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Cerium - density difference in PBE0
n(α) − n(γ) at a=4.6Å

ΣGW (r, r′,ω) = −
i

2π

∫

dωeiωηG0(r, r
′,ω + ω′)W0(r, r

′,ω′)

G0(r, r
′; ϵ) = lim

η→0+

∑

i

ψi(r)ψ∗
i (r

′)

ϵ− (ϵi + iη sgn(Ef − ϵi))

χ0(r, r
′,ω) =

occ
∑

i

unocc
∑

j

ψ∗
i (r)ψj(r)ψ∗

j (r
′)ψi(r′)

ω − (ϵj − ϵi)
+ c.c.

W = v + vχ0v + vχ0vχ0v + . . .

ERPA
tot = Ts + Eext + EH + Eexact

x + ERPA
c

ĤΨ = EΨ (1)

E[n] = T + Eext + EH
︸ ︷︷ ︸

+ Exc
︸︷︷︸

(2)

Eads(ND) = Emol@surf − Emol − Esurf
︸ ︷︷ ︸

+∆BB(Q,ND)
︸ ︷︷ ︸

Eads(ND) = Emol@surf − Emol − Esurf +∆BB(Q,ND)

EEX+cRPA
tot = Ts + Eext + EH + Eexact

x + ERPA
c

ε(r, r′, iω)

ERPA
c =

1

2π

∫ ∞

0

dωTr [ln (ε(iω)) + (1− ε(iω))]

∆ΦID =
δq

ε0
deff (3)
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RPA applied to the f-electron metal Cerium
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Theoretical spectroscopy - GW approximation

Etot = (15)

Ex[n]
LDA =

3
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✓
3
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◆1/3Z
dr n (r)4/3 (16)

Ec[n]
LDA = parameterised with quantum Monte Carlo (17)

Exc[n] =

Z
dr n(r)✏HEG

xc ([n], r) (18)

�(T, p) =
1

A

 
G(T, p, {Ni})�

X

i

Niµi(T, p)

!
(19)

G(T, V, {Ni}) = EDFT(T = 0, V, {Ni}) + F vib(T, V, {Ni}) + pV (20)

µi(T, pi) = Ei + µi(T, p
0) + kBT ln

✓
pi
p0

◆
(21)

IP = E(N � 1)� E(N) (22)

EA = E(N)� E(N + 1) (23)

✏s = E(N � 1, s)� E(N) (24)

⌃ = iGW (25)

2

self-energy:

• G0W0: correction to eigenvalues from density-functional theory (DFT):

ΣGW (r, r′,ω) = −
i

2π

∫

dωeiωηG(r, r′,ω + ω′)W (r, r′,ω′)

∆Emol (1)

∆φ (2)

−
1

4z
(3)

−
(ε− 1)

4(ε+ 1)

1

z
(4)

ε (5)

W (r, r′, t) =

∫

dr′′
ε−1(r, r′′, t)

|r′′ − r′|
(6)

E = E[n] (7)

E[n] = T + Eext + EH + Exc (8)

E[n] = −
∇2

2
+

1

2

∫

dr n(r)vH(r) +

∫

dr n(r)vext(r) + Exc[n] (9)

Exc = α
(

EHF
x − EPBE

x

)

+ EPBE
c (10)

EHF
x (11)

In analogy to Hartree theory Kohn and Sham divided the total energy into
known contributions such as the kinetic energy of the non-interacting particles
Ts, the Hartree energy

EH [n] =
1

2

∫

dr n(r)vH(r) =
1

2

occ
∑

ij

∫∫

dr dr′
φ∗
i (r)φi(r)φ∗

j (r
′)φj(r′)

|r− r′|
, (12)

the external energy

Eext[n] =

∫

dr n(r)vext(r) , (13)

and an unknown remainder. This last term includes all electron-electron inter-
actions beyond the Hartree mean-field and is defined as the exchange-correlation
energy

Exc[n] = Etot[n]− Ts[n]− Eext[n]− EH [n] . (14)

1
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2



Return to the GW self-energy

+

-

-
-

- -

-
-

-

-

correlation part 
(screening (includes 
van der Waals))

8

and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],

E = E0 +
1

2

⇧ 1

0

d�

�

⇤
1

2⇥

⇧ ⇤

�⇤
d⇤Tr

�
G0(i⇤)�(i⇤,�)

⇥⌅

(27)

= E0 +

⇧ 1

0

1

2

d�

�

⇤
1

2⇥

⇧ ⇤

�⇤
d⇤Tr [G(i⇤,�)�⇥(i⇤,�)]

⌅

(28)

where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy

ERPA
c =

1

2

⇧ 1

0

d�

�

⇤
1

2⇥

⇧ ⇤

�⇤
d⇤Tr

�
G0(i⇤)�GW

c (i⇤,�)
⇥⌅

.

(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy

ERPA
c =

1

2

⇧ 1

0

d�

�

⇤
1

2⇥

⇧ ⇤

�⇤
d⇤Tr

�
G0(i⇤)�GW

c (i⇤,�)
⇥⌅

.

