

QRPA for axially-symmetric deformed nuclei (or QRPA in cylindrical basis)

S. Péru (CEA, DAM, DIF)

Reminder

Static mean field (HFB)

for Ground State Properties :

- Masses
- Deformation
- (Single particle levels)

http://www-phynu.cea.fr/HFB-Gogny_eng.htm S. Hilaire & M. Girod, EPJ **A33** (2007) 237

Beyond static mean field approximation (for exple QRPA)

for description of Excited State Properties

- Low-energy collective levels
- Giant Resonances
- Beta decay

RPA approaches describe

all multipolarties and all parities, collective states and individual ones, low energy and high energy states

with the same accuracy.

Within the small amplitude approximation, i.e. « harmonic » nuclei

Spherical RPA with Gogny force

J. Dechargé and L.Sips, Nucl. Phys. **A 407**,1 (1983) J.P. Blaizot, J.F. Berger, J. Dechargé, M. Girod, Nucl. Phys. A 591, 435 (1995) S. Péru, JF. Berger, PF. Bortignon, Eur. Phys. J. A **26**, 25-32, (2005)

Axially symetric deformed QRPA with Gogny force

S. Péru, H. Goutte, Phys. Rev. C 77, 044313, (2008)
M. Martini, S. Péru and M. Dupuis, Phys. Rev. C 83, 034309 (2011)
S. Péru *et al*, Phys. Rev. C 83, 014314 (2011)
S. Péru and M. Martini, EPJA (2014) 50: 88

RPA approaches are well adapted for describing giant resonances

HFB formalism

 \sim

$$F(\rho,\kappa) = \sum_{\alpha\beta} t_{\alpha\beta}\rho_{\beta\alpha} + \frac{1}{2}\sum_{\alpha\beta\gamma\delta} \langle \alpha\beta|\mathcal{V}(\rho)|\widetilde{\gamma\delta}\rangle\rho_{\gamma\alpha}\rho_{\delta\mu} + \frac{1}{4}\sum_{\alpha\beta\gamma\delta} \langle \alpha\beta|\mathcal{V}(\rho)|\widetilde{\gamma\delta}\rangle\kappa_{\beta\alpha}^*\kappa_{\gamma\delta}$$
$$\delta F = \sum_{\alpha\beta} \frac{\partial F}{\partial\rho_{\beta\alpha}}\delta\rho_{\alpha\beta} + \frac{1}{2}\sum_{\alpha\beta} \left(\frac{\partial F}{\partial\kappa_{\beta\alpha}}\delta\kappa_{\alpha\beta} + \frac{\partial F}{\partial\kappa_{\beta\alpha}^*}\delta\kappa_{\alpha\beta}^*\right)$$

$$H_B = \begin{pmatrix} e & \Delta \\ -\Delta^* & -e^* \end{pmatrix} \qquad e_{\alpha\beta} = \frac{\partial F}{\partial \rho_{\beta\alpha}} \qquad \Delta_{\alpha\beta} = \frac{\partial F}{\partial \kappa_{\alpha\beta}^*}$$

$$\mathcal{R} = \begin{pmatrix} \rho & \kappa \\ -\kappa^* & (1-\rho^*) \end{pmatrix} \qquad [H_B, \mathcal{R}] = 0$$

