Fission Fragment Mass Distributions of Plutonium Isotopes

K. Pomorski, B. Nerlo-Pomorska, Ch. Schmitt*,**, and J. Bartel**,
UMCS, Lublin, Poland; * GANIL, CAEN, France; ** IPHC, Strasbourg, France

Using the potential energy Abstract (PES) calculated within the macroscopic-microscopic model [1, 2], and a phenomenological cranking-
type inertia tensor $[4]$, the fragment mass distributions obtained in lowtype inertia tensor [4], the fragment mass distributions obtained in lowenergy fission of light actinides is evaluated in a quantum mechanics framework by solving the eigenvalue problem of a 3 -dimensional collective Hamil tonian [5]. Using the eigenstates of this Hamiltonian a distribution prob ability is defined with the mass asymmetry, neck and elongation degrees of freedom. It allows to introduce a neck-dependent fission probability $[6]$ used to evaluate the mass yields from the distribution probability at dif-
ferent elongations of the fissioning nucleus. The asymmetric valleys in the ferent elongations of the fissioning nucleus. The asymmetric vateys in the fission fragments.

Introduction

The shape-profile function of a fissioning nucleus is expanded in a Fourier series [2, 3]:

$$
\frac{\rho_{s}^{2}(z, \varphi)}{R_{0}^{2}}=\sum_{n=1}^{\infty}\left[a_{2 n} \cos \left(\frac{(2 n-1) \pi}{2} u\right)+a_{2 n+1} \sin \left(\frac{2 n \pi}{2} u\right)\right]
$$

where $u=\frac{z-z_{\text {sh }}}{z_{0}}$ and $z_{0}=R_{0} c$. The shift of coordinate $z_{\text {sh }}$ ensures that the centre of mass is located at the origin of the coordinate system, while the volume onservation condition gives the relation between the elongation of nucleus and the Fourier expansion coefficients $\pi /(3 c)=\sum_{n=1}^{\infty}(-1)^{n-1} a_{2 n} /(2 n-1)$. The LD path to fission goes towards smaller a_{2} and larger negative values of a_{4} which ensure an optimal presentation of the potential energy landscape:

$$
q_{2}=a_{2}^{(0)} / a_{2}-a_{2} / a_{2}^{(0)}, \quad q_{3}=a_{3}, \quad q_{4}=a_{4}+\sqrt{\left(q_{2} / 9\right)^{2}+\left(a_{4}^{(0)}\right)^{2}}
$$

$q_{5}=a_{5}-a_{3}\left(q_{2}-2\right) / 10, q_{6}=a_{6}-\sqrt{\left(q_{2} / 100\right)^{2}+\left(a_{6}^{(0)}\right)^{2}}$,
where $a_{2}^{0}=1.03205, a_{4}^{0}=-0.03822$, and $a_{6}^{0}=0.00826$ are the expansion coefficients of a sphere. In these coordinates the collective Hamiltonian has th following form:

$$
\widehat{H}_{\text {coll }}=-\frac{\hbar^{2}}{2} \sum_{i, j}|M|^{-1 / 2} \frac{\partial}{\partial q_{i}}|M|^{-1 / 2} M_{i j}^{-1}\left(\left\{q_{i}\right\}\right) \frac{\partial}{\partial q_{j}}+V\left(\left\{q_{i}\right\}\right),
$$

where $M_{i j}\left(\left\{q_{i}\right\}\right)$ and $V\left(\left\{q_{i}\right\}\right)$ denote the inertia tensor and the potential energy, respectively and $|M|=\operatorname{det}\left(M_{i j}\right)$. The eigenproblem of this Hamiltonian is solved in the Born-Oppenheimer approximation (BOA) in which one assumes that the motion towards fission is much slower than the one in the two other collective coordinates. It means that the eigenfunction of $\widehat{\boldsymbol{H}}_{\text {coll }}$ can be written in in product form

$$
\Psi_{n E}\left(q_{2}, q_{3}, q_{4}\right)=u_{n E}\left(q_{2}\right) \varphi_{n}\left(q_{3}, q_{4} ; q_{2}\right)
$$