(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],

E = E0 +
1
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy

ERPA
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1
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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FIG. 4 Feynman diagrams for the GW approximation. Arrowed solid lines represent Green’s functions, wiggly lines the
screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.

As such the term random-phase approximation is not
very transparent. It dates back to the work of Bohm
and Pines (Bohm and Pines, 1951, 1953; Pines, 1953;
Pines and Bohm, 1952) and their systematic investiga-
tion of the homogenous electron gas (HEG). The RPA
was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
dently for nuclei by Bohr and Mottelson (Bohr and Mot-
telson, 1953).

Bohm and Pines, 1951 describe the origin of the term
random phase approximation as follows:

“We distinguish between two kinds of re-
sponse of the electrons to a wave. One of
these is in phase with the wave, so that
the phase di↵erence between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
sponse has a phase di↵erence with the wave
producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
to self-consistency (scGW ). However, remarkably few
fully self-consistent solutions of Hedin’s GW equations
have been performed in the last 50 years. The first cal-
culations for the homogeneous electron gas (HEG) were
reported at the turn of the previous century (Garćıa-
González and Godby, 2001; Holm, 1999; Holm and von
Barth, 1998). They were quickly followed by calculations
for real solids, like silicon and sodium (Ku and Eguiluz,
2002; Schöene and Eguiluz, 1998). Self-consistency was
then dropped for several years for reasons that will be
elucidated further in Section IV.F. scGW resurfaced a
few years later in the context of quantum transport calcu-
lations (Strange et al., 2011; Thygesen and Rubio, 2007,
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the non-self-consistent GW scheme.

As such the term random-phase approximation is not
very transparent. It dates back to the work of Bohm
and Pines (Bohm and Pines, 1951, 1953; Pines, 1953;
Pines and Bohm, 1952) and their systematic investiga-
tion of the homogenous electron gas (HEG). The RPA
was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
dently for nuclei by Bohr and Mottelson (Bohr and Mot-
telson, 1953).

Bohm and Pines, 1951 describe the origin of the term
random phase approximation as follows:

“We distinguish between two kinds of re-
sponse of the electrons to a wave. One of
these is in phase with the wave, so that
the phase di↵erence between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
sponse has a phase di↵erence with the wave
producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
to self-consistency (scGW ). However, remarkably few
fully self-consistent solutions of Hedin’s GW equations
have been performed in the last 50 years. The first cal-
culations for the homogeneous electron gas (HEG) were
reported at the turn of the previous century (Garćıa-
González and Godby, 2001; Holm, 1999; Holm and von
Barth, 1998). They were quickly followed by calculations
for real solids, like silicon and sodium (Ku and Eguiluz,
2002; Schöene and Eguiluz, 1998). Self-consistency was
then dropped for several years for reasons that will be
elucidated further in Section IV.F. scGW resurfaced a
few years later in the context of quantum transport calcu-
lations (Strange et al., 2011; Thygesen and Rubio, 2007,
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],

E = E0 +
1
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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As such the term random-phase approximation is not
very transparent. It dates back to the work of Bohm
and Pines (Bohm and Pines, 1951, 1953; Pines, 1953;
Pines and Bohm, 1952) and their systematic investiga-
tion of the homogenous electron gas (HEG). The RPA
was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
dently for nuclei by Bohr and Mottelson (Bohr and Mot-
telson, 1953).

Bohm and Pines, 1951 describe the origin of the term
random phase approximation as follows:

“We distinguish between two kinds of re-
sponse of the electrons to a wave. One of
these is in phase with the wave, so that
the phase di↵erence between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
sponse has a phase di↵erence with the wave
producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
to self-consistency (scGW ). However, remarkably few
fully self-consistent solutions of Hedin’s GW equations
have been performed in the last 50 years. The first cal-
culations for the homogeneous electron gas (HEG) were
reported at the turn of the previous century (Garćıa-
González and Godby, 2001; Holm, 1999; Holm and von
Barth, 1998). They were quickly followed by calculations
for real solids, like silicon and sodium (Ku and Eguiluz,
2002; Schöene and Eguiluz, 1998). Self-consistency was
then dropped for several years for reasons that will be
elucidated further in Section IV.F. scGW resurfaced a
few years later in the context of quantum transport calcu-
lations (Strange et al., 2011; Thygesen and Rubio, 2007,
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FIG. 4 Feynman diagrams for the GW approximation. Arrowed solid lines represent Green’s functions, wiggly lines the
screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.

As such the term random-phase approximation is not
very transparent. It dates back to the work of Bohm
and Pines (Bohm and Pines, 1951, 1953; Pines, 1953;
Pines and Bohm, 1952) and their systematic investiga-
tion of the homogenous electron gas (HEG). The RPA
was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
dently for nuclei by Bohr and Mottelson (Bohr and Mot-
telson, 1953).