cea DAM, DIF, S. Péru

(Q)RPA formalism 1/3

$$F(\rho,\kappa) = \sum_{\alpha\beta} t_{\alpha\beta}\rho_{\beta\alpha} + \frac{1}{2}\sum_{\alpha\beta\gamma\delta} \langle \alpha\beta|\mathcal{V}(\rho)|\widetilde{\gamma\delta}\rangle\rho_{\gamma\alpha}\rho_{\delta\ell} + \frac{1}{4}\sum_{\alpha\beta\gamma\delta} \langle \alpha\beta|\mathcal{V}(\rho)|\widetilde{\gamma\delta}\rangle\kappa_{\beta\alpha}^*\kappa_{\gamma\delta}$$
$$\delta F_2 = \frac{1}{2}\sum_{\alpha\beta} \left[\delta\rho_{\alpha\beta}\sum_{\gamma\delta} \left(V_{\beta\alpha,\delta\gamma}^{CM}\delta\rho_{\gamma\delta} + V_{\beta\alpha,\delta\gamma}^M\delta\kappa_{\gamma} + \delta\kappa_{\alpha\beta}\sum_{\gamma\delta} \left(V_{\beta\alpha,\delta\gamma}^{M*}\delta\rho_{\gamma\delta} + V_{\beta\alpha,\delta\gamma}^P\delta\kappa_{\gamma\delta} + V_{\beta\alpha,\delta\gamma}^M\delta\kappa_{\gamma\delta} + \delta\kappa_{\alpha\beta}\sum_{\gamma\delta} \left(V_{\beta\alpha,\delta\gamma}^{M*}\delta\rho_{\gamma\delta} + V_{\beta\alpha,\delta\gamma}^P\delta\kappa_{\gamma\delta} + V_{\beta\alpha,\delta\gamma}^M\delta\kappa_{\gamma\delta} + \delta\kappa_{\alpha\beta}\sum_{\gamma\delta} \left(V_{\beta\alpha,\delta\gamma}^{M*}\delta\rho_{\gamma\delta} + V_{\beta\alpha,\delta\gamma}^M\delta\kappa_{\gamma\delta} + \delta\kappa_{\alpha\beta}\sum_{\gamma\delta} \left(V_{\beta\alpha,\delta\gamma}^M\delta\rho_{\gamma\delta} + V_{\beta\alpha,\delta\gamma}^M\delta\kappa_{\gamma\delta} + V_{\beta\alpha,\delta\gamma}^M\delta\kappa_{\gamma\delta} + \delta\kappa_{\alpha\beta}\sum_{\gamma\delta} \left(V_{\beta\alpha,\delta\gamma}^M\delta\rho_{\gamma\delta} + V_{\beta\alpha}\sum_{\gamma\delta} \right) \right) \right]$$

$$A_{ph,p'h'} = (\epsilon_p - \epsilon_h)\delta_{pp'}\delta_{hh'} + \frac{\partial^2 F}{\partial\rho_{hp}\partial\rho_{p'h'}}$$

$$\begin{split} V^{CM}_{\beta\alpha,\gamma\delta} &= \frac{1+\delta_{\alpha\beta}}{2} \frac{1+\delta_{\gamma\delta}}{2} \frac{\partial^2 F}{\partial\rho_{\alpha\beta}\partial\rho_{\gamma\delta}} \\ V^{M}_{\beta\alpha,\gamma\delta} &= \frac{1+\delta_{\alpha\beta}}{2} \frac{1+\delta_{\gamma\delta}}{2} \frac{\partial^2 F}{\partial\rho_{\alpha\beta}\partial\kappa_{\gamma\delta}} \\ V^{M*}_{\beta\alpha,\gamma\delta} &= \frac{1+\delta_{\alpha\beta}}{2} \frac{1+\delta_{\gamma\delta}}{2} \frac{\partial^2 F}{\partial\partial\kappa_{\alpha\beta}\rho_{\gamma\delta}} \\ V^{P}_{\beta\alpha,\gamma\delta} &= \frac{1+\delta_{\alpha\beta}}{2} \frac{1+\delta_{\gamma\delta}}{2} \frac{\partial^2 F}{\partial\kappa_{\alpha\beta}\partial\kappa_{\gamma\delta}} \end{split}$$

$$B_{ph,p'h'} = \frac{\partial^2 F}{\partial \rho_{hp} \partial \rho_{h'p'}}$$

$$\begin{pmatrix} A & B \\ B & A \end{pmatrix} \begin{pmatrix} X_n \\ Y_n \end{pmatrix} = \omega_n \begin{pmatrix} X_n \\ -Y_n \end{pmatrix}$$

