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Perspective talks

The purpose is to synthetically and didactically present the
state-of-the-art of a specific approach

1 pinpointing questions

2 opening current challenges to solve

3 and providing food for thought for discussion.

4 (Lecturers time: 20-25 minutes)
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What is the role of Nonorthogonal methods?

Interpretation and chemical insight

Realizes that non-orthogonal problems leads to inherent
computational problems

Instead: Gives a better way of understanding bonding

(From my point of view: far too defensive)

An efficient computational tool

Methods based on non-othogonal orbitals will not replace standard
methods in general

But, there is a signficant group of molecules containing atoms with
partial filled shells and limited overlap, that are best described using
non-orthogonal methods
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The major remaining challenge in quantum chemistry:
Static correlation

Status

XASSCF, X=C,R,G leads to expansions that will not be able to treat
say 30 electrons in 30 orbitals for the next few decades

A number of newer methods are emerging: DMRG, Tensor-methods,
Monte Carlo CI ... - impressive progress

But

I would like to do the expansions directly in terms of quantities that
are chemically meaningfull.

Thus, whereas most are moving forward (with impressive speed), I
will take the opposite approach: Look back (a prerogative of the older
generation) and re-examine the valence bond method
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When do we perform standard XASSCF(X=C,R,G)
calculations?

Molecules with partly occupied shells with limited overlap

Includes molecules of main-group elements at stretched geometries
and transition, lanthanide, and actinice compounds at equilibrium.

Small overlap → limited splitting between bonding and anti-bonding
orbitals.

A RHF calculation produces a wave function with many ionic terms
not present in the full wave function.

The major correction of the MCSCF calculation is to introduce
left-right correlation to clean up the mess of RHF.

(MCSCF is also needed when there are atomic configurations with
nearly identical energies)
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The non-orthogonal/valence bond approach

The standard procedure

Use atomic rather than delocalized orbitals

The number of electrons on each atom/ set of atomic orbitals is
specified - several combinations may be needed

When the partly filled atomic orbitals on different atoms have a small
overlap, the covalent configuration is strongly dominating

Molecules, where the standard MO-RHF-MCSCF approach is most
requiring, have (often) simple non-orthogonal expansions.

Ionic terms are introduced by orbital-optimization allowing limited
delocalization of orbitals.
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Second Quantization

Describes electronic wave functions as products of creation operators
a†P

Example, the ground state of H2: a†1σαa
†
1σβ|Vac〉

The conjugate operators, aP removes (if possible an electron in
spin-orbital P.

The simplicity of the standard orthogonal theories arise from the
simple anticommutator [a†P , aQ ]+ = δQP

Non-orthogonal orbitals

For non-orthogonal orbitals, all the problems arises from
anti-commutation relation [a†P , aQ ]+ = SQP

One may introduce another set of orbitals, the bi-orthonormal
orbitals, ãQ =

∑
Q′ S

−1
Q′QaQ′

Their anticommutator with the original basis is [a†P , ãQ ]+ = δQP
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Algorithms for orbital optimization

Two types two be discussed

A single set of non-orthogonal orbitals

Several sets of orbitals
1 Each set is orthogonal and uses all SDs of the N-electron space, say FCI
2 Each set is non-orthogonal and uses part of the N-electron space
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Algorithms for optimizing a single set of orbitals

Target form of wave function

A set of orthonormal double occupied inactive orbitals

A set of variably occupied non-orthogonal orbitals

A set of orthonormal unoccupied orbitals

The various spaces are kept orthonormal to each other

Design goals

Complete and non-redundant parameterization

Must at all points be faster and simpler that the corresponding
CASSCF expansion - (requires that we bypass the three- and
four-particle density matrices of standard non-orthogonal orbital
optimization).

Should be easy to extent to response theory for calculating non-linar
and excited state propeties including magnetic properties ....
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Algorithms for optimizing a single set of orbitals
Parameterization of orbital rotations

Use exponential operators

|0̃〉 = exp(−κ̂A) exp(−κ̂S)|0〉/
√
〈0| exp(−2κ̂S)|0〉

1 κA =
∑

p>q κ
A
pq(Epq − Eqp)

2 κS =
∑

x>y κ
S
xy (Exy + Eyx) (sum only over active orbitals)

Epq =
∑

σ=α,β a
†
pσaqσ

Note

Operators written in terms of the original operators - not
bi-orthogonality here

The operator exp(−κ̂A) conserves the metric. The operator
exp(−κ̂S) changes the metric, but only between the active orbitals.