Bohm and Pines, 1951 describe the origin of the term
random phase approximation as follows:

“We distinguish between two kinds of re-
sponse of the electrons to a wave. One of
these is in phase with the wave, so that
the phase di↵erence between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
sponse has a phase di↵erence with the wave
producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
to self-consistency (scGW ). However, remarkably few
fully self-consistent solutions of Hedin’s GW equations
have been performed in the last 50 years. The first cal-
culations for the homogeneous electron gas (HEG) were
reported at the turn of the previous century (Garćıa-
González and Godby, 2001; Holm, 1999; Holm and von
Barth, 1998). They were quickly followed by calculations
for real solids, like silicon and sodium (Ku and Eguiluz,
2002; Schöene and Eguiluz, 1998). Self-consistency was
then dropped for several years for reasons that will be
elucidated further in Section IV.F. scGW resurfaced a
few years later in the context of quantum transport calcu-
lations (Strange et al., 2011; Thygesen and Rubio, 2007,
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],

E = E0 +
1
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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For the RPA correlation term, I propose to rewrite the derivative as follows:
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],

E = E0 +
1
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW
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and performing the � integration, one obtains the RPA
correlation energy
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This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy
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�GW
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(b)

ERPA
c = � 1
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6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy

ERPA
c =

1

2

⇧ 1

0

d�

�

⇤
1

2⇥

⇧ ⇤

�⇤
d⇤Tr

�
G0(i⇤)�GW

c (i⇤,�)
⇥⌅

.

(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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c =

1
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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FIG. 4 Feynman diagrams for the GW approximation. Arrowed solid lines represent Green’s functions, wiggly lines the
screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.

As such the term random-phase approximation is not
very transparent. It dates back to the work of Bohm
and Pines (Bohm and Pines, 1951, 1953; Pines, 1953;
Pines and Bohm, 1952) and their systematic investiga-
tion of the homogenous electron gas (HEG). The RPA
was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
dently for nuclei by Bohr and Mottelson (Bohr and Mot-
telson, 1953).

Bohm and Pines, 1951 describe the origin of the term
random phase approximation as follows:

“We distinguish between two kinds of re-
sponse of the electrons to a wave. One of
these is in phase with the wave, so that
the phase di↵erence between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
sponse has a phase di↵erence with the wave
producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
to self-consistency (scGW ). However, remarkably few
fully self-consistent solutions of Hedin’s GW equations
have been performed in the last 50 years. The first cal-
culations for the homogeneous electron gas (HEG) were
reported at the turn of the previous century (Garćıa-
González and Godby, 2001; Holm, 1999; Holm and von
Barth, 1998). They were quickly followed by calculations
for real solids, like silicon and sodium (Ku and Eguiluz,
2002; Schöene and Eguiluz, 1998). Self-consistency was
then dropped for several years for reasons that will be
elucidated further in Section IV.F. scGW resurfaced a
few years later in the context of quantum transport calcu-
lations (Strange et al., 2011; Thygesen and Rubio, 2007,
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FIG. 4 Feynman diagrams for the GW approximation. Arrowed solid lines represent Green’s functions, wiggly lines the
screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.
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very transparent. It dates back to the work of Bohm
and Pines (Bohm and Pines, 1951, 1953; Pines, 1953;
Pines and Bohm, 1952) and their systematic investiga-
tion of the homogenous electron gas (HEG). The RPA
was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
dently for nuclei by Bohr and Mottelson (Bohr and Mot-
telson, 1953).

Bohm and Pines, 1951 describe the origin of the term
random phase approximation as follows:

“We distinguish between two kinds of re-
sponse of the electrons to a wave. One of
these is in phase with the wave, so that
the phase di↵erence between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
sponse has a phase di↵erence with the wave
producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
to self-consistency (scGW ). However, remarkably few
fully self-consistent solutions of Hedin’s GW equations
have been performed in the last 50 years. The first cal-
culations for the homogeneous electron gas (HEG) were
reported at the turn of the previous century (Garćıa-
González and Godby, 2001; Holm, 1999; Holm and von
Barth, 1998). They were quickly followed by calculations
for real solids, like silicon and sodium (Ku and Eguiluz,
2002; Schöene and Eguiluz, 1998). Self-consistency was
then dropped for several years for reasons that will be
elucidated further in Section IV.F. scGW resurfaced a
few years later in the context of quantum transport calcu-
lations (Strange et al., 2011; Thygesen and Rubio, 2007,



Question?

Does a given correlation energy approximation 
uniquely define the total energy?
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy
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FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],

E = E0 +
1
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy

ERPA
c =

1
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy

ERPA
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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FIG. 4 Feynman diagrams for the GW approximation. Arrowed solid lines represent Green’s functions, wiggly lines the
screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.

As such the term random-phase approximation is not
very transparent. It dates back to the work of Bohm
and Pines (Bohm and Pines, 1951, 1953; Pines, 1953;
Pines and Bohm, 1952) and their systematic investiga-
tion of the homogenous electron gas (HEG). The RPA
was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
dently for nuclei by Bohr and Mottelson (Bohr and Mot-
telson, 1953).

