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Abstract
Using the potential energy surfaces (PES) calculated within the

macroscopic-microscopic model [1, 2], and a phenomenological cranking-
type inertia tensor [4], the fragment mass distributions obtained in low-
energy fission of light actinides is evaluated in a quantum mechanics frame-
work by solving the eigenvalue problem of a 3-dimensional collective Hamil-
tonian [5]. Using the eigenstates of this Hamiltonian a distribution prob-
ability is defined with the mass asymmetry, neck and elongation degrees
of freedom. It allows to introduce a neck-dependent fission probability [6]
used to evaluate the mass yields from the distribution probability at dif-
ferent elongations of the fissioning nucleus. The asymmetric valleys in the
theoretical PES nicely correspond to the measured mass distributions of
fission fragments.

Introduction

The shape-profile function of a fissioning nucleus is expanded in a Fourier series
[2, 3]:
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where u = z−zsh
z0

and z0 = R0c. The shift of coordinate zsh ensures that the cen-
tre of mass is located at the origin of the coordinate system, while the volume
conservation condition gives the relation between the elongation of nucleus c
and the Fourier expansion coefficients π/(3c) =

∑∞
n=1(−1)n−1a2n/(2n − 1).

The LD path to fission goes towards smaller a2 and larger negative values of a4,
so it is convenient to introduce physically more intuitive collective coordinates
which ensure an optimal presentation of the potential energy landscape:

q2 = a
(0)
2 /a2 − a2/a

(0)
2 , q3 = a3 , q4 = a4 +

√
(q2/9)2 + (a

(0)
4 )2

q5 = a5 − a3(q2 − 2)/10 , q6 = a6 −

√
(q2/100)2 + (a

(0)
6 )2 ,

(2)

where a0
2 = 1.03205, a0

4 = −0.03822, and a0
6 = 0.00826 are the expansion co-

efficients of a sphere. In these coordinates the collective Hamiltonian has the
following form:
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where Mij({qi}) and V ({qi}) denote the inertia tensor and the potential en-
ergy, respectively and |M | = det(Mij). The eigenproblem of this Hamiltonian
is solved in the Born-Oppenheimer approximation (BOA) in which one assumes
that the motion towards fission is much slower than the one in the two other
collective coordinates. It means that the eigenfunction of Ĥcoll can be written
in in product form

ΨnE(q2, q3, q4) = unE(q2)ϕn(q3, q4; q2) . (4)

Here unE(q2) is the wave function for the fission mode and ϕn are the eigenfunc-
tions of the Hamiltonian which describes the collective motion perpendicular to
the fission mode.
Using the above relations one can write the eigenvalue equation of the fission
mode Hamiltonian in the following form:

(
T̂fis + en(q2)

)
unE(q2) = E unE(q2) . (5)

where the energy en(q2) defines the fission potential for different channels, cor-
responding to excitations perpendicular to the fission mode. In the following
we shall take only the lowest energy channel. So, the probability of finding of a
nucleus, for a given value of q2, in a defined (q3, q4) point is equal to

|Ψ(q3, q4; q2)|
2 = |u0E(q2)|

2|ϕ0(q3, q4; q2)|
2 = |ϕ0(q3, q4; q2)|

2 (6)

The probability distribution integrated over q4

w(q3; q2) =

∫
|Ψ(q3, q4; q2)|

2dq4 , (7)

is directly related to the fragment mass yield at given elongation q2. Depending
on the neck radius, a fissioning nucleus has to make its choice “to fission or not

to fission”. When it decides for fission it would leave the phase-space of collective
coordinates. Following Ref. [6] we assume the neck-rupture probability P in the
form:

P (q3, q4, q2) =
k0

k
Pneck(κ) , (8)

where k is the momentum in the direction towards fission (or simply the velocity
along the elongation coordinate q2), while κ = κ(q3, q4, q2) is the deformation
dependent relative neck size. The scaling parameter k0, plays no essential role,
and will disappear from the final expression of the mass distribution, once nor-
malized. The geometry dependent part of the neck breaking probability is taken
in the form of a Gauss function (see also [6]):

