# Modern Multi-Determinantal Total-State Wave Functions and their Relation to One-Electron Pictures like Valence Bond Theory

#### Katharina Boguslawski

Laboratory of Physical Chemistry ETH Zürich

July 19, 2012



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

#### **Outline**

- General Theory
  - Solution of the Schrödinger equation
  - Single-particle and many-particle states
  - Density matrices
- Ansätze to approximate the FCI wave function
  - Conventional approaches
  - Unconventional approaches: tensor network states
- Extraction of local quantities
- Case study: spin densities

#### Solution of the complete Schrödinger equation

#### The molecular Schrödinger equation

$$\hat{\mathcal{H}}\Psi = (\hat{\mathit{T}}_{\mathsf{N}} + \hat{\mathit{T}}_{\mathsf{e}} + \hat{\mathit{V}}_{\mathsf{ee}} + \hat{\mathit{V}}_{\mathsf{NN}} + \hat{\mathit{V}}_{\mathsf{eN}})\Psi = \mathsf{E}\Psi$$

- A molecular structure is a priori not defined
- For a general solution: do not make assumptions on particle properties
- ⇒ General wave function and distribution functions
- → Molecular structures can be derived from the mass distribution functions
- E. Mátyus, J. Hutter, U. Müller-Herold, M. Reiher, J. Chem. Phys. 2011, 135, 204302.
- E. Mátyus, J. Hutter, U. Müller-Herold, M. Reiher, Phys. Rev. A 2011, 83, 052512.
  - Practical Solution: Born–Oppenheimer approximation and solve only electronic Schrödinger equation for fixed nuclear coordinates

#### Exact solution of the electronic Schrödinger equation

#### The electronic Schrödinger equation

$$\hat{\mathcal{H}}_{\mathrm{el}}\Psi_{\mathrm{el}}=\mathcal{E}_{\mathrm{el}}\Psi_{\mathrm{el}}$$

with target quantity  $E_{\rm el}$ 

• Solution: expand  $\Psi_{\rm el}$  in a complete many electron basis set ( $\equiv$  electronic configurations  $\Phi_{\it l}$ )

$$\Psi_{\mathrm{el}} = \sum_{l=0}^{m} C_{l} \hat{\mathcal{A}}(\phi_{l_{1}}(\mathbf{r}_{1})\phi_{l_{2}}(\mathbf{r}_{2})\dots\phi_{l_{N}}(\mathbf{r}_{N})) = \sum_{l=0}^{m} C_{l}\Phi_{l}$$

with expansion coefficients  $C_l$ , antisymmetrizer  $\hat{\mathcal{A}}$  and a set of one-particle functions  $\{\phi_{l_i}\}_{i=1}^k$  from which the Slater determinant  $\Phi_l$  can be constructed

 $\Rightarrow$  Full configuration interaction solution  $(m \to \infty)$ 

#### **Dilemmas**

For practical purposes, m should be as small as possible:

multi-determinantal result (*m* finite) vs.

single-determinant independent particle model picture (m = 1, easy interpretable, Koopmans' theorem)

Choice of one-particle functions:

orthogonal orbitals (MO) vs. nonorthogonal orbitals (VB)

#### Technical remark

Many-electron basis functions (determinants) constructed from:

- non-orthogonal local orbital basis (VB)
  - ⇒ small number of configurations, technically demanding

- orthogonal, local orbitals
  - ⇒ small number of configurations, technically simple

- orthogonal, non-local orbitals (MO)
  - ⇒ large number of configurations, technically simple

#### Relation total state ←⇒ single-particle state

#### One-electron density matrix with elements $D_{pq}$

$$D_{pq} = \langle \Psi | a_{plpha}^\dagger a_{qlpha} + a_{peta}^\dagger a_{qeta} | \Psi 
angle$$

- The diagonal elements D<sub>pp</sub> are the orbital occupation numbers
- Restricted to the interval  $0 \le D_{pp} \le 2$
- Particularly useful set of occupation numbers: *natural-orbitals occupation*  $numbers n_p$  obtained by diagonalizing **D**

$$\mathbf{D} = \mathbf{U}\mathbf{n}\mathbf{U}^{\dagger} \quad 0 \leq n_p \leq 2, \ \sum_{p} n_p = N$$