Bohm and Pines, 1951 describe the origin of the term
random phase approximation as follows:

“We distinguish between two kinds of re-
sponse of the electrons to a wave. One of
these is in phase with the wave, so that
the phase di↵erence between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
sponse has a phase di↵erence with the wave
producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
to self-consistency (scGW ). However, remarkably few
fully self-consistent solutions of Hedin’s GW equations
have been performed in the last 50 years. The first cal-
culations for the homogeneous electron gas (HEG) were
reported at the turn of the previous century (Garćıa-
González and Godby, 2001; Holm, 1999; Holm and von
Barth, 1998). They were quickly followed by calculations
for real solids, like silicon and sodium (Ku and Eguiluz,
2002; Schöene and Eguiluz, 1998). Self-consistency was
then dropped for several years for reasons that will be
elucidated further in Section IV.F. scGW resurfaced a
few years later in the context of quantum transport calcu-
lations (Strange et al., 2011; Thygesen and Rubio, 2007,
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FIG. 4 Feynman diagrams for the GW approximation. Arrowed solid lines represent Green’s functions, wiggly lines the
screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.
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was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
dently for nuclei by Bohr and Mottelson (Bohr and Mot-
telson, 1953).

Bohm and Pines, 1951 describe the origin of the term
random phase approximation as follows:

“We distinguish between two kinds of re-
sponse of the electrons to a wave. One of
these is in phase with the wave, so that
the phase di↵erence between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
sponse has a phase di↵erence with the wave
producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
to self-consistency (scGW ). However, remarkably few
fully self-consistent solutions of Hedin’s GW equations
have been performed in the last 50 years. The first cal-
culations for the homogeneous electron gas (HEG) were
reported at the turn of the previous century (Garćıa-
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Barth, 1998). They were quickly followed by calculations
for real solids, like silicon and sodium (Ku and Eguiluz,
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then dropped for several years for reasons that will be
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few years later in the context of quantum transport calcu-
lations (Strange et al., 2011; Thygesen and Rubio, 2007,



GW versus RPA

8

and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],

E = E0 +
1
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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1

2

⇧ 1

0

d�

�

⇤
1

2⇥

⇧ ⇤

�⇤
d⇤Tr

�
G0(i⇤)�GW

c (i⇤,�)
⇥⌅

.

(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1
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6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy

ERPA
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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c =
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy
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�GW
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FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most

14

⌃GW = = + + + . . .

WGW = = + + + . . .

�GW

0 =

�GW = = � 1
2 � 1

4 � 1
6 + . . .

FIG. 4 Feynman diagrams for the GW approximation. Arrowed solid lines represent Green’s functions, wiggly lines the
screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.

As such the term random-phase approximation is not
very transparent. It dates back to the work of Bohm
and Pines (Bohm and Pines, 1951, 1953; Pines, 1953;
Pines and Bohm, 1952) and their systematic investiga-
tion of the homogenous electron gas (HEG). The RPA
was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
dently for nuclei by Bohr and Mottelson (Bohr and Mot-
telson, 1953).

Bohm and Pines, 1951 describe the origin of the term
random phase approximation as follows:

“We distinguish between two kinds of re-
sponse of the electrons to a wave. One of
these is in phase with the wave, so that
the phase di↵erence between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
sponse has a phase di↵erence with the wave
producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
to self-consistency (scGW ). However, remarkably few
fully self-consistent solutions of Hedin’s GW equations
have been performed in the last 50 years. The first cal-
culations for the homogeneous electron gas (HEG) were
reported at the turn of the previous century (Garćıa-
González and Godby, 2001; Holm, 1999; Holm and von
Barth, 1998). They were quickly followed by calculations
for real solids, like silicon and sodium (Ku and Eguiluz,
2002; Schöene and Eguiluz, 1998). Self-consistency was
then dropped for several years for reasons that will be
elucidated further in Section IV.F. scGW resurfaced a
few years later in the context of quantum transport calcu-
lations (Strange et al., 2011; Thygesen and Rubio, 2007,
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screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.
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dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
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these is in phase with the wave, so that
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dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
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producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
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fully self-consistent solutions of Hedin’s GW equations
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)
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From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy
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c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1
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6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy
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�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy
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�GW
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ERPA
c = � 1
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FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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FIG. 4 Feynman diagrams for the GW approximation. Arrowed solid lines represent Green’s functions, wiggly lines the
screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.

As such the term random-phase approximation is not
very transparent. It dates back to the work of Bohm
and Pines (Bohm and Pines, 1951, 1953; Pines, 1953;
Pines and Bohm, 1952) and their systematic investiga-
tion of the homogenous electron gas (HEG). The RPA
was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
dently for nuclei by Bohr and Mottelson (Bohr and Mot-
telson, 1953).

