload file<br>Special pages<br>Printable version<br>Permanent link<br>Page information | Contents [hide] 1 The XMVB program 2 Tutorials 2.1 Tutorial n°1 : Basics of VB theory and XMVB program 2.2 Tutorial n°2 : VB applications on PI systems 2.3 Tutorial n°2 : State correlation diagrams 2.4 Tutorial n°3 : State correlation diagrams 3 The Valence Bond mailing list 4 Literature 5 VB lectures in Roscoff |                                                                                                  |                                                                                                    |                                                     |                  |                               |         |
|                                                                                                                                          | The XMVB program                                                                                                                                                                                                                                                                                                          |                                                                                                  |                                                                                                    |                                                     |                  | [6                            | edit]   |
|                                                                                                                                          | XMVB is an <i>ab initio</i> non-orthogonal Valence Bond program. It is here .                                                                                                                                                                                                                                             | available upon request 🖾. Its                                                                    | manual could be downloaded here D,                                                                 | and a detailed presentation                         | on of input/outp | out structure                 |         |
|                                                                                                                                          | Tutorials                                                                                                                                                                                                                                                                                                                 |                                                                                                  |                                                                                                    |                                                     |                  | [0                            | edit]   |
|                                                                                                                                          | You can dowload all tutorial exercises from this link                                                                                                                                                                                                                                                                     |                                                                                                  |                                                                                                    |                                                     |                  |                               |         |

#### https://wiki.lct.jussieu.fr/workshop/index.php/VB\_tutorial



#### https://wiki.lct.jussieu.fr/workshop/index.php/VB\_tutorial

## Ab initio Valence Bond

- Electron correlation
- VB methods including electron correlation
- VB computation in practice
- Illustrative application
- Limits of VB theory

## Stop me at any time !

- Nature of electron correlation :
  - «Uncorrelated» ( $\Psi_{HF}$  or  $\Psi_{HL}$ ) :

Each electron feels the **mean field** created by all the other electrons



• Correlated :

Each electron **dynamically** affects the configuration of all the other electrons



• «Uncorrelated» methods :  $\hat{H} = \hat{T} + \hat{V}$ 

 $\Psi_{HF}$  too much ionic :



Methods including electron correlation :



E (kcal/mole)



Including electron
 correlation is a tough problem,
 as we are dealing with very
 tiny energy differences

- The VBSCF method
- The **BOVB** method
- The VBCI method

- The VBSCF\* method :
  - Basically a MCSCF method with nonorthogonal orbitals :

$$\Psi_{VBSCF} = \sum_{K} C_{K} \Phi_{K} \quad \text{with} : \begin{cases} \Phi_{K}(1,...,N) = \hat{A} \{ \prod_{i=1}^{N} \varphi_{i}(1) \Theta_{K} \} : \text{VB structures} \\ \{\varphi_{i}\} : \text{set of non-orthogonal localized orbitals} \\ \text{expanded onto a set of basis functions} \{\chi_{m}\} : \varphi_{i}(1) = \sum_{m} d_{m}^{i} \chi_{m}(1) \\ \Theta_{K} \text{ spin function} \end{cases}$$

All w.f. parameters : structure coef. { $C_{\rm K}$ } and orb. coef. { $d^{\rm i}_{\rm m}$ } are **optimized simultaneously** minimizing  $\langle \Psi_{VBSCF} | \hat{H} | \Psi_{VBSCF} \rangle$ 

\*van Lenthe; Balint-Kurti, J. Chem. Phys. 1983, 78, 5699

#### • The VBSCF method :



The VBSCF method ensures a correct balance beween covalent and ionic configurations («left-right» static correlation)

- The VBSCF method :
  - Comparison with CASSCF method :

$$\Psi_{\text{CASSCF}} = \lambda \left( \begin{array}{c} \varphi_{a} \\ \varphi_{a} \\ \varphi_{g} \end{array} \right) + \mu \left( \begin{array}{c} \varphi_{a} \\ \varphi_{a} \\ \varphi_{g} \end{array} \right) + \mu \left( \begin{array}{c} \varphi_{a} \\ \varphi_{b} \\ \varphi_{g} \end{array} \right) + \mu \left( \begin{array}{c} \varphi_{a} \\ \varphi_{a} \\ \varphi_{g} \end{array} \right) + \left( \begin{array}{c} \varphi_{a} \\ \varphi_{a} \\ \varphi_{b} \\ \varphi_{a} \\ \varphi_{b} \\ \varphi_{a} \\ \varphi_{a} \\ \varphi_{a} \\ \varphi_{a} \\ \varphi_{a} \\ \varphi_{a} \\ \varphi_{b} \\$$

- The VBSCF method :
  - Accuracy :  $\mathbf{F}-\mathbf{F} \xrightarrow{\mathbf{\Delta E}} \mathbf{F} \cdot \mathbf{$

Some important physical ingredient is missing...