Internal rotations in the inactive and secondary orbitals are redundant
and therefore not in use.
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Algorithms for optimizing a single set of orbitals
Energy

The energy

E (κ) = 〈0̃|Ĥ|0̃〉
〈0̃|0̃〉

|0̃〉 = exp(−κ̂A) exp(−κ̂S)|0〉/
√
〈0| exp(−2κ̂S)|0〉

E = 〈0| exp(−κ̂S ) exp(κ̂A)Ĥ exp(−κ̂A) exp(−κ̂S )|0〉
〈0| exp(−2κ̂S )|0〉

The κA terms may be expanded as usual using the BCH expansion

No BCH expansion for the κS terms

Bioorthogonal reexpressions are used, either the right or left hand side
is expressed in the bioorthogonl expansion
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Algorithms for optimizing a single set of orbitals
The gradient

(The energy: E = 〈0| exp(−κ̂S ) exp(κ̂A)Ĥ exp(−κ̂A) exp(−κ̂S )|0〉
〈0| exp(−2κ̂S )|0〉

)

The gradient (assuming 〈0|0〉 = 1

1 E
[1]
A,pq = ∂E

∂κApq
= 〈0| [Epq − Eqp,H] |0〉

2 E
[1]
S ,xy = ∂E

∂κSxy
= −2〈0|(Exy + Eyx)(H − E )|0〉

The gradient wrt symmetric operators

Is the term that in standard algorithms requires the 3-electron density

Note that the excitation is in the active space

Proceed therefore instead as

Calculate sigma-vector, |S̃〉 = (H − E )|0〉 in biorthogonal basis
Calculate one-electron transition density 〈0|(Exy + Eyx)|S̃〉

Jeppe Olsen (Chemistry, qLeap, AU) Orbital Optimization March 27, 2017 12 / 17



A novel approach to orbital optimization of non-orthogonal
expansions

Example of convergence: Cr2 in ano-4 4321, 3 Ångstöm

Iteration E − Econv Step-size

1 0.0431467207 0.339× 1000

2 0.0018950153 0.162× 1000

3 0.0000270094 0.508× 10−1

4 0.0000001751 0.414× 10−2

5 0.0000000003 0.206× 10−3

Comments

Distance is where 3d-3d bonding occurs

The accuracy of initial guess (atomic orbitals) is noteworthy

Optimization takes about 50 seconds on my (now retired) Macbook
for one geometry
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Convergence towards CASSCF of the hierarchy for the
chromium trimer
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Figure includes the results using
the initial and optimised orbitals

Energies are relative to those at
3.0 Å.

Orbital optimisation is perhaps
not essential?

Very accurate results are
obtained by including up to
double excitations

Dimensions: N(18,18,0) = 4
862, N(18,18,2) = 1 986 842,
N(18,18,9) = 112 318 492.
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Current status and the future plans/dreams

up to 18-20 unpaired electrons can be used. Selected of the crucial
parts of the code has been extended to treat 30 unpaired electrons.

Standard CI is still going in several parts of the code, but these will
be removed in the next year.

Full second order (including orbital-CI coupling is also under
development, as are response theory in the frequency domain.

Non-orthogonal expansions containing hundred of millions of SDs
have been realized (yes, in the Mac-book)
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Algorithms for optimizing wave functions containing
several sets of orbitals

Why several sets of orbitals, consider F2

The correlation energy increases (in absolute magnitude) when the
two F-atoms approach each other

Explanations:
1 The standard answer: When the two F-atoms approaches each other,

the electron density increases, and therefore also the correlation energy
2 The VB person: Yes, but there is an effect more: When the two atoms

appoaches each other, there is also a deviation from RHF by the
tendency for an electron to jump from on F-atom to the other, forming
the F+ F- ionic term.

The 2p-orbitals for F− are pretty different from the orbitals for the
neutral F and therefore to describe the above effect in an efficient
manner, one needs several sets of orbitals.

The simultaneous optimization of several sets of orbitals is also
needed to desribe for example mixed valence states.
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Algorithms for optimizing wave functions containing
several sets of orbitals

Two sets of codes

One where, for example numerous HF or CAS states, each with
different orthonormal orbitals are added and optimized

One where, say a CAspace is divided into several parts, and each part
is given a set of non-orthonormal orbitals

Not simple coding

Central aspects

The gradient can again be described only in terms of one- and
two-electron densities using a number of tricks and rewrites

The explicit Hessian requires now a three-body term

A direct approach, where the Hessian times a vector is calculated,
may again be formulated in terms of two-electron terms.
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