Bohm and Pines, 1951 describe the origin of the term
random phase approximation as follows:

“We distinguish between two kinds of re-
sponse of the electrons to a wave. One of
these is in phase with the wave, so that
the phase di↵erence between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
sponse has a phase di↵erence with the wave
producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
to self-consistency (scGW ). However, remarkably few
fully self-consistent solutions of Hedin’s GW equations
have been performed in the last 50 years. The first cal-
culations for the homogeneous electron gas (HEG) were
reported at the turn of the previous century (Garćıa-
González and Godby, 2001; Holm, 1999; Holm and von
Barth, 1998). They were quickly followed by calculations
for real solids, like silicon and sodium (Ku and Eguiluz,
2002; Schöene and Eguiluz, 1998). Self-consistency was
then dropped for several years for reasons that will be
elucidated further in Section IV.F. scGW resurfaced a
few years later in the context of quantum transport calcu-
lations (Strange et al., 2011; Thygesen and Rubio, 2007,
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FIG. 4 Feynman diagrams for the GW approximation. Arrowed solid lines represent Green’s functions, wiggly lines the
screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.

As such the term random-phase approximation is not
very transparent. It dates back to the work of Bohm
and Pines (Bohm and Pines, 1951, 1953; Pines, 1953;
Pines and Bohm, 1952) and their systematic investiga-
tion of the homogenous electron gas (HEG). The RPA
was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
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tends to average out to zero when we consider
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range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
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geous to build a perturbation series in W rather than v.
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single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
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In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
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(6)

Eads(ND) = Emol@surf − Emol − Esurf
︸ ︷︷ ︸

+∆BB(Q,ND)
︸ ︷︷ ︸

Eads(ND) = Emol@surf − Emol − Esurf +∆BB(Q,ND)

Eads = Emol@surf − Emol − Esurf

1

Exc = Exc[G]

EGW
c [G] =

Z 1

0

d!

2⇡
Tr

�
⌃

GW
c (i!)G(i!)

�

EGW
c

P = �iGG�

⌃ = iGW�

� = 1 +GG
�⌃

�G
�

ERPA
c =

1

2⇡

Z 1

0
d!Tr

⇥
ln

�
1� �0

(i!)v
�
+ �0

(i!)v
⇤

= � 1

2⇡

Z 1

0
d!

1X

n=2

1

n
Tr

⇥
(�0

(i!)v)n
⇤

ERPA
c =

1

2⇡

Z 1

0
d!Tr

⇥
ln

�
1� �0

(i!)v
�
+ �0

(i!)v
⇤

= � 1

2⇡

Z 1

0
d!

1X

n=2

1

n
Tr

⇥
(�0

(i!)v)n
⇤

⌃

GW
(1, 2) = iG(1, 2)W (1, 2)

W (1, 2) = v(1, 2) +

Z
d3 d4 v(1, 3)�0(3, 4)W (4, 2)

�0(1, 2) = �iG(1, 2)G(2, 1)

⌃

GW
(1, 2) = �iG(1, 2)v(1, 2) +

Z
d3 d4G(1, 2)v(1, 3)G(3, 4)G(4, 3)W (4, 2)

⌃

SOSEX
(1, 2) = �

Z
d3 d4G(1, 4)v(1, 3)G(4, 3)G(3, 2)W (4, 2)

For the RPA correlation term, I propose to rewrite the derivative as follows:

@ERPA
c
@' =

@ERPA
c

@G0

@G0
@' . Using the fact that �0 = �iG0G0 this yields:

1
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],

E = E0 +
1

2

⇧ 1

0

d�

�

⇤
1

2⇥

⇧ ⇤

�⇤
d⇤Tr

�
G0(i⇤)�(i⇤,�)

⇥⌅

(27)

= E0 +

⇧ 1

0

1

2

d�

�

⇤
1

2⇥

⇧ ⇤

�⇤
d⇤Tr [G(i⇤,�)�⇥(i⇤,�)]

⌅

(28)

where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy

ERPA
c =

1

2

⇧ 1

0

d�

�

⇤
1

2⇥

⇧ ⇤

�⇤
d⇤Tr

�
G0(i⇤)�GW

c (i⇤,�)
⇥⌅

.

(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],

E = E0 +
1
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy

ERPA
c =

1

2

⇧ 1
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⇤
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⇧ ⇤
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d⇤Tr
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G0(i⇤)�GW
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],

E = E0 +
1
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy

ERPA
c =

1
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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and a “selected summation to infinite order” has to be
invoked. In this case, it is much more convenient to ex-
press the total energy in terms of the Green function
and the self-energy, as done, e.g., by Luttinger and Ward
[157]. Using the Green function language, the ground-
state total-energy can be expressed as [157, 158],
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where G0 and G(�) are single-particle Green functions
corresponding to the non-interacting Hamiltonian H0

and the scaled interacting Hamiltonian H(�), respec-
tively. �⇥(�) and �(�) are the proper and improper
self-energies of the interacting system with interaction
strength �. Note that in Eq. (27) and (28), the trace
convention of Eq. (23) is implied.