- The VBSCF method :
  - What the VBSCF method does :



Same set of orbitals for all VB structures : optimized for a mean situation

• A better wave function would be :

Each structure has its own specific set of orbitals

#### • The **BOVB**\* method :

• BOVB uses :

same number of structures as VBSCF, but different orbitals for the different structures :

$$\Psi_{BOVB} = \sum_{K} C_{K} \Phi_{K}^{BOVB} \text{ with } : \begin{cases} \Phi_{K}^{BOVB}(1,...,N) = \hat{A} \{\prod_{i=1}^{N} \varphi_{i}^{K}(1)\Theta_{K}\} : \text{VB structures} \\ \{\varphi_{i}^{K}\} : \text{ set of non-orthogonal (del)localized orbitals for the structure K} \\ \text{expanded onto a set of basis functions} \{\chi_{m}\} : \varphi_{i}^{K}(1) = \sum_{m} d_{m}^{i,K} \chi_{m}(1) \\ \Theta_{K} \text{ spin function} \end{cases}$$

All w.f. parameters : structure coef. { $C_{\rm K}$ } and orb. coef. sets { $d_{\rm m}^{\rm i}$ }<sup>K</sup> are optimized simultaneously minimizing  $\langle \Psi_{BOVB} | \hat{H} | \Psi_{BOVB} \rangle$ 

\* Hiberty, P. C. ; Humbel, S. ; Byrman, C. P. ; van Lenthe J. H. J. Chem. Phys. 1994, 101, 5969

#### • The **BOVB** method :

• BOVB brings that part of dynamic correlation that varies during a reaction, i.e. the **differential electron correlation** :



- BOVB keeps the same **compacity** as the VBSCF wave function
- BOVB provides a visual image of the role of electron correlation

The **BOVB** method :

• L-BOVB : EFOF C All orbitals are localized, ionics are closed-shell Spectator orbitals are delocalized in all structures • **SD-BOVB** - Active orbitals are split in ionics - Spectator orbitals are

delocalized in all structures

The **BOVB** method :

• L-BOVB : • E-BOVB : • E-B All orbitals are localized, ionics are closed-shell Spectator orbitals are delocalized in all structures • **SD-BOVB** EF • F E 

- Active orbitals are split in ionics - Spectator orbitals are delocalized in all structures

- The **BOVB** method :
  - Accuracy :  $F-F \longrightarrow F \cdot + F \cdot$

|         | ΔΕ                                   |        |
|---------|--------------------------------------|--------|
| RHF     | $\frac{(\text{kcal.mol}^{-1})}{-37}$ |        |
| VBSCF   | 15                                   |        |
| L-BOVB  | 28.2                                 |        |
| SD-BOVB | 33.6                                 |        |
| Exact   | +39                                  | ∫ inco |

Basis set incompleteness

• The VBCI\* method :

$$\Psi_{VBSCF} = \sum_{K} C_{K} \Phi_{K}^{0} \qquad \qquad \Psi_{VBCI} = \sum_{K} C_{K} \Phi_{K}^{0} + \sum_{K} (\sum_{i} C_{K}^{i} \Phi_{K}^{i})$$

- Where  $\Phi^{0}_{K}$  are the fundamental structures (obtained from VBSCF)

- and  $\Phi^{i}_{K}$  are excited structures, built from  $\Phi^{0}_{K}$  by replacing an occupied by a virtual orbital, but having the same physical meaning as  $\Phi^{0}_{K}$ :

$$\Phi_K^{VBCI} = C_K \Phi_K^0 + \sum_i C_K^i \Phi_K^i$$

The VBCI wave function is (much) larger than the VBSCF/BOVB one, but the interpretability is kept

\* Wu W., Song L., Cao Z., Zhang Q., and Shaik S. J. Phys. Chem. A, 2002, 106 (11), 2721-2726

• The VBCI method :

$$\Psi_{VBSCF} = \sum_{K} C_{K} \Phi_{K}^{0} \qquad \qquad \Psi_{VBCI} = \sum_{K} C_{K} \Phi_{K}^{0} + \sum_{K} (\sum_{i} C_{K}^{i} \Phi_{K}^{i})$$

- Occupied orbitals are obtained from a VBSCF calculation :

 $\varphi_i^A(1) = \sum_m d_m^{i,A} \chi_m^A(1)$  where A is a molecular fragment

 Localized virtual orbitals are generated from a Schmidt orthogonalization procedure to occupied orbitals on their own fragments :

$$\chi'_{m}^{A} = (\chi_{m} - S_{mn}T_{v}^{m}S^{\mu\nu}\varphi_{\mu})|_{m,n\in A}$$

 $\Rightarrow \Phi^{i}{}_{K}$  keep the same physical meaning as  $\Phi^{0}{}_{K}$ 

• The VBCI method :

$$\Psi_{VBSCF} = \sum_{K} C_{K} \Phi_{K}^{0} \qquad \qquad \Psi_{VBCI} = \sum_{K} C_{K} \Phi_{K}^{0} + \sum_{K} (\sum_{i} C_{K}^{i} \Phi_{K}^{i})$$