cea DAM, DIF, S. Péru

(Q)RPA formalism 2/3

$$\begin{split} V_{\alpha\beta,\gamma\delta}^{CM} &= \frac{1+\delta_{\alpha\beta}}{2} \frac{1+\delta_{\gamma\delta}}{2} \frac{\partial^2 F}{\partial \rho_{\beta\alpha} \partial \rho_{\gamma\delta}} \\ &= \langle \alpha\gamma | \mathcal{V} | \widetilde{\beta\delta} \rangle \\ &+ \sum_{\gamma'\delta'} \langle \alpha\gamma' | \frac{\partial \mathcal{V}}{\partial \rho_{\alpha\beta}} | \widetilde{\beta\delta'} \rangle \rho_{\delta'\gamma'} \\ &+ \sum_{\gamma'\delta'} \langle \gamma\gamma' | \frac{\partial \mathcal{V}}{\partial \rho_{\alpha\beta}} | \widetilde{\delta\delta'} \rangle \rho_{\delta'\gamma'} \\ &+ \frac{1}{2} \sum_{\gamma'\delta'\gamma''\delta''} \langle \gamma'\gamma'' | \frac{\partial^2 \mathcal{V}}{\partial \rho_{\delta\gamma} \partial \rho_{\alpha\beta}} | \widetilde{\delta'\delta''} \rangle \rho_{\delta'\gamma'} \rho_{\delta''\gamma''} \\ &+ \frac{1}{2} \sum_{\gamma'\delta'\gamma''\delta''} \langle \gamma'\overline{\gamma''} | \frac{\partial^2 \mathcal{V}}{\partial \rho_{\delta\gamma} \partial \rho_{\alpha\beta}} | \widetilde{\delta'} \widetilde{\delta''} \rangle \kappa_{\gamma''\gamma''} \kappa_{\delta'\delta''}. (46) \\ &\sum_{\gamma'\delta'} \langle \alpha\gamma' | \frac{\partial \mathcal{V}}{\partial \rho_{\gamma\delta}} | \widetilde{\beta\delta'} \rangle \rho_{\delta'\gamma'} = \\ &\delta_{\sigma_{\alpha}\sigma_{\beta}} \delta_{\sigma_{\gamma}\sigma_{\delta}} \delta_{\tau_{\alpha}\tau_{\beta}} \delta_{\tau_{\gamma}\tau_{\delta}} t_{0}\alpha_{0} \\ &\cdot \left\langle \alpha\gamma \left| \delta(r_{1} - r_{2})\rho^{\alpha_{0} - 1} \left(\left(1 + \frac{x_{0}}{2} \right) \rho \right. \right. \right. \right. \end{split}$$

$$\sum_{\gamma'\delta'\gamma''\delta''} \langle \gamma'\gamma'' | \frac{\partial^2 \mathcal{V}}{\partial \rho_{\alpha\beta} \partial \rho_{\gamma\delta}} | \widetilde{\delta'\delta''} \rangle \rho_{\delta'\gamma'} \rho_{\delta''\gamma''} = \delta_{\sigma_{\alpha}\sigma_{\beta}} \delta_{\sigma_{\gamma}\sigma_{\delta}} \delta_{\tau_{\alpha}\tau_{\beta}} \delta_{\tau_{\gamma}\tau_{\delta}} t_0 \alpha_0 (\alpha_0 - 1) \cdot \left\langle \alpha \gamma \left| \delta(r_1 - r_2) \rho^{\alpha_0 - 2} \left(\left(1 + \frac{x_0}{2} \right) \rho^2 - \left(x_0 + \frac{1}{2} \right) \sum_{\tau} \rho^{\tau_{\alpha} 2} \right) \right| \beta \delta \right\rangle.$$

$$(49)$$

$$\mathbf{A}_{ij,kl} = (\epsilon_i + \epsilon_j)\delta_{ik}\delta_{jl} + \frac{1}{2}\sum_{\alpha\beta\gamma\delta} (1 + \delta_{\alpha\beta}) (1 + \delta_{\gamma\delta}) \langle \alpha\beta | \mathcal{V} | \widetilde{\gamma\delta} \rangle \left(\tilde{U}_{i\alpha}\tilde{V}_{j\gamma}U_{\delta k}V_{\beta l} - \tilde{U}_{i\alpha}\tilde{V}_{j\gamma}V_{\beta k}U_{\delta l} - \tilde{V}_{i\gamma}\tilde{U}_{j\alpha}U_{\delta k}V_{\beta l} + \tilde{V}_{i\gamma}\tilde{U}_{j\alpha}V_{\beta k}U_{\delta l} + \tilde{U}_{i\alpha}\tilde{U}_{j\beta}U_{\gamma k}U_{\delta l} + V_{\gamma i}V_{\delta j}\tilde{V}_{k\alpha}\tilde{V}_{l\beta} \right),$$
(50)