Pneck(κ) = eκ
2/d2 , (9)

what corresponds to the concept of a diffused scission line. The parameters
d ≈ 0.165 fixed by comparing the theoretical fission fragment mass distribution
of 242Pu with the experimental data [12].
The momentum k which appears in the denominator of Eq. (8) has to ensure
that the probability depends on time in which one crosses the subsequent inter-
vals in q2 coordinates: ∆t = ∆q2/v(q2), where v(q2) = h̄k/M(q2) is the velocity
towards fission. The value of k depends on the difference E − V (q2) and on the
part of the collective energy which is converted into heat Q:

h̄2k2

2M(q2)
= Ekin = E − Q − V (q2) . (10)

The fission probability w at q2 and q3 will be given by the integral:

w(q3, q2) =

∫

q4
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Such an approach means that the fission process should be spread over some
region of q2 and that for given q2 at fixed mass asymmetry one has to take into
account the probability to fission at previous q2 points. i.e. one has to replace
w(q3, q2) by

w′(q3, q2) = w(q3, q2)
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The mass yield will be the sum of all partial yields at different q2:

Y (q3) =

∫
w′(q3, q2) dq2

∫
w′(q3, q2) dq2 dq3

. (13)

As it is seen from (13) the scaling factor k0 in the expression for P , Eq. (8),
has vanished and does not appear any more in the definition of the mass yield.
Our model will thus only have one adjustable parameters d, that appears in the
neck-breaking probability (9).

Deformation energies

The potential energy surfaces are calculated within the macroscopic-microscopic
model using the Lublin-Strasbourg-Drop (LSD) for the macroscopic part, while
the microscopic part was evaluated as the sum of the Strutinsky shell [8] and
pairing [9] correction obtained using the single-particle energies of the Yukawa-
folded Hamiltonian [10, 11].

Figure 1: Potential energy surfaces Pu isotopes on the (q2, q3) plane.

The deformation energy landscapes on the q2, q3 plane of 236−246Pu isotopes are
shown in Fig.1. Each point of the maps was minimized with respect q4. At large
elongations q2 pronounced valleys corresponding to asymmetric fission (q3 6= 0)
are visible. The cross-sections of these maps at elongation q2 = 2.05 are pre-
sented in Fig. 2 on the plane (Af , q4), where Af is the mass-number of the
heavier fragment. In each map one can see two minima: a deeper asymmetric
one around Af = 140 and the other corresponding to symmetric fission. These
predictions are in line with the experimental fission yields shown in Fig. 3 [12].
Our model can be still simplified if instead of the square of the collective wave
function (6) one uses the Wigner function:

w(q3, q4; q2) ∼ exp

{
−
V (q3, q4; q2) − Veq(q2)

E0

}
(14)

where Veq(q2) is the potential minimum for a given elongation q2 and E0 is the

zero-point energy treated here as a free parameter.

Figure 2: Potential energy surfaces for 236−246Pu isotopes on the
(q3, q4) plane at elongation q2 = 2.05. The thick violet line corre-
sponds to the neck radius rnk=2 fm while the green one to rnk=1 fm
.
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Figure 3: Experimental fission fragment mass yield for 236−244Pu iso-
topes [12] compared with preliminary estimates done with the Wigner
function (14) for E0 ≈ 2 MeV.

Summary

It was shown in Ref. [6] that the three-dimensional quantum mechanical model
which couples the fission, neck and mass asymmetry modes is able to reproduce
the main features of the fragment mass distribution when the neck dependent
fission probability is taken into account. The distribution obtained in [6] for
238U reproduces nicely the structure of the distribution observed in the experi-
ment. Preliminary results for the Plutonium isotopes also show that our model
will give the fission fragment mass yield close to the measured distributions.
Further calculations are in progress.
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