- The eigenvectors  $\mathbf{u}_p$  of  $\mathbf{D}$  form the *natural orbitals*
- Example: bonding analysis in terms of effective bond order
   B. O. Roos, A. C. Borin, L. Gagliardi, Angew. Chem. Int. Ed. Engl. 2007, 46, 1469.
- ⇒ All orbitals contribute

#### **Density matrices**

ullet The expectation value of  $\hat{\mathcal{H}}_{\textit{el}}$  in second quantized form

$$\hat{\mathcal{H}}_{el} = \sum_{pq} \sum_{\sigma} t_{pq} a^{\dagger}_{p\sigma} a_{q\sigma} + rac{1}{2} \sum_{pqrs} \sum_{\sigma au} g_{pqrs} a^{\dagger}_{p\sigma} a^{\dagger}_{r au} a_{s au} a_{q\sigma}$$

for some normalized reference state  $\Psi$  reads

$$\langle \Psi | \hat{\mathcal{H}}_{\it el} | \Psi 
angle = \sum_{\it pq} t_{\it pq} D_{\it pq} + rac{1}{2} \sum_{\it pqrs} g_{\it pqrs} d_{\it pqrs}$$

with the one-electron orbital density matrix elements  $D_{pq}$  and the two-electron orbital density matrix elements  $d_{pqrs}$ 

$$d_{pqrs} = \langle \Psi | \sum_{\sigma au} a^\dagger_{p\sigma} a^\dagger_{r au} a_{slpha} a_{qlpha} | \Psi 
angle$$

 $\Rightarrow$  All information is contained in the density matrices  $D_{pq}$  and  $d_{pqrs}$ 

#### Density matrices: orbital ←⇒ spin-orbital basis

#### One-electron density matrix in spin-orbital basis

$$D_{pq} = \overline{D}_{p\alpha,q\alpha} + \overline{D}_{p\beta,q\beta}$$

where the overbars are used for the density matrix elements in the spin-orbital basis

ullet The natural-orbital occupation numbers are obtained by diagonalizing  $\overline{f D}$ 

$$\overline{\mathbf{D}} = \mathbf{U}\overline{\mathbf{n}}\mathbf{U}^{\dagger} \quad 0 \leq \overline{n}_{p} \leq 1, \ \sum_{p} \overline{n}_{p} = N$$

 Similarly, the two-electron density matrix can be resolved for each electron spin:

#### Two-electron density matrix in spin-orbital basis

$$d_{pqrs} = \overline{d}_{p\alpha,q\alpha,r\alpha,s\alpha} + \overline{d}_{p\beta,q\beta,r\beta,s\beta} + \overline{d}_{p\alpha,q\alpha,r\beta,s\beta} + \overline{d}_{p\beta,q\beta,r\alpha,s\alpha}$$

## Ansätze to approximate the FCI wave function

#### Conventional approaches with non-optimized orbitals

Restrict the many-electron basis  $\{\Phi_I\}$  to a set of *preselected* configurations

- Truncated CI wave function (single reference):
  - $\rightarrow$  Restrict FCI wave function to contain only single, double, triple, . . . excitations with respect to a reference configuration  $|\Phi_0\rangle$

#### CISD wave function

$$|\Psi_{\rm el}^{\rm CISD}\rangle = |\Phi_0\rangle + \sum_i^{\rm occ} \sum_a^{\rm unocc} C_i^a a_a^\dagger a_i |\Phi_0\rangle + \sum_{j< i}^{\rm occ} \sum_{b < a}^{\rm unocc} C_{ij}^{ab} a_a^\dagger a_b^\dagger a_j a_i |\Phi_0\rangle$$

- Truncated coupled cluster (CC) (single reference):
  - ightarrow Exponential Ansatz for the wave function with truncated cluster operator  $\hat{T}$