The above quantities satisfy the following relationship

G(i⇤,�) = G0(i⇤) +G0(i⇤)�(i⇤,�)G0(i⇤)

= G0(i⇤) +G0(i⇤)�⇥(i⇤,�)G(i⇤,�). (29)

From Eq. (29) the equivalence of Eq. (27) and Eq. (28)
is obvious. In Eq. (27), a perturbation expansion of
the �-dependent self-energy ��(i⇤) naturally translates
into a perturbation theory of the ground-state energy.
In particular, the linear term of ��(i⇤) yields the first-
order correction to the ground-state energy, i.e., E(1)

in Eq. (26). All higher-order (n ⇥ 2) contributions of
��(i⇤), here denoted �c, define the so-called correla-
tion energy. In general the correlation energy cannot be
treated exactly. A popular approximation to �c is the
GW approach, which corresponds to a selected summa-
tion of self-energy diagrams with ring structure to infi-
nite order, as illusrated in Fig. (1a). Multiplying
G0 to the GW self-energy �GW

c (i⇤) as done in Eq. (27)
and performing the � integration, one obtains the RPA
correlation energy
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(30)
This illustrates the close connection between RPA and
the GW approach. A diagrammatic representation of
ERPA

c is the shown in Fig. (1b). We emphasize that
the diagrams in Fig. (1a) and (1b) are Feynman dia-
grams, i.e., the arrowed lines should really be interpreted
as propagators, or Green functions. A similar represen-
tation of ERPA

c can be drawn in terms of Goldstone di-
agrams [155]. However, caution should be applied, be-
cause the rules for evaluating these diagrams are di⌅er-
ent, and the prefactors in Fig. (1b) are not present in the
corresponding Goldstone diagrams.

We note that starting from Eq. (27) this procedure
naturally gives the perturbative RPA correlation energy

(a)

�GW
c (�) = �2 + �3 + · · ·

(b)

ERPA
c = � 1

4 � 1
6 � · · ·

FIG. 1: Feynman diagrams for GW self-energy (a) and RPA
correlation energy (b). Arrowed lines represent fermion prop-
agators G, and wiggly lines the Coulomb interaction v.

based on any convenient non-interacting reference Hamil-
tonian H0, such as Hartree-Fock or local/semi-local KS-
DFT theory. If one instead starts with Eq. (28) and
applies the GW approximation therein, G(�, i⇤) and
�⇥(�, i⇤) become the self-consistent GW Green function
and self-energy. As a result the improper self-energy di-
agrams in (27), which are neglected in the perturbative
GW approach (known as G0W 0 in the literature), are
introduced and the total energy di⌅ers from that of the
RPA. An in-depth discussion of self-consistent GW and
its impications can be found in [159–162].

D. Link to Bohm & Pines approach

E. Link to coupled cluster theory

In recent years, RPA has also attracted considerable
attention in the quantum chemistry community. One key
reason for this is its intimate relationship with coupled
cluster (CC) theory, which has been very successful for
accurately describing vdW-type interactions in molecular
systems. To understand this relationship, we will give a
very brief account of the CC theory here. More details
can for instance be found in a review paper by Bartlett
and Musia⌃l [163]. The essential concept of CC builds on
the exponential ansatz for the many-body wave function
⇤ for correlated eletronic systems

|⇤⇤ = eT̂ |⇥⇤. (31)

|⇥⇤ is a non-interacting reference state, usually chosen to

be the HF Slater determinant, and T̂ is a summation of
excitation operators of di⌅erent order,

T̂ = T̂1 + T̂2 + T̂3 + · · ·+ T̂n + · · · , (32)

with T̂1, T̂2, T̂3, · · · being the single, double, and triple
excitation operators, etc. These operators can be most
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FIG. 4 Feynman diagrams for the GW approximation. Arrowed solid lines represent Green’s functions, wiggly lines the
screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.

As such the term random-phase approximation is not
very transparent. It dates back to the work of Bohm
and Pines (Bohm and Pines, 1951, 1953; Pines, 1953;
Pines and Bohm, 1952) and their systematic investiga-
tion of the homogenous electron gas (HEG). The RPA
was one of several physically-motivated approximations
in the treatment of the HEG which allowed them to sep-
arate collective degrees of freedom (plasma oscillations)
from single-particle degrees of freedom (e.g., quasiparti-
cles or charged excitations) via a suitable canonical trans-
formation reminiscent of early work in quantum electro
dynamics (Bloch and Nordsieck, 1937; Pauli and Fierz,
1938). A similar theory was developed rather indepen-
dently for nuclei by Bohr and Mottelson (Bohr and Mot-
telson, 1953).

Bohm and Pines, 1951 describe the origin of the term
random phase approximation as follows:

“We distinguish between two kinds of re-
sponse of the electrons to a wave. One of
these is in phase with the wave, so that
the phase di↵erence between the particle re-
sponse and the wave producing it is indepen-
dent of the position of the particle. This is
the response which contributes to the organ-
ised behaviour of the system. The other re-
sponse has a phase di↵erence with the wave
producing it which depends on the position of
the particle. Because of the general random
location of the particles, this second response
tends to average out to zero when we consider
a large number of electrons, and we shall ne-
glect the contributions arising from this. This
procedure we call the random phase approxi-

mation.”

