Self-consistent many-body methods for bond-making and breaking

Patrick Rinke School of Science Department of Applied Physics Helsinki, Finland

Aalto University School of Science

all dimensionalities (0D-3D)

Aalto University School of Science

RPA applied to the f-electron metal Cerium

Marco CasadeiXinguo Renformerly UC LouvainHefei University ofLa Neuve, BelgiumTechnology, China

Matthias Scheffler FHI, Berlin

Angel Rubio MPSD, Hamburg

The f-electron metal Cerium

The f-electron metal Cerium

Cerium - density difference in PBE0 $n(\alpha) - n(\gamma)$ at a=4.6Å

The f-electron metal Cerium

M. Casadei, X. Ren, P. Rinke, A. Rubio, M. Scheffler, Phys. Rev. Lett. 109, 146402 (2012)

RPA applied to the f-electron metal Cerium

M. Casadei, X. Ren, P. Rinke, A. Rubio, M. Scheffler, Phys. Rev. Lett. 109, 146402 (2012)

Theoretical spectroscopy - GW approximation

self-energy:

$$\Sigma^{GW}(\mathbf{r},\mathbf{r}',\omega) = -\frac{i}{2\pi} \int d\omega e^{i\omega\eta} G(\mathbf{r},\mathbf{r}',\omega+\omega') W(\mathbf{r},\mathbf{r}',\omega')$$

• G_0W_0 : correction to eigenvalues from density-functional theory (DFT):

$$\epsilon_{n\mathbf{k}}^{qp} = \epsilon_{n\mathbf{k}}^{\text{DFT}} + \Sigma_{n\mathbf{k}}^{G_0W_0}(\epsilon_{n\mathbf{k}}^{qp}) - v_{n\mathbf{k}}^{xc}$$

Return to the GW self-energy

Correlation part of the GW self/total energy

$$E_{\rm c}^{GW}[G] = \int_0^\infty \frac{d\omega}{2\pi} {\rm Tr} \left(\Sigma_c^{GW}(i\omega) G(i\omega) \right)$$

Question?

Does a given correlation energy approximation uniquely define the total energy?

GW versus RPA

Dyson's equation:

$$G^{-1} = G_0^{-1} - \Sigma$$

GW

Optimized eff. potential: $G_0 \left[\Sigma - v_{xc}^{OEP} \right] G_0 = 0$

Random-Phase Approximation (RPA)

F. Caruso, D. R. Rohr, M. Hellgren, X. Ren, P. Rinke, A. Rubio, and M. Scheffler, Phys. Rev. Lett. 110, 146403 (2013)

GW versus RPA

total energy e.g. Galitskii-Migdal adiabatic-connection fluctuation-dissipation theorem

$$E_{\rm xc} = E_{\rm xc}[G] \qquad E_{xc} = E_{xc}\left[-iG_0G_0\right]$$

F. Caruso, D. R. Rohr, M. Hellgren, X. Ren, P. Rinke, A.
 Rubio, and M. Scheffler, Phys. Rev. Lett. 110, 146403 (2013)

A? ^A

 Aalto University
 F. Caruso, P. Rinke, et al, Phys. Rev. Lett. 110, 146403 (2013)

 School of Science
 F. Caruso, P. Rinke et al. Phys. Rev. B 88, 075105 (2013)

 M. Hellgren, Rohr, Gross, J. Phys. Chem. 136, 034106 (2012)

GW versus RPA

implemented in FHI-aims [1]

local atomic basisall-electron

Dyson's equation:

$$G^{-1} = G_0^{-1} - \Sigma$$

Perturbative RPA in FHI-aims self-consistent RPA in [2]

 Aalto University
 [1] Ren, Rinke, et al., New J. Phys. 14, 053020 (2012),

 School of Science
 Caruso, Rinke et al. Phys. Rev. B 86, 081102(R) (2012)

 [2] Hellgren, Rohr, Gross, J. Phys. Chem. 136, 034106 (2012)

GW versus RPA

Fabio Caruso Humboldt University, Berlin

Daniel Rohr Rosa Luxemburg Gymnasium

Xinguo Ren Hefei University of Technology, China

Matthias Scheffler FHI, Berlin

Maria Hellgren IMPMC, UPMC, Paris

Angel Rubio MPSD, Hamburg

Bond-making and bond-breaking - H₂

Aalto University
School of ScienceF. Caruso, D. R. Rohr, M. Hellgren, X. Ren, P. Rinke, A.
Rubio, and M. Scheffler, Phys. Rev. Lett. 110, 146403 (2013)