$$\mathbf{B}_{ij,kl} = \frac{1}{2} \sum_{\alpha\beta\gamma\delta} \left(1 + \delta_{\alpha\beta} \right) \left(1 + \delta_{\gamma\delta} \right) \left\langle \alpha\beta | \mathcal{V} | \widetilde{\gamma\delta} \right\rangle$$
$$\left(\tilde{U}_{i\alpha} \tilde{V}_{j\gamma} V_{\delta k} U_{\beta l} - \tilde{U}_{i\alpha} \tilde{V}_{j\gamma} U_{\beta k} V_{\delta l} \right.$$
$$\left. - \tilde{V}_{i\gamma} \tilde{U}_{j\alpha} V_{\delta k} U_{\beta l} + \tilde{V}_{i\gamma} \tilde{U}_{j\alpha} U_{\beta k} V_{\delta l} \right.$$
$$\left. + \tilde{U}_{i\alpha} \tilde{U}_{j\beta} V_{\delta k} V_{\gamma l} + \tilde{V}_{i\delta} \tilde{V}_{j\gamma} U_{\alpha k} U_{\beta l} \right), \tag{51}$$

S. P, M. Martini, EPJA (2014) 50:88

cea DAM, DIF, S. Péru

(Q)RPA Formalism 3/3

$$H|\nu\rangle = E_{\nu}|\nu\rangle \quad Q_{\nu}^{\dagger}|0\rangle = |\nu\rangle \quad Q_{\nu}|0\rangle = 0$$

Particle-hole excitations: RPA $Q^{\dagger}_{\nu} = \sum_{ph} X^{\nu}_{ph} a^{\dagger}_{p} a_{h} - Y^{\nu}_{ph} a^{\dagger}_{h} a_{p}$ -20--30--30--40--40----- 1 p3/2 ---- 1 p3/2 Neutron's HF h-h levels 2⁶Ne 1 s1/2 $\begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} \begin{pmatrix} X^{\nu} \\ Y^{\nu} \end{pmatrix} = \omega_{\nu} \begin{pmatrix} X^{\nu} \\ -Y^{\nu} \end{pmatrix}$ Ground state properties Hartree-Fock Bogoliubov: ε , u, v \longrightarrow **QRPA**: ω , X, Y \longrightarrow Excited states properties

cea DAM, DIF, S. Péru

Fig. 3. (Color online.) Systematics of 2^+ and 3^- excitation energies in tin isotopes from experiment and HFB + QRPA calculations using the Gogny D1M interaction.

Impact of cutoff energy in 2qp excitation basis

F. Lechaftois, I. Deloncle, S. P, PRC92,034315 (2015)

cea DAM, DIF, S. Péru

"Theory and applications of RPA-and-beyond methods in physics and chemistry", Jussieu, 2-4 May 2017

C22

Impact of frozen core

cea DAM, DIF, S. Péru

"Theory and applications of RPA-and-beyond methods in physics and chemistry", Jussieu, 2-4 May 2017

Cez

RPA in spherical symmetry

S. Péru, J.F. Berger, and P.F. Bortignon, Eur. Phys. Jour. A 26, 25-32 (2005)

$$V(1,2) = \sum_{j=1,2} e^{-\frac{(\vec{r}_1 - \vec{r}_2)^2}{\mu_j^2}} (W_j + B_j P_\sigma - H_j P_\tau - M_j P_\sigma P_\tau) \text{ central finite range} + t_0 (1 + x_0 P_\sigma) \,\delta(\vec{r}_1 - \vec{r}_2) \left[\rho \left(\frac{\vec{r}_1 + \vec{r}_2}{2} \right) \right]^\alpha \text{density dependent} + i W_{ls} \overleftarrow{\nabla}_{12} \delta(\vec{r}_1 - \vec{r}_2) \times \overrightarrow{\nabla}_{12} \cdot (\overrightarrow{\sigma}_1 + \overrightarrow{\sigma}_2) \text{ spin-orbit}$$

cea DAM, DIF, S. Péru

Axially-symmetric deformed QRPA

$$|\alpha, K\rangle = \theta_{\alpha, K}^{+} |0\rangle \qquad \qquad \theta_{n, K}^{+} = \sum_{i < j} X_{n, K}^{ij} \eta_{i, k_{i}}^{+} \eta_{j, k_{j}}^{+} - (-)^{K} Y_{n, K}^{ij} \eta_{j, -k_{j}} \eta_{i, -k_{i}} \eta_{i, -k_{i}$$