The RPA enables Bohm and Pines to absorb the long-
range Coulomb interactions into the collective behaviour
of the system, leaving the single-particle degrees of free-
dom interacting only via a short-range screened force.
Hedin’s GW approximation utilises this for a perturba-
tive expansion. For systems in which screening is strong
(e.g., solids) the screened Coulomb interaction will be
much smaller than the bare one. It is therefore advanta-
geous to build a perturbation series in W rather than v.
In the words of Bohm and Pines, the RPA amounts to
neglecting the interaction between the collective and the
single-particle degrees of freedom. This simplification fa-
cilitated the first GW calculations for real systems in the
mid eighties (Godby et al., 1986; Hybertsen and Louie,
1985, 1986). However, it also illustrates the limitations
of the GW approach and potential avenues to go beyond
it (see Section XIV).
In principle the prescription is clear. Start from a given

G0 and iterate Hedin’s GW equations (86) - (88) and (47)
to self-consistency (scGW ). However, remarkably few
fully self-consistent solutions of Hedin’s GW equations
have been performed in the last 50 years. The first cal-
culations for the homogeneous electron gas (HEG) were
reported at the turn of the previous century (Garćıa-
González and Godby, 2001; Holm, 1999; Holm and von
Barth, 1998). They were quickly followed by calculations
for real solids, like silicon and sodium (Ku and Eguiluz,
2002; Schöene and Eguiluz, 1998). Self-consistency was
then dropped for several years for reasons that will be
elucidated further in Section IV.F. scGW resurfaced a
few years later in the context of quantum transport calcu-
lations (Strange et al., 2011; Thygesen and Rubio, 2007,
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FIG. 4 Feynman diagrams for the GW approximation. Arrowed solid lines represent Green’s functions, wiggly lines the
screened and dashed lines the bare Coulomb interaction. See also Fig. 7 for a comparison between the fully self-consistent and
the non-self-consistent GW scheme.
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      Caruso, Rinke et al. Phys. Rev. B 86, 081102(R) (2012)
[2] Hellgren, Rohr, Gross, J. Phys. Chem. 136, 034106 (2012)

implemented in FHI-aims [1]

• local atomic basis
• all-electron



GW versus RPA

Fabio Caruso 
Humboldt University, 

Berlin

Xinguo Ren 
Hefei University of 
Technology, China

Maria Hellgren 
IMPMC, UPMC, Paris

Daniel Rohr 
Rosa Luxemburg Gymnasium

Matthias Scheffler 
FHI, Berlin

Angel Rubio 
MPSD, Hamburg



Bond-making and bond-breaking - H2

1 2 3 4 5 6
Bond Length [Å]

-1.20

-1.15

-1.10

-1.05

-1.00

-0.95

-0.90

-0.85
T

ot
al

 E
ne

rg
y 

[H
a]

H2 scGW

full CI

F. Caruso, D. R. Rohr, M. Hellgren, X. Ren, P. Rinke, A. 
Rubio, and M. Scheffler, Phys. Rev. Lett. 110, 146403 (2013)



1 2 3 4 5 6
Bond Length [Å]

-1.20

-1.15

-1.10

-1.05

-1.00

-0.95

-0.90

-0.85
T

ot
al

 E
ne

rg
y 

[H
a]

H2 r2PT

full CI

scRPA

scGW

Bond-making and bond-breaking - H2

F. Caruso, D. R. Rohr, M. Hellgren, X. Ren, P. Rinke, A. 
Rubio, and M. Scheffler, Phys. Rev. Lett. 110, 146403 (2013)



Bond-making and bond-breaking - H2

M. Hellgren, F. Caruso, D. R. Rohr, X. Ren, A. Rubio, M. 
Scheffler, P. Rinke, Phys. Rev. B 91, 165110 (2015) 

1 2 3
Bond Length [Å]

-8

-7

-6

-5

-4

-3

U
c 
[e

V
]

scGW

scRPA
G0W0@HF
G0W0@PBE

1 2 3
Bond Length [Å]

16

20

24

28

T
[e

V
]

2 4 6 8
Bond Length [Å]

0

5

10

15

20

G
ap

 [e
V

]

full-CI
scGW

scRPA
HF

(a)
(b)

(c)

Kinetic correlation

1 2 3
Bond Length [Å]

-8

-7

-6

-5

-4

-3

U
c 
[e

V
]

scGW

scRPA
G0W0@HF
G0W0@PBE

1 2 3
Bond Length [Å]

16

20

24

28

T
[e

V
]

2 4 6 8
Bond Length [Å]

0

5

10

15

20

G
ap

 [e
V

]

full-CI
scGW

scRPA
HF

(a)
(b)

(c)

Kinetic correlation

C
ou

lo
m

b 
co

rr
el

at
io

n 
en

er
gy

 [e
V

]



Kinetic energy analysis

correlation energy functional. The question that we address below is, how the

kinetic energy is handled in a hybrid between Green’s function and Kohn-Sham

theory such as qpGW and how it a↵ects the resulting quasiparticle energies.