- The energy is obtained by :

$$E^{VBCI} = \frac{\left\langle \Psi^{VBCI} \middle| H \middle| \Psi^{VBCI} \right\rangle}{\left\langle \Psi^{VBCI} \middle| \Psi^{VBCI} \right\rangle} = \frac{\sum_{K,L} \sum_{i,j} C^{i}_{K} C^{j}_{L} \left\langle \Phi^{i}_{K} \middle| H \middle| \Phi^{j}_{L} \right\rangle}{\sum_{K,L} \sum_{i,j} C^{i}_{K} C^{j}_{L} \left\langle \Phi^{i}_{K} \middle| \Phi^{j}_{L} \right\rangle}$$

- A Davidson type of correction to the energy also exists :

$$\Delta E_{Q} = (1 - \sum_{K} W_{K}) \Delta E_{D} \text{ with } : W_{K} = \sum_{L} \sum_{i,j} C_{K}^{i} C_{L}^{j} \left\langle \Phi_{K}^{i} \middle| \Phi_{L}^{j} \right\rangle$$

(estimate the contribution of quadruple excitations that are product of double excitations)

• **Bond energies** (kcal.mol<sup>-1</sup>) with various methods :

| molecule        | $D^{ m HF}$ | D <sup>B3LYP</sup> | $D^{\mathrm{CCSD}}$ | DVBSCF | $D^{	ext{L-BOVB}}$ | $D^{\mathrm{VBCIS}}$ | $D^{\mathrm{VBCISD}}$ |
|-----------------|-------------|--------------------|---------------------|--------|--------------------|----------------------|-----------------------|
| H <sub>2</sub>  | 84.6        | 111.7              | 105.9               | 95.8   | 96.0               | 96.0(11)             | 105.9(55)             |
| LiH             | 32.5        | 57.2               | 49.5                | 42.4   | 43.0               | 42.8(27)             | 49.6(118)             |
| HF              | 94.9        | 132.4              | 127.2               | 105.1  | 115.9              | 25.0(40)             | 126.0(274)            |
| HC1             | 77.6        | 103.1              | 99.1                | 85.8   | 89.9               | 92.0(40)             | 98.0(274)             |
| F <sub>2</sub>  | -33.1       | 41.4               | 28.3                | 10.9   | 31.5               | 40.4(81)             | 33.9(1089)            |
| Cl <sub>2</sub> | 14.5        | 48.4               | 41.6                | 26.2   | 35.6               | 38.9(81)             | 42.1(1089)            |

|                      |           | $D_{\rm e}$ (kcal/mol) |                     |         |               |  |
|----------------------|-----------|------------------------|---------------------|---------|---------------|--|
| bond                 | basis set | BOVB                   | VBCISD <sup>a</sup> | CCSD(T) | exptl         |  |
| F-F                  | 6-31G*    | 36.2                   | 32.3                | 32.8    |               |  |
|                      | cc-pVTZ   | 37.9                   | 36.1                | 34.8    | 38.3          |  |
| Cl-Cl                | 6-31G*    | 40.0                   | 41.6                | 40.5    |               |  |
|                      | cc-pVTZ   | 50.0                   | 56.1                | 52.1    | 58.0          |  |
| Br-Br                | 6-31G*    | 41.3                   | 44.1                | 41.2    |               |  |
|                      | cc-pVTZ   | 44.0                   | 50.0                | 48.0    | 45.9          |  |
| F-Cl                 | 6-31G*    | 47.9                   | 49.3                | 50.2    |               |  |
|                      | cc-pVTZ   | 53.6                   | 58.8                | 55.0    | 60.2          |  |
| H-H                  | 6-31G**   | 105.4                  | 105.4               | 105.9   | 109.6         |  |
| Li-Li                | 6-31G*    | 20.9                   | 21.2                | 21.1    | 24.4          |  |
| $H_3C-H$             | 6-31G**   | 105.7                  | 113.6               | 109.9   | 112.3         |  |
| $H_3C-CH_3$          | 6-31G*    | 94.7                   | 90.0                | 95.6    | 96.7          |  |
| HO-OH                | 6-31G*    | 50.8                   | 49.8                | 48.1    | 53.9          |  |
| $H_2N-NH_2$          | 6-31G*    | 68.5                   | 70.5                | 66.5    | $75.4 \pm 3$  |  |
| H <sub>3</sub> Si-H  | 6-31G**   | 93.6                   | 90.2                | 91.8    | 97.6±3●       |  |
| H <sub>3</sub> Si-F  | 6-31G*    | $140.4^{b}$            | 151.1               | 142.6   | $160 \pm 7$   |  |
| H <sub>3</sub> Si-Cl | 6-31G*    | 102.1                  | 101.2               | 98.1    | $113.7 \pm 4$ |  |

<sup>*a*</sup> With Davidson correction. <sup>116 *b*</sup> Two-structure calculations ( $H_3Si^-F^+$  is omitted).