Possibility to treat axially-symmetric deformed nuclei

Restoration of rotational symmetry for deformed states

$$\left| JM(K) \right\rangle = \frac{\sqrt{2J+1}}{4\pi} \int d\Omega D_{MK}^{J}(\Omega) R(\Omega) \left| \theta_{K} \right\rangle + (-)^{J-K} D_{M-K}^{J}(\Omega) R(\Omega) \left| \overline{\theta}_{K} \right\rangle$$

to calculate: $\langle \tilde{0} | \hat{Q}_{\lambda\mu} | JM(K) \rangle$ for all QRPA states (K \leq J) $\hat{Q}_{\lambda\mu} \propto \sum r^{\lambda} (Y_{\lambda\mu})$ $r^{2}Y_{\lambda\mu} = \sum_{v} D^{\lambda}_{\mu v} r^{2}Y_{\lambda v}$ In intrinsic frame We use rotational approximation and relations for 3j symbols For example: $\mathbf{J}^{\pi} = \mathbf{2}^{*}$ $\langle \tilde{0} | \hat{Q}_{20} | JM(K) \rangle = \frac{1}{\sqrt{5}} \langle 0 | \hat{Q}_{20} | \theta_{K} \rangle \delta_{K,0} + \frac{\sqrt{3}}{\sqrt{5}} \langle 0 | \hat{Q}_{2-1} | \theta_{K} \rangle \delta_{K,\pm 1} + \frac{\sqrt{3}}{\sqrt{5}} \langle 0 | \hat{Q}_{22} | \theta_{K} \rangle \delta_{K,\pm 2}$ Using time reversal symmetry, three independent calculations (K^{π} = 0⁺, 1⁺, 2⁺) are needed.

First study with QRPA in axial symmetry

cea DAM, DIF, S. Péru

"Theory and applications of RPA-and-beyond methods in physics and chemistry", Jussieu, 2-4 May 2017

Impact of the deformation

M. Martini et al, PRC 94, 014304 (2016)

Multipolar responses for ²³⁸U

cea DAM, DIF, S. Péru

"Theory and applications of RPA-and-beyond methods in physics and chemistry", Jussieu, 2-4 May 2017

Systematic overestimation of the centroid energies :~ 2MeV

M. Martini et al, PRC 94, 014304 (2016)

Beyond the nuclear structure

cea DAM, DIF, S. Péru

Photoneutron and Photo-absorption cross sections for Mo isotopes C22

cea DAM, DIF, S. Péru

Dipole electric and magnetic excitations for Zr isotopes

Low Energy Enhancement in the γ Strength of the Odd-Even Nucleus ¹¹⁵In

cea DAM, DIF, S. Péru

Nuclear Excitations

cea DAM, DIF, S. Péru

DE LA RECHERCHE À L'INDUSTRIE

M. Martini, S. Péru and S. Goriely, Phys. Rev. C 89, 044306 (2014)

Here, the reference energy corresponds to the lowest 2-qp excitation associated with the ground state of the odd-odd daughter nucleus in which the quantum numbers of the single quasi-proton and neutron states are obtained from the self-consistent HFB calculation of the odd-odd system.

M. Martini, S. Péru and S. Goriely, Phys. Rev. C 89, 044306 (2014)

An example of deformed nucleus : ⁷⁶Ge

GT J^{π}=1⁺ distributions obtained by adding twice the K^{π}=1⁺ result to the K^{π}=0⁺ one

Displacements of the peaks
 Deformation influences the low energy strength hence β decay half-lives are expected to be affected

β^{-} decay half-lives of deformed isotopic chains

"Theory and applications of RPA-and-beyond methods in physics and chemistry", Jussieu, 2-4 May 2017

β^{-} decay half-lives of deformed isotopic chains

cea DAM, DIF, S. Péru

"Theory and applications of RPA-and-beyond methods in physics and chemistry", Jussieu, 2-4 May 2017

β^{-} decay half-life T_{1/2} : Comparison with other models

N

cea DAM, DIF, S. Péru

"Theory and applications of RPA-and-beyond methods in physics and chemistry", Jussieu, 2-4 May 2017

-02

β^{-} decay half-lives of the N=82, 126, 184 isotones

Relevance for the r-process nucleosynthesis

Shell Model: Martinez-Pinedo et al., PRL 83, 4502 (1999)

Possible origins of differences: GT Strengths, estimation of Q_{β} values, ...

cea DAM, DIF, S. Péru

C27

Thanks for your attention