The di↵erence between the non-interacting and the interacting kinetic energy

of a GW calculation may be quantified by invoking the analogy with the random-

phase approximation (RPA).70,71 ] The total energy in scGW , G0W0 and RPA can be

separated into di↵erent contributions:47,48

EGW [G] = T [G] + Eext[G] + EH[G] + Ex[G] + UGW
c [G] (14)

EG0W0 [G0] = Ts[G0] + Eext[G0] + EH[G0] + Ex[G0] + UGW
c [G0] (15)

ERPA[G0] = Ts[G0] + Eext[G0] + EH[G0] + ERPA
xc [G0] (16)

= Ts[G0] + Eext[G0] + EH[G0] + Ex[G0] + ERPA
c [G0] + TRPA

c [G0] (17)

where T is the fully interacting kinetic energy, Ts the non-interacting kinetic energy, Eext the

external energy, EH the Hartree energy and Ex the exchange energy evaluated for the fully

interacting Green’s function G or the non-interacting reference calculation G0. Following

Ref.,47,48 we defined UGW
c and ERPA

c as the correlation energy functionals in the GW and

RPA approximation, respectively:
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total energy:

scGW includes interacting kinetic energy, G0W0 does not. 
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correlation energy functional. The question that we address below is, how the

kinetic energy is handled in a hybrid between Green’s function and Kohn-Sham

theory such as qpGW and how it a↵ects the resulting quasiparticle energies.

The di↵erence between the non-interacting and the interacting kinetic energy

of a GW calculation may be quantified by invoking the analogy with the random-

phase approximation (RPA).70,71 ] The total energy in scGW , G0W0 and RPA can be
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where T is the fully interacting kinetic energy, Ts the non-interacting kinetic energy, Eext the

external energy, EH the Hartree energy and Ex the exchange energy evaluated for the fully
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total energy:

Kinetic correlation energy is included in RPA by means of 
adiabatic connection. 
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Bond-making and bond-breaking - H2
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Natural orbital occupations - H2
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Unrestricted calculations - H2
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H2+ is the real problem

1 2 3 4 5 6 7
Bond Length [Å]

-0.65

-0.60

-0.55

-0.50

-0.45
T

ot
al

 E
ne

rg
y 

[H
a]

H2
+

RPA@PBE0

HF

PBE

RPA@PBE

I. Y. Zhang, P. Rinke, and M. Scheffler,  
New J. Phys. 18, 073026 (2016)



Correlations from the Bethe-Goldstone equation

Igor Zhang 

Fritz-Haber-Institut  
Berlin

Matthias Scheffler John Perdew 

Tempel University  
Philadelphia

Fritz-Haber-Institut  
Berlin



Bethe-Goldstone equation (exact for 2 electrons)

A. L. Fetter and J. D. Walecka, Quantum Theory of Many 
Particle Systems, McGraw-Hill, New York (1996)
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2nd order Bethe-Goldstone equation (BGE2)

but! retain coupling



2nd order Bethe-Goldstone equation (BGE2)
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BGE2 also dissociates H2+ correctly. 

BGE2 applied to H2 dissociation
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But, “bump” at midrange!



Beyond BGE2

I. Y. Zhang, P. Rinke, and M. Scheffler,  
New J. Phys. 18, 073026 (2016)

1: Additional diagrams (towards BGE) - not today

2: Screening factor           (sBGE2)
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BGE2 applied to H2 dissociation
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BGE2 applied to H2 dissociation
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What about many-electron 
correlation?



A new, parameter free level 5 DFT functional

I. Y. Zhang, J. Perdew, P. Rinke, M. Scheffler, 
Phys. Rev. Lett. 117, 133002 (2016)

• Currently applied non-self-consistently. 
• sBGE2 only applied to opposite spins.
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ZRPS applied to N2 dissociation
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Singlet multi-reference problem

in meV PBE PBE0 RPA rPT2 ZRPS
A 65 -432 -190 -738 41
B 259 -311 -206 -768 12
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Singlet multi-reference problem

in meV PBE PBE0 RPA rPT2 ZRPS
A 65 -432 -190 -738 41
B 259 -311 -206 -768 12

ZRPS also performs very well for weakly 
correlated systems.

I. Y. Zhang, J. Perdew, P. Rinke, M. Scheffler, 
Phys. Rev. Lett. 117, 133002 (2016)



New benchmark set for strong correlation



New benchmark set for strong correlation



Wish list for electronic structure approaches
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Future work

in meV PBE PBE0 RPA rPT2 ZRPS
A 65 -432 -190 -738 41
B 259 -311 -206 -768 12

Outlook 

How to combine BGE2 and ZRPS with RPA and GW? 

Bethe-Salpeter equation?

I. Y. Zhang, J. Perdew, P. Rinke, M. Scheffler, 
Phys. Rev. Lett. 117, 133002 (2016)



Thank you!





H2 dissociation - performance of GW and RPA
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ZRPS performance for weak correlation

I. Y. Zhang, J. Perdew, P. Rinke, M. Scheffler, 
Phys. Rev. Lett. 117, 133002 (2016)



ZRPS applied to H2 dissociation
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ZRPS applied to N2 dissociation
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ZRPS applied to C2 dissociation
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Thank you!