Here $u_{n E}\left(q_{2}\right)$ is the wave function for the fission mode and φ_{n} are the eigenfunc tions of the Hamiltonian which describes the collective motion perpendicular to the fission mode.
Using the above relations one can write the eigenvalue equation of the fission mode Hamiltonian in the following form:

$$
\left(\hat{(}_{\text {fis }}+e_{n}\left(q_{2}\right)\right) u_{n E}\left(q_{2}\right)=E u_{n E}\left(q_{2}\right)
$$

here the energy $e_{n}\left(q_{2}\right)$ defines the fission potential for different channels, cor responding to excitations perpendicular to the fission mode. In the following we shall take only the lowest energy channel. So, the probability of finding of a nucleus, for a given value of q_{2}, in a defined (q_{3}, q_{4}) point is equal to

$$
\left|\Psi\left(q_{3}, q_{4} ; q_{2}\right)\right|^{2}=\left|u_{0 E}\left(q_{2}\right)\right|^{2}\left|\varphi_{0}\left(q_{3}, q_{4} ; q_{2}\right)\right|^{2}=\left|\varphi_{0}\left(q_{3}, q_{4} ; q_{2}\right)\right|^{2}
$$

The probability distribution integrated over q_{4}

$$
w\left(q_{3} ; q_{2}\right)=\int\left|\Psi\left(q_{3}, q_{4} ; q_{2}\right)\right|^{2} d q_{4}
$$

is directly related to the fragment mass yield at given elongation q_{2}. Depending on the neck radius, a fissioning nucleus has to make its choice "to fission or not to fission". When it decides for fission it would leave the phase-space of collective coordinates. Following Ref. [6] we assume the neck-rupture probability P in the form:

$$
P\left(q_{3}, q_{4}, q_{2}\right)=\frac{k_{0}}{k} P_{\text {neck }}(\kappa),
$$

where k is the momentum in the direction towards fission (or simply the velocity where k is the momentum in the direction towards fission (or simply the velocity along the elongation coordinate q_{2}), while $\kappa=\kappa\left(q_{3}, q_{4}, q_{2}\right)$ is the deformation
dependent relative neck size. The scaling parameter k_{0}, plays no essential role, and will disappear from the final expression of the mass distribution, once normalized. The geometry dependent part of the neck breaking probability is taken in the form of a Gauss function (see also [6]):

$$
P_{\text {neck }}(\kappa)=e^{\kappa^{2} / d^{2}},
$$

what corresponds to the concept of a diffused scission line. The parameters $d \approx 0.165$ fixed by comparing the theoretical fission fragment mass distribution o ${ }^{242} \mathrm{Pu}$ with the experimental data [12]
The momentum k which appears in the denominator of Eq. (8) has to ensure that the probability depends on time in which one crosses the subsequent inter vals in q_{2} coordinates: $\Delta t=\Delta q_{2} / v\left(q_{2}\right)$, where $v\left(q_{2}\right)=\hbar k / \bar{M}\left(q_{2}\right)$ is the velocity towards fission. The value of k depends on the difference $E-V\left(q_{2}\right)$ and on the part of the collective energy which is converted into heat Q :

$$
\frac{\hbar^{2} k^{2}}{2 \bar{M}\left(q_{2}\right)}=E_{k i n}=E-Q-V\left(q_{2}\right) .
$$

The fission probability w at q_{2} and q_{3} will be given by the integral:

$$
\begin{equation*}
w\left(q_{3}, q_{2}\right)=\int_{q_{1}}\left|\Psi\left(q_{3}, q_{4} ; q_{2}\right)\right|^{2} P\left(q_{3}, q_{4}, q_{2}\right) d q_{4} \tag{11}
\end{equation*}
$$

Such an approach means that the fission process should be spread over some region of q_{2} and that for given q_{2} at fixed mass asymmetry one has to take into $w\left(q_{3}, q_{2}\right)$ by

$$
\begin{equation*}
w^{\prime}\left(q_{3}, q_{2}\right)=w\left(q_{3}, q_{2}\right)\left(1-\frac{\int_{q_{2} \leq q_{2}} w\left(q_{3}, q_{2}^{\prime}\right) d q_{2}^{\prime}}{\int w\left(q_{3}, q_{2}^{\prime}\right) d q_{2}^{\prime}}\right) \tag{12}
\end{equation*}
$$

The mass yield will be the sum of all partial yields at different q_{2} :

$$
\begin{equation*}
Y\left(q_{3}\right)=\frac{\int w^{\prime}\left(q_{3}, q_{2}\right) d q_{2}}{\int w^{\prime}\left(q_{3}, q_{2}\right) d q_{2} d q_{3}} \tag{13}
\end{equation*}
$$