#### • The VBCI method :

If a complete basis of structures is included, if all VBCI excitations (S,D,T,Q,...) are included, if basis set extended to infinity...
⇒ converges to the «exact» (non-relativistic, 0K) solution of the Schrödinger equation

When pushed to their highest level, MO-based and
 VB-based methods ultimately converge to the same limit

- The VBCI method :
  - Very accurate (at the VBCISD+Davidson level)
  - Extremely simple to use
  - Full interpretability of the VB wave function is kept
  - but : it is very expensive...

Benchmark VB method

• New *ab initio* VB methods in development :

**- (ic)VBPT2 :** very cheap, the interpretability of the VB w.f. is lost at the moment (delocalized virtual orbitals)...

- **VBDFT** : cost «negligible» (VBSCF step), pb of double-counting of correlation effects, usual limitations of DFT

- **VB-QMC** : very expensive but massively parallel algorithms (thousands of processors)

- The VBSCF method
- The **BOVB** method
- The VBCI method





# What do you still have to know ?

#### Basis of structures :

The VB w.f. is a superposition of structures (covalent, ionic,...) :

$$\Psi_{VB} = \sum_{K} C_{K} \Phi_{K}$$

 $C_K$  : coefficients  $\Phi_K$  : VB structures

➡ Which structures to choose ?



 $\pi$  system of benzene (**6e**<sup>-</sup> in **6 orbitals**)

Three methods to generate a complete basis of structures :

- Rumer's Rules
- Weyl tableaux
- Young tableaux and operators

- Basis of structures / graphical Rumer's method :
  - Generation of a complete basis of covalent structures :
  - Put the orbitals around an imaginary circle
     Generate all possible couplings not displaying crossing bonds



 $\pi$  system of benzene (**6e**<sup>-</sup> in **6 orbitals**)

- Basis of structures / graphical Rumer's method :
  - Generation of a complete basis of covalent structures :
  - Put the orbitals around an imaginary circle
     Generate all possible couplings not displaying crossing bonds



- Complete and non-redundant set of VB structures
- VB structures are «chemically meaningful»

Redundant
 «Chemically
 meaninless»

- Basis of structures / graphical Rumer's method :
  - Generation of a complete basis of covalent structures :
  - Put the orbitals around an imaginary circle
     Generate all possible couplings not displaying crossing bonds



- Basis of structures / graphical Rumer's method :
  - Generation of a complete basis of ionic structures :
  - Choose a distribution of charges (configuration)
     Apply Rumer's rules on the rest of the system



3) Repeat 1) and 2) for all other configurations :


- Basis of structures / size limit :
  - Total number of covalent structures :

Weyl's formula:  $f_S^N = \frac{(2S+1)N!}{(\frac{1}{2}N+S+1)!(\frac{1}{2}N-S)!}.$ 

| N       | 4 | 6 | 8  | 10 | 12  | ••• |  |
|---------|---|---|----|----|-----|-----|--|
| $f_s^N$ | 2 | 5 | 14 | 42 | 132 | ••• |  |

- Basis of structures / size limit :
  - Total number of covalent structures :

Weyl's formula:  $f_S^N = \frac{(2S+1)N!}{(\frac{1}{2}N+S+1)!(\frac{1}{2}N-S)!}$ .



• Total number of covalent + ionic structures :

Exponential wall !

Weyl's formula : 
$$g_{S}^{N,m} = \frac{2S+1}{m+1} \begin{pmatrix} m+1 \\ \frac{N}{2}+S+1 \end{pmatrix} \begin{pmatrix} m+1 \\ \frac{N}{2}-S \end{pmatrix}$$
  

$$\frac{N=m}{f_{S}^{N}} = \frac{4 \quad 6 \quad 8 \quad 14 \quad 28}{20 \quad 175 \quad 1764 \quad 2.76 \times 10^{6} \quad 2.07 \times 10^{14}}$$

#### Choice of an active space :

- Not all electrons are treated at the VB level :
  - an **active space** of electrons/orbitals treated at the **VB level**
  - the rest (called inactive or «spectators») at the MO level

$$\Psi_{VB} = \sum_{K} C_{K} \Phi_{K} \text{ with: } \Phi_{K} = \left| \{ \text{inactives} \} \{ \text{actives} \} \right|$$

#### Choice of an active space :

- Not all electrons are treated at the VB level :
  - an **active space** of electrons/orbitals treated at the **VB level**
  - the rest (called inactive or «spectators») at the MO level

$$\Psi_{VB} = \sum_{K} C_{K} \Phi_{K} \text{ with: } \Phi_{K} = \left| \{ \text{inactives} \} \{ \text{actives} \} \right|$$

• Active space chosen depending on the chemical problem :

Example : SN2 Transition state : a **4-e**/**3-orbital** VB system



#### Definition of the orbitals :

- Active (VB) orbitals must always be strictly localized
- Inactive (MO) orbitals are preferably delocalized

#### ➡ Exercise 3 :

1) We consider a Heitler-London wave-function for H<sub>2</sub> made of two orbitals  $\varphi_a$  and  $\varphi_b$  partly delocalized onto the other center :  $\varphi_a = a + \varepsilon b$ ,  $\varphi_b = b + \varepsilon a$ , with a and b (strictly localized) atomic orbitals *a* and *b*.