#### CC wave function

$$|\Psi_{\rm el}^{\rm CC}\rangle = \exp(\hat{T})|\Phi_0\rangle, \quad \hat{T} = \hat{T}_1 + \hat{T}_2 + \dots$$

where 
$$\exp(\hat{T}) = 1 + \hat{T} + \frac{1}{2}\hat{T}^2 + \frac{1}{3!}\hat{T}^3 + \dots$$

#### Conventional Approaches with non-optimized orbitals

- Customized approaches, e.g., difference dedicated CI (DDCI):
  - Variational method specifically designed to calculate energy differences (optical transitions, ionization potentials, electron affinities, . . .)
  - FCI space is rationally truncated by means of second order perturbation theory (PT) considerations
    - ⇒ Include only configurations of interest
  - Ochoose a minimal model space (≡ minimal active space including orbitals relevant for the transition)
  - 2 Include external correlations (quasi-degenerate PT) up to 2nd order
  - Construct CI subspace of active space and single and double excitations involving at least one active orbital
  - Perform diagonalization
    - Results depend on the MO basis
      - ⇒ Active orbitals can be improved iteratively (IDDCI)
- J. Miralles, O. Castell, R. Caballol, J.-P. Malrieu, Chem. Phys. 1993, 172, 33.

#### Conventional Approaches with optimized orbitals

- Multi-configuration self-consistent field (MCSCF):
  - $\rightarrow$  Choose a truncated CI expansion  $\{\Phi_I\}$
  - $\rightarrow$  Optimize both expansion coefficients  $C_l$  and one-particle functions  $\{\phi_i\}$  which are used to construct  $\{\Phi_l\}$
- Special case: complete-active-space self-consistent-field (CASSCF):
  - $\rightarrow$  Choose a subspace of one-particle functions  $\{\phi_i\}$  ( $\equiv$  active orbitals) which are occupied by  $N_{\rm active}$  electrons (active electrons) in the reference wave function  $\Phi_0$
  - $\rightarrow$  Construct the full CI space ( $\equiv$  active space) for the orbital subspace
  - $\rightarrow$  Optimize both  $\{C_l\}$  and all  $\{\phi_i\}$
- $\bullet$  Collect effect of neglected virtual orbitals ( $\equiv$  dynamic correlation) through perturbation theory
  - ⇒ CASPT2

#### Unconventional approaches

- Reduce variational degrees of freedom in FCI wave function expansion,
   i.e., number of C<sub>I</sub> coefficients
  - ⇒ Find a more local notation of a quantum state
- The density matrix renormalization group (DMRG) ansatz by White (1992):

K.H. Marti, M. Reiher, Z. Phys. Chem. 2010, 224, 583.

G. K.-L Chan, S. Sharma, Annu. Rev. Phys. Chem. 2011, 62, 465.

$$\Psi^{\mathrm{DMRG}} = \sum_{ij} \psi_{ij} \ket{i} \otimes \ket{j},$$

with expansion coefficients  $\psi_{ij}^{(m)}$  and orthonormal product bases  $\{|i\rangle\}$  and  $\{|i\rangle\}$ 

- Iterative optimization of reduced-dimensional many-electron basis in a least-square sense
- The DMRG algorithm optimizes a matrix product state (MPS)

#### Unconventional approaches

#### MPS:

- Define projection operators  $\hat{A}_i[n_i]$  which depend on the local site  $n_i$  and map from one m-dimensional subspace spanned by  $\{|m_{l-1}\rangle\}$  to another m-dimensional subspace spanned by  $\{|m_l\rangle\}$
- $\Rightarrow$  Represent  $\hat{A}_i[n_i]$  by  $(m \times m)$  matrices  $A^{n_i}_{m_{l-1},m_l}$ S. Rommer, S. Östlund, *Phys. Rev. B* **1997**, *55*, 2164.

#### Mixed-canonical MPS

$$\Psi^{\mathrm{MPS}} = \sum_{\{\boldsymbol{n}\}} \boldsymbol{A}^{n_1} \dots \boldsymbol{A}^{n_{l-1}} \Psi^{n_l n_{l+1}} \boldsymbol{A}^{n_{l+2}} \dots \boldsymbol{A}^{n_L} | n_1 \dots n_L \