Bond-making and bond-breaking - H₂

Aalto University
School of ScienceF. Caruso, D. R. Rohr, M. Hellgren, X. Ren, P. Rinke, A.
Rubio, and M. Scheffler, Phys. Rev. Lett. 110, 146403 (2013)

Bond-making and bond-breaking - H₂

(a)

)

3

Aalto University M. Hellgren, F. Caruso, D. R. Rohr, X. Ren, A. Rubio, M. School of Science Scheffler, P. Rinke, Phys. Rev. B 91, 165110 (2015)

Kinetic energy analysis

total energy:

$$E^{GW}[G] = T[G] + E_{ext}[G] + E_{H}[G] + E_{x}[G] + E_{c}^{GW}[G]$$

$$E^{G_{0}W_{0}}[G_{0}] = T_{s}[G_{0}] + E_{ext}[G_{0}] + E_{H}[G_{0}] + E_{x}[G_{0}] + E_{c}^{GW}[G_{0}]$$

scGW includes interacting kinetic energy, G₀W₀ does not.

Kinetic energy analysis

total energy:

$$E^{GW}[G] = T[G] + E_{ext}[G] + E_{H}[G] + E_{x}[G] + E_{c}^{GW}[G]$$

$$E^{G_{0}W_{0}}[G_{0}] = T_{s}[G_{0}] + E_{ext}[G_{0}] + E_{H}[G_{0}] + E_{x}[G_{0}] + E_{c}^{GW}[G_{0}]$$

$$E^{RPA}[G_{0}] = T_{s}[G_{0}] + E_{ext}[G_{0}] + E_{H}[G_{0}] + E_{x}[G_{0}] + E_{c}^{RPA}[G_{0}] + T_{c}^{RPA}[G_{0}]$$

Kinetic correlation energy is included in RPA by means of adiabatic connection.

Bond-making and bond-breaking - H₂

Natural orbital occupations - H₂

Unrestricted calculations - H₂

H₂⁺ is the real problem

Correlations from the Bethe-Goldstone equation

Igor Zhang Fritz-Haber-Institut Berlin

Matthias Scheffler

Fritz-Haber-Institut Berlin

John Perdew

Tempel University Philadelphia

Bethe-Goldstone equation (exact for 2 electrons)

$$\Psi_{ab}(\lambda) = \Phi_{ab} - \sum_{r < s}^{vir} \frac{\Phi_{rs}}{\Delta \epsilon_{ab}^{rs} - e_{ab}(\lambda)} \langle \Phi_{rs} | \lambda \hat{V}_{ee} | \Psi_{ab} \rangle$$
$$\Delta \epsilon_{ab}^{rs} = \epsilon_r + \epsilon_s - \epsilon_a - \epsilon_b$$

$$e_{ab}(\lambda) = -\lambda^2 \sum_{r < s}^{vir} \frac{\langle \Phi_{ab} | \hat{V}_{ee} | \Phi_{rs} \rangle \langle \Phi_{rs} | \hat{V}_{ee} | \Psi_{ab} \rangle}{\Delta \epsilon_{ab}^{rs} - e_{ab}(\lambda)}$$

Bethe-Goldstone equation (exact for 2 electrons)

$$\Psi_{ab}(\lambda) = \Phi_{ab} - \sum_{r < s}^{vir} \frac{\Phi_{rs}}{\Delta \epsilon_{ab}^{rs} - e_{ab}(\lambda)} \langle \Phi_{rs} | \lambda \hat{V}_{ee} | \Psi_{ab} \rangle$$

$$(\int \int + \int - \int + \cdots \text{ (pp-Ladder)} + \cdots \text{ (pp-Ladder)}$$

$$e_{ab}(\lambda) = -\lambda^2 \sum_{r < s}^{vir} \frac{\langle \Phi_{ab} | \hat{V}_{ee} | \Phi_{rs} \rangle \langle \Phi_{rs} | \hat{V}_{ee} | \Psi_{ab} \rangle}{\Delta \epsilon_{ab}^{rs} - e_{ab}(\lambda)}$$

$$(e_{ab}\text{-coupling})$$

Aalto University School of Science A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems, McGraw-Hill, New York (1996)

2nd order Bethe-Goldstone equation (BGE2)

$$\Psi_{ab}(\lambda) = \Phi_{ab} - \sum_{r < s}^{vir} \frac{\Phi_{rs}}{\Delta \epsilon_{ab}^{rs} - e_{ab}(\lambda)} \langle \Phi_{rs} | \lambda \hat{V}_{ee} | \Psi_{ab} \rangle$$
$$\approx \Phi_{ab} - \sum_{r < s}^{vir} \frac{\Phi_{rs}}{\Delta \epsilon_{ab}^{rs} - e_{ab}(\lambda)} \langle \Phi_{rs} | \lambda \hat{V}_{ee} | \Phi_{ab} \rangle$$

but! retain coupling

2nd order Bethe-Goldstone equation (BGE2)