Figure 1: Potential energy surfaces Pu isotopes on the (q_{2}, q_{3}) plane. The deformation energy landscapes on the q_{2}, q_{3} plane of ${ }^{236-246} \mathrm{Pu}$ isotopes are shown in Fig.1. Each point of the maps was minimized with respect q_{4}. At large are visible. The cross-sections of these maps at elongation $q_{2}=2.05$ are sented in Fig. 2 on the plane $\left(\boldsymbol{A}_{f}, \boldsymbol{q}_{4}\right)$, where \boldsymbol{A}_{f} is the mass-number of the heavier fragment. In each map one can see two minima: a deeper asymmetric one around $A_{f}=140$ and the other corresponding to symmetric fission. These predictions are in line with the experimental fission yields shown in Fig. 3 [12]. Our model can be still simplified if instead of the square of the collective wave function (6) one uses the Wigner function:
$w(q 3, q 4 ; q 2) \sim \exp \left\{-\frac{V\left(q_{3}, q_{4} ; q_{2}\right)-V_{\text {eq }}\left(q_{2}\right)}{E_{0}}\right\}$

Deformation energies

The potential energy surfaces are calculated within the macroscopic-microscopic model using the Lublin-Strasbourg-Drop (LSD) for the macroscopic part, while pairing [9] copic part was evaluated as the sum of the Strutinsky shell [8] an folded Hamiltonian [10, 11].

where $V_{\text {eq }}\left(q_{2}\right)$ is the potential minimum for a given elongation q_{2} and E_{0} is the

Figure 2: Potential energy surfaces for ${ }^{236-246} \mathrm{Pu}$ isotopes on the $\left(q_{3}, q_{4}\right)$ plane at elongation $q_{2}=2.05$. The thick violet line corre-
sponds to the neck radius $r_{\mathrm{nk}}=2 \mathrm{fm}$ while the green one to $r_{\mathrm{nk}}=1 \mathrm{fm}$

Figure 3: Experimental fission fragment mass yield for ${ }^{236-244} \mathrm{Pu}$ isotopes [12] compared with preliminary estimates done with the Wigner
function (14) for $E_{0} \approx 2 \mathrm{MeV}$.

Summary

It was shown in Ref. [6] that the three-dimensional quantum mechanical model which couples the fission, neck and mass asymmetry modes is able to reproduce the main features of the fragment mass distribution when the neck dependent ${ }^{238} \mathrm{U}$ reprobability is taken into account. The distribution obtained in [6] for ment Proliminary results for the Plutonium isotopes also show that our model will give the fission fragment mass yield close to the measured distributions. Further calculations are in progress.

Acknowledgements: This work has been partly supported by the PolishFrench COPIN-IN2P3 collaboration agreement under project number 08-131 and by the Polish National Science Centre, grant No. 2013/11/B/ST2/04087.

References

[1] J. Bartel, K. Pomorski, B. Nerlo-Pomorska, and C. Schmitt, Phys. Scr. 90, 114004 (2015).
[2] K. Pomorski, B. Nerlo-Pomorska, J. Bartel, and C. Schmitt, Acta Phys. Pol. B Supl. 8, 667 (2015).
[3] C. Schmitt, K. Pomorski, B. Nerlo-Pomorska, J. Bartel, Phys. Rev. C 95, 034612 (2017).
[4] J. Randrup, S.E. Larsson, P. Moeller, S.G. Nilsson, K. Pomorski, A. Sobiczewski, Phys. Rev. C 13, 229 (1976).
[5] B. Nerlo-Pomorska, K. Pomorski and F.A. Ivanyuk, Acta Phys. Pol. B Supl. 8, 669 (2015).
[6] K. Pomorski, B. Nerlo-Pomorska and F. A. Ivanyuk, Eur. Phys. Journ. A53,59 (2017).
[7] K. Pomorski and J. Dudek, Phys. Rev. C67, 044316 (2003).
[8] V.M. Strutinsky, Nucl. Phys. A95, 420 (1967).
[9] S.G. Nilsson et al., Nucl. Phys. A131, 1 (1969).
[10] K.T.R. Davies and J.R. Nix, Phys. Rev. C14, 1977 (1976)
[11] A. Dobrowolski, K. Pomorski, and J. Bartel, Comp. Phys. Comm. 199, 118 (2016).