2) Expand this wave-function in a basis of the atomic orbitals.

3) Is it legitimate to also incorporate ionic structures to this w.f.?

#### ➡ Exercise 3 (answers) :

$$\Psi = \left| \varphi_a \overline{\varphi_b} \right| + \left| \varphi_b \overline{\varphi_a} \right| = \left| (a + \varepsilon b)(\overline{b + \varepsilon a}) \right| + \left| (b + \varepsilon a)(\overline{a + \varepsilon b}) \right|$$
$$= \dots = (1 + \varepsilon^2)(|\underline{ab}| + |\underline{ba}|) + 2\varepsilon(|\underline{aa}| + |\underline{bb}|)$$
<sub>covalent</sub>

Active orbitals delocalized ⇒ ionic structures *implicitely* included (GVB / Spin Coupled methods)

- Active orbitals delocalized + explicit ionic structures  $\Rightarrow$  redundancies in the wave functions (instabilities,...)

➡ Active (VB) orbitals <u>must always</u> be strictly localized

# What do you get out of the calculation ?

## (good) numbers...



# ...but also insight !



Chemical insight / structure weights :

From computed {C<sub>K</sub>} coefficients :  $\Psi_{VB}(1,...,N) = \sum_{K} C_{K} \Phi_{K}(1,...,N)$ we can extract {W<sub>K</sub>} structure weights which verify :  $\sum_{K} W_{K} = 1$ 

→ quantification of the statistical importance of the ≠ structures usually expressed in % (100W<sub>K</sub>)

Chemical insight / structure weights :

From computed {C<sub>K</sub>} coefficients :  $\Psi_{VB}(1,...,N) = \sum_{K} C_{K} \Phi_{K}(1,...,N)$ we can extract {W<sub>K</sub>} structure weights which verify :  $\sum_{K} W_{K} = 1$ 

- → quantification of the statistical importance of the ≠ structures usually expressed in % (100W<sub>K</sub>)
- Most used : Chirgwin-Coulson weights :

$$\langle \Psi_{VB} | \Psi_{VB} \rangle = \sum_{K} \sum_{I} C_{K} C_{I} S_{KI} = 1 \Longrightarrow W_{K} = C_{K}^{2} + \sum_{I \neq K} C_{K} C_{I} S_{KI}$$
 with:  $S_{KI} = \langle \Phi_{K} | \Phi_{I} \rangle$ 

• Other options : Hiberty, Lowdin, Gallup (inverse) weights

#### • Chemical insight / structure weights :

<u>Ex</u> : reactivity of ozone vs. trisulfur :



#### Chemical insight / «diabatic states» :

It is possible to compute a VB w.f. which does not correspond to a real quantum state : a single structure of a subset of structures

computation of Resonance Energies (R.E.):



**1)** Optimize  $\Psi_{(1\leftrightarrow 2)}$ 

**2)** Optimize  $\Psi_1$  separately

3) *R.E.* = 
$$E(\Psi_1) - E(\Psi_{(1\leftrightarrow 2)})$$

#### Chemical insight / «diabatic states» :

It is possible to compute a VB w.f. which does not correspond to a real quantum state : a single structure of a subset of structures

computation of Resonance Energies (R.E.):



**1)** Optimize  $\Psi_{(1\leftrightarrow 2)}$ 

**2)** Optimize  $\Psi_1$  separately

3)  $R.E. = E(\Psi_1) - E(\Psi_{(1\leftrightarrow 2)})$ 

 $R.E. = 37 \ kcal/mol$ 

 $\Rightarrow$  formamide rotation barrier is due to  $\pi$  resonance energy

#### Chemical insight / «diabatic states» :

It is possible to compute a VB w.f. which does not correspond to a real quantum state : a single structure of a subset of structures

➡ Valence Bond diagrams (Shaik and Pross) for reactivity :



Part 4. lecture

#### Application 1,3-dipolar cycloadditions

## 1-3 dipolar cycloadditions

• Method for heterocyclic compounds synthesis :



• 1-3 dipole :

- 1 or 2  $\pi$  systems, 4  $\pi$  electrons on 3 centers ;

- Globally neutrals but **polarized** ;



## Some families of dipoles

#### Azomethine betaines :



#### **Reactions studied**

• Dipolarophiles : ethylene et acetylene :



• Marcus : correlation between **barriers** and **enthalpies** :



the **more exothermic** the reaction, the **lower** the **barrier** 

• Allylic dipole ; addition on ethylene :



• Allylic dipole ; addition on acetylene :



• Allylic dipole ; addition on acetylene :



• Propargylic dipole



• Propargylic dipole



## FMO theory ?



## Hammond postulate ?

• Hammond : TS is more reactant-like for more exothermic reactions



Different enthalpies, different **TS geometries** 

## Hammond principle ?

• All dipoles **distort** when going to TS :



## Hammond principle ?

• All dipoles **distort** when going to TS :



Ess & Houk\*: barriers only depend on dipole distortion energies ... but why ?...

\* Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10187

#### • VB description :



- Combination of 3 resonant structures

- Diradical structure (neutral) may have a significant weight, and is reactive...

• Importance of the diradical structure (BOVB calculations) :



#### - Diradical character is important !

B. Braida, C. Walter, B. Engels, P. C. Hiberty, J. Am. Chem. Soc. 2010, 132, 7631

dimanche 28 juillet 13

• Importance of the diradical structure (BOVB calculations) :



#### - Diradical character is important !

- Diradical character increases from reactants  $\rightarrow$  TS !

B. Braida, C. Walter, B. Engels, P. C. Hiberty, J. Am. Chem. Soc. 2010, 132, 7631

dimanche 28 juillet 13

• Importance of the diradical structure (BOVB calculations) :

| H<br>N             | Ι                           | Reactants :          | ] <b>TS</b> :        |
|--------------------|-----------------------------|----------------------|----------------------|
| H <sub>2</sub> C Z | $Z = O$ $Z = NH$ $Z = CH_2$ | 33.7<br>38.0<br>41.3 | 38.6<br>43.2<br>46.6 |
| HC N Z             | $Z = O$ $Z = NH$ $Z = CH_2$ | 21.3<br>26.5<br>26.3 | 32.1<br>35.7<br>35.4 |
| • • • • • Z        | $Z = O$ $Z = NH$ $Z = CH_2$ | 21.6<br>25.1<br>27.7 | 31.6<br>34.4<br>36.4 |

B. Braida, C. Walter, B. Engels, P. C. Hiberty, J. Am. Chem. Soc. 2010, 132, 7631

• Importance of the diradical structure (BOVB calculations) :

| H<br>AN.           |                             | Reactants :          | ] <b>TS</b> :        |
|--------------------|-----------------------------|----------------------|----------------------|
| H <sub>2</sub> C Z | Z = O                       | 33.7                 | 38.6                 |
|                    | Z = NH<br>$Z = CH_2$        | 38.0<br>41.3         | 43.2 46.6            |
| HC N Z             | Z = O<br>Z = NH<br>Z = CH2  | 21.3<br>26.5<br>26.3 | 32.1<br>35.7<br>35.4 |
| •<br>N=NZ          | $Z = O$ $Z = NH$ $Z = CH_2$ | 21.6<br>25.1<br>27.7 | 31.6<br>34.4<br>36.4 |

What if... dipole distorsion would serve to **increase the diradical character** ?...

$$\begin{array}{c} a \ X = Y - \ddot{Z} \\ \oplus \ \odot \end{array} \\ b \ \ddot{X} - Y = Z \\ \odot \ \oplus \end{array} \\ c \ \dot{X} - \ddot{Y} - \dot{Z} \quad ground \ state \end{array}$$



1) Dipole distortion  $\rightarrow$  reach a «critical» diradical character

dimanche 28 juillet 13


1) Dipole distortion  $\rightarrow$  reach a «critical» diradical character

2) Dienophile attack (almost barrierless) !

dimanche 28 juillet 13

#### 1) If our postulated mechanism is correct :



If a **«critical» diradical character** has to be reached for the reaction to proceed : the **larger** the diradical weight in reactant, the **easier** the reaction

=> *Inverse correlation* between diradical *weights* and reaction *barriers* 

#### 1) Correlation diradical weights / barriers



#### 1) Correlation diradical weights / barriers



B. Braida, C. Walter, B. Engels, P. C. Hiberty, J. Am. Chem. Soc. 2010, 132, 7631

#### 1) Correlation diradical weights / barriers



B. Braida, C. Walter, B. Engels, P. C. Hiberty, J. Am. Chem. Soc. 2010, 132, 7631

#### 1) Correlation diradical weights / barriers





#### 2) If our postulated mechanism is correct :



#### **2)** Correlation $G / \Delta H^{\ddagger}$ :



dimanche 28 juillet 13

• G : reactants :



#### • *G* : reactants vs. TS :



#### • *G* : reactants vs. TS :



If dipoles bend to reach some particular «critical» diradical character → similar G for all dipoles in TS geometry !

dimanche 28 juillet 13

#### Conclusions

- 1,3-dipoles are special reactants (violate ordinary laws)
- A mechanism is proposed, consistent with accurate ab initio data
- The **diradical character** is a key factor and the correlating quantity
- Reaction barriers can be predicted from reactants' properties



Würzburg University

Univ. Paris Sud

B. Braida\*, C. Walter, B. Engels, P. C. Hiberty, J. Am. Chem. Soc. 2010, 132, 7631

#### Conclusions

VB theory allowed us to consider the 1,3 dipolar cycloaddition reaction from a different perspective :





# So, why everybody has not been doing VB ?

dimanche 28 juillet 13

#### • Historical reasons :



• Moderate number of structures :

• Given an active space, the selection of meaningful structures should be moderate (VBSCF : ~100s' ; BOVB : up to ~20)



• Large number of structure : computational issue, but also interpretative issue : VB theory may not be **relevant** in such cases

→ VB is not a «universal theory» of electronic structure

- Nonorthogonality :
  - Orthogonal orbitals cannot be strictly localized :