BGE2 applied to H₂ dissociation

BGE2 applied to H₂ dissociation

BGE2 applied to H₂ dissociation

Beyond BGE2

1: Additional diagrams (towards BGE) - not today

2: Screening factor
$$s_{rs}^{ab}$$
 (sBGE2)

$$e_{ab}(\lambda) \approx -\lambda^2 \sum_{r < s}^{vir} \frac{|\langle \phi_a \phi_b | | \phi_r \phi_s \rangle|^2}{\Delta \epsilon_{ab}^{rs} - s_{rs}^{ab} e_{ab}(\lambda)}$$
$$s_{rs}^{ab} = \operatorname{erfc}(\Delta \epsilon_{ab}^{rs})$$

BGE2 applied to H₂ dissociation

BGE2 applied to H₂ dissociation

A new, parameter free level 5 DFT functional

DFT exchange-correlation functional

$$E_{xc}^{\text{ZRPS}} = \frac{1}{2}E_x^{\text{PBE}} + \frac{1}{2}E_x^{\text{HF}} + \frac{3}{4}\left(E_c^{\text{PBE}} + E_{vdw}^{\text{TS}}\right) + \frac{1}{4}E_{c,os}^{\text{sBGE2}}$$

Currently applied non-self-consistently.
sBGE2 only applied to opposite spins.

ZRPS applied to N₂ dissociation

Singlet multi-reference problem

in meV	PBE	PBE0	RPA	rPT2	ZRPS
Α	65	-432	-190	-738	41
В	259	-311	-206	-768	12

 $\mathbf{A}: \mathsf{O}_3 + \mathsf{C}_2\mathsf{H}_2 \to \checkmark \checkmark \mathbf{B}: \mathsf{O}_3 + \mathsf{C}_2\mathsf{H}_4 \to \checkmark \checkmark \checkmark$

Singlet multi-reference problem

in meV	PBE	PBE0	RPA	rPT2	ZRPS
Α	65	-432	-190	-738	41
В	259	-311	-206	-768	12

 $\mathbf{A}: \mathsf{O}_3 + \mathsf{C}_2\mathsf{H}_2 \to \checkmark \checkmark \mathbf{B}: \mathsf{O}_3 + \mathsf{C}_2\mathsf{H}_4 \to \checkmark \checkmark \checkmark$

ZRPS also performs very well for weakly correlated systems.

New benchmark set for strong correlation

↓ Q MR@DFT

MR19 test set

- 19 MR data points
- 2 EAs, 4 AEs, and 13 DEs
- ► REs ∈ [0.36 eV, 18.68 eV]
- ▶ av. |RE|=6.79 eV

New benchmark set for strong correlation

How to combine BGE2 and ZRPS with RPA and GW?

Bethe-Salpeter equation?

Thank you!

J Mater Sci (2012) 47:7447–7471 DOI 10.1007/s10853-012-6570-4

FIRST PRINCIPLES COMPUTATIONS

Random-phase approximation and its applications in computational chemistry and materials science

Xinguo Ren · Patrick Rinke · Christian Joas · Matthias Scheffler

H₂ dissociation - performance of GW and RPA

Aalto University School of Science

M. Hellgren, F. Caruso, D. R. Rohr, X. Ren, A. Rubio, M. Scheffler, P. Rinke, Phys. Rev. B 91, 165110 (2015)

ZRPS performance for weak correlation

Mean absolute error (MAE). Max absolute error (Max) is in parentheses (in meV).

	G2-1	RH76	ISO34	S22	Overall
PBE0-TS	124	178	74	15	124
	(404)	(614)	(236)	(58)	(614)
RPA	405	88	44	33	167
	(1171)	(292)	(162)	(79)	(1171)
rPT2	159	101	51	21	100
	(936)	(382)	(186)	(69)	(936)
PT2	1570	483	116	137	695
	(4623)	(2038)	(451)	(537)	(4623)
sBGE2	1555	480	113	145	695
	(4602)	(2029)	(451)	(553)	(4602)
ZRPS	73	92	47	10	69
	(195)	(363)	(197)	(32)	(363)

S22

G2-1	:	55	atomization energies
ISO34	:	34	isomerization energies

BH76 : 76 reaction barriers

: 22 bio-oriented weak interactions

Aalto University School of Science

ZRPS applied to H₂ dissociation

ZRPS applied to N₂ dissociation

ZRPS applied to C₂ dissociation

Thank you!

