
One may represent the pair distribution functions, for low and high densities.

kF = 10 kF = 10000

We observe that the hole is unchanged at low density, while it gets broader and shallower at

very high density. The Friedel oscillations are also modified at very high density.

One may then calculate the short-range exchange energy per particle of the RHEG, knowing

that the relativistic range-separated calculations have no analytical solutions and must be

done through numerical integration.

We may do the calculation using kF = 196,

a value related to the electronic density of the

1S Slater orbital of uranium through

kF = (3π2
Z3

√
π
)1/3

Conclusion

From the previous calculation we may observe substantial variation in short-range exchange

energy per particle for heavy atoms, up to 12% for small values of µ.

As for future work, the Breit interaction shall be taken in account and correlation calculations

using full Breit-Dirac Hamiltonian shall be realised.
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Local Density Approximation

Despite the previous conclusion, we must look at the LDA[3] for exchange energies, if only

to construct more advanced functionals later on. We may then look at calculations on the

Relativistic Homogeneous Electron Gas (or RHEG).

Esr,LDA
x =

∫

n(r)ǫsr,unif
x (n(r))dr

ǫsr,unif
x (n) = −1

2

∫

V
n gunif

x (r12, n)w
sr
ee(r12)dr12

gunif
x can be calculated analyticaly [4,5] and expressed through kF = (3π2n)1/3 the Fermi

wavevector of the RHEG and jk the Spherical Bessel Function of the kth order

gunif
x (r12, n) = −9

4

1

k2Fr
2
12

{

j1(kFr12)
2 + (1− λ)A(kFr12)

2 + λB(kFr12)
2

}

with

•λ =
k2F

k2F +m2c2

•A(kFr12) =
∞
∑

k=0

[

(2k + 1)!!

(2k + 1)

]

jk+1(kFr12)λ
k 1

kkFr
k
12

•B(kFr12) =
∞
∑

k=0

[

(2k + 1)!!

(2k + 1)

]

jk+2(kFr12)λ
k 1

kkFr
k
12

The non-relativistic limit may be found as

lim
c→+∞

gunif
x (r12, n) = −9

2

1

k2Fr
2
12

j1(kFr12)
2

Short-Range Hxc density functional

One may decompose the short-range Hxc density functional:

Esr
Hxc[n] = Esr

H [n] + Esr
x [n] + Esr

c [n]

With the Hartree term

Esr
H [n] =

1

2

∫∫

n(r1)n(r2)w
sr
ee(r12)dr1dr2

and the exchange term

Esr
x [n] = 〈Φ|Ŵ sr

ee|Φ〉 − Esr
H [n]

Expression in terms of Pair Density

One may express the exchange term through the use of the exchange pair density n2,x:

Esr
x =

1

2

∫∫

n2,x(r1, r2)w
sr
ee(r12)dr1dr2

We may express n2,x(r1, r2) in terms of the Fermi hole nx(r1, r2) or in terms of the pair

distribution function gx(r1, r2) :

n2,x(r1, r2) = n(r1) nx(r1, r2) = n(r1)n(r2) gx(r1, r2)

We may also express n2,x(r1, r2) with the four-spinor ψi(r) =

(

ϕi(r)
χi(r)

)

, ϕi being the large

component and χi the small component

n2,x(r1, r2) = −
Occupied
∑

i,j

ψ†
i (r1)ψj(r1)ψ

†
j(r2)ψi(r2)

or in term of (4x4) one-electron density matrix

n2,x(r1, r2) = −
Occupied
∑

i,j

Tr[ψi(r2)ψ
†
i (r1)ψj(r1)ψ

†
j(r2)]

= −Tr[γ(r1, r2)γ(r2, r1)]

One can make a large µ expansion in terms of the exchange on-top pair density

Esr
x =

π

2µ2

∫

n2,x(r, r)dr +O

(

1

µ4

)

Note that contrary to the non-relativistic case the exchange term in the large µ expansion is

not directly related to the square of the local spin density

n2,x(r, r) = −Tr[γ(r, r)2] 6= −
∑

σ

nσ(r)
2

Abstract

Range-separated density-functional theory allows one to rigorously combine a (semi)local

density-functional approximation for the short-range part of the electron-electron interaction

with explicit many-body methods for the long-range part of the electron-electron interaction

(see, e.g., Ref. [1]).

This theory has been designed first with non-relativistic formalism, but may be extended so

as to encompass relativistic effects as it was recently done by Kullie and Saue [2] through the

use of the Dirac-Coulomb Hamiltonian, but using a non-relativistic short-range functional.

The goal of this work is to study short-range relativistic effects in order to design such a

relativistic short-range exchange-correlation functional to describe more accurately heavy

atoms.

Four-Component Relativistic Range-Separated Density-Functional Theory

We consider here a multideterminantal extension of the Kohn-Sham scheme with range

separation in four-component formalism, with only the Coulombic interaction. Here the

minimisation is realised in the space spanned by the positive energy electronic states, an

approximation which is also called the no-pair approximation.

E = min
Ψ

{

〈Ψ|Ĥ0 + Ŵ lr
ee|Ψ〉 + Esr

Hxc[nΨ]
}

• Ĥ0 = c(α.p̂) + βmc2 + V̂ne : One-electron Dirac Hamiltonian

with α =

(

0 σ

σ 0

)

, σ =





σx

σy

σz



 and β =

(

I2 0
0 −I2

)

• Ŵ lr
ee =

∑

k<l

I4,k ⊗ I4,l w
lr
ee(rkl) : Two-electron long-range Coulombic interaction

with wlr
ee(r) =

erf(µ r)

r
and wsr

ee(r) =
1− erf(µ r)

r

•Esr
Hxc[n] : Short-range Hxc density functional

• Parameter µ controls the range of separation.

If µ = 0 there is no long-range interaction and the wavefunction Ψ reduces to the rela-

tivistic Kohn-Sham determinant Φ.

If µ→∞ there is no short-range interaction and the density functional becomes null.
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