- Nonorthogonality :
  - Orthogonal orbitals cannot be strictly localized :



To get strictly localized orbitals we need to use nonorthogonal orb

dimanche 28 juillet 13

- Nonorthogonality :
  - Working with non-orthogonal orbitals complicates a <u>LOT</u> all formulas :

$$\hat{H} = \sum_{i} \hat{h}_{i} + \sum_{i,j} \frac{1}{r_{ij}}$$

$$\overline{\overline{H}}\overline{C} = E\overline{\overline{S}}\overline{C}$$

<u>Ex</u> : a 4e/4o pb :



- Nonorthogonality :
  - Working with non-orthogonal orbitals complicates a LOT all formulas :

$$\hat{H} = \sum_{i} \hat{h}_{i} + \sum_{i,j} \frac{1}{r_{ij}} \qquad \overline{\overline{H}}\overline{C} = E\overline{\overline{S}}\overline{C} \qquad |a\overline{a}b\overline{b}| \\ |a\overline{a}c\overline{c}| \qquad |a\overline{a}b\overline{b}| \qquad |a\overline{a}c\overline{c}| \qquad 1 \quad 0 \quad 0 \quad 0 \quad 0 \\ 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \\ 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \\ 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \\ 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \\ 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \\ 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \\ 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \\ 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \\ 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \\ |a\overline{a}b\overline{b}| \qquad |c\overline{c}d\overline{d}| \qquad \cdots \qquad |a\overline{a}b\overline{b}| \qquad |c\overline{c}d\overline{d}|$$

- Nonorthogonality :
  - Working with non-orthogonal orbitals complicates a  $\underline{LOT}$  all formulas :

- Nonorthogonality :
  - Working with non-orthogonal orbitals complicates a  $\frac{LOT}{\overline{C}}$  all formulas :

$$\hat{H} = \sum_{i} \hat{h}_{i} + \sum_{i,j} \frac{1}{r_{ij}} \qquad \overline{H}\overline{C} = E\overline{S}\overline{C} \qquad |a\overline{a}b\overline{b}| \\ \mathbf{VB theory :} \\ (nonorthogonal orbs.) \qquad \vdots \\ (nonorthogonal orbs.) \qquad \vdots \\ \underline{Ex :} a 4e/4o pb : \qquad a\overline{b} \\ |a\overline{a}b\overline{b}| \\ |c\overline{c}d\overline{d}| \\ |c\overline{c}d\overline{d}| \\ |c\overline{c}d\overline{d}| \\ (D|D') = S_{ac}^{2}S_{bd}^{2} - 2S_{ad}S_{ac}S_{bd}S_{bc} + S_{ad}^{2}S_{bc}^{2}$$

- Nonorthogonality :
  - Working with non-orthogonal orbitals complicates a LOT all formulas :

$$\hat{H} = \sum_{i} \hat{h}_{i} + \sum_{i,j} \frac{1}{r_{ij}}$$

$$\overline{H}\overline{C} = E\overline{S}\overline{C}$$

$$|a\overline{a}b\overline{b}|$$

$$|a\overline{a}c\overline{c}|$$

$$(nonorthogonal orbs.)$$

- Nonorthogonality :
  - Working with non-orthogonal orbitals complicates a <u>LOT</u> all formulas :
  - <u>Ex 2 :</u> (ic)VBPT2 formulas :

$$\begin{split} & \left\langle \Psi_{x_{1}y_{1}}^{i} \left| \hat{H}_{0} \right| \Psi_{x_{2}y_{2}}^{i} \right\rangle = \left( E_{imacl}^{(0)} - \varepsilon_{i} - \varepsilon_{j} \right) \left\langle \Psi_{x_{1}y_{1}}^{i} \left| \Psi_{x_{2}y_{2}}^{i} \right\rangle \\ & + \left\{ \left( 4 s_{x_{2}x_{1}} s_{y_{2}y_{1}} - 2 s_{y_{2}x_{1}} s_{x_{2}y_{1}} \right) E_{acl}^{(0)} \right. \\ & + 4 f_{x_{2}x_{1}} s_{y_{2}y_{1}} + 4 f_{y_{2}y_{1}} s_{x_{2}x_{1}} - 2 f_{x_{2}y_{1}} s_{y_{2}y_{1}} - 2 f_{y_{2}x_{1}} s_{x_{2}y_{1}} \\ & + \left[ \left( f_{x_{1}} s_{x_{2}y_{1}} s_{y_{2}u} + f_{y_{1}} s_{y_{2}x_{1}} s_{x_{2}u} - 2 f_{x_{1}} s_{y_{2}y_{1}} s_{x_{2}u} - 2 f_{y_{2}y_{1}} s_{x_{2}x_{1}} s_{y_{1}u} \right) \\ & + \left[ f_{x_{2}} s_{y_{2}x_{1}} s_{y_{1}u} + f_{y_{2}} s_{x_{2}y_{1}} s_{x_{1}u} - 2 f_{x_{2}} s_{y_{2}y_{1}} s_{x_{1}u} - 2 f_{y_{2}y_{1}} s_{x_{2}x_{1}} s_{y_{1}u} \right) \\ & + \left( f_{y_{2}x_{1}} s_{y_{1}u} s_{x_{2}t} + f_{x_{2}y_{1}} s_{x_{1}u} s_{y_{2}t} - 2 f_{x_{2}x_{1}} s_{y_{1}u} s_{y_{2}t} - 2 f_{y_{2}y_{1}} s_{x_{1}u} s_{y_{2}t} \right] D^{uu} \\ & + \left[ f_{u} \left( s_{y_{2}x_{1}} s_{x_{2}v} s_{y_{1}w} + s_{x_{2}y_{1}} s_{y_{2}v} s_{x_{1}w} - 2 s_{y_{2}y_{1}} s_{x_{2}v} s_{x_{1}w} - 2 s_{x_{2}x_{1}} s_{y_{2}v} s_{x_{1}w} - 2 s_{x_{2}x_{1}} s_{y_{2}v} s_{y_{1}w} \right] \right| \Pi^{uv,uw} \\ & + f_{u} s_{y_{1}v_{1}} s_{x_{2}v} s_{y_{1}w} + s_{x_{2}y_{1}} s_{y_{2}v} s_{x_{1}w} - 2 s_{y_{2}y_{1}} s_{x_{2}v} s_{x_{1}w} - 2 s_{x_{2}x_{1}} s_{y_{2}v} s_{y_{1}w} + s_{y_{2}v} s_{y_{1}w} s_{x_{1}w} \right] \right| \Pi^{uv,uw} \\ & + f_{u} s_{y_{1}v_{1}} s_{y_{2}x_{1}} - 2 s_{x_{2}x_{1}} s_{y_{2}v} s_{x_{1}w} - 2 s_{x_{2}x_{1}} s_{y_{2}y_{1}} \\ & + \delta^{ii} \left\{ \left( 4 s_{x_{2}y_{1}} s_{y_{2}x_{1}} - 2 s_{x_{2}x_{1}} s_{y_{1}y_{1}} - 2 f_{x_{2}x_{1}} s_{y_{2}y_{1}} \right) \right. \\ & + \left( f_{y_{1}} s_{x_{2}x_{1}} s_{y_{2}u} + f_{y_{2}} s_{x_{2}x_{1}} s_{y_{1}u} - 2 f_{y_{2}} s_{x_{2}y_{1}} s_{x_{1}u} - 2 f_{x_{2}} s_{y_{2}x_{1}} s_{y_{1}u} \right) \\ & + \left( f_{y_{1}} s_{x_{2}x_{1}} s_{y_{1}u} + f_{y_{2}} s_{x_{2}x_{1}} s_{y_{1}u} - 2 f_{y_{2}} s_{y_{2}x_{1}} s_{y_{1}u} \right) \\ & + \left( f_{y_{1}} s_{x_{2}x_{1}} s_{y_{2}u} + f_{x_{1}} s_{y_{1}y_{1}} s_{y_{2}u} - 2 f_{y_{2}} s_{y_{1}} s_{y_{1}u} - 2 f_{y_{2}} s_{y_{2}x_{1}$$

- Nonorthogonality :
  - Working with non-orthogonal orbitals complicates a **LOT**
  - Slowed dramatically the extension of VB community

#### But :

- Now extremely efficient algorithms, based on advanced algebra:\*
  - 1) Second Quantization Technique for non-orthogonal orbitals ;
  - 2) Tensor Analysis ;
  - 3) Automatic Formula/Code Generator

\* Chen Z., Chen X, and Wu W. J. Chem. Phys. 138, 164119 (2013) \* Chen Z., Chen X, and Wu W. J. Chem. Phys. 138, 164120 (2013)

- Moderate overlap between active orbitals :
  - Large overlap between active orbitals : the meaning of the VB wave function (covalent vs. ionic) may be lost :



 $S \approx 0.5 \text{ or less} : ok$ 

```
H_2/LiH: S \approx 0.8!
```

Ŷ

basically the only two really pathologic cases

• Moderate overlap between active orbitals :



• If very large basis sets are used, any one-center AO can take the shape of a fully delocalized MO  $\Rightarrow$  R.E. abnormally small, technical issue (BOVB),...

*«The more accurate the calculations become, the more the concepts tend to vanish into thin air.» (R. S. Mulliken)* 

• Moderate overlap between active orbitals :



#### The good news is :

• Up to triple-zeta basis set without diffuse functions\* usually allows to get close enough to chemical accuracy while still avoiding this problem

\* *Except if the system is anionic* 

- Moderate number of structures
- Nonorthogonality (not any more)
- Moderate basis set size
- **Kow-how and expertise**, whereas VB is hardly taught any more



An Ab Initio Non-orthogonal Valence Bond Program

## It's up to you (tutorials) !

• Tutoriel 1 (Thurs. 15h-18h) : Basics of XMVB computations

https://wiki.lct.jussieu.fr/workshop/index.php/VB\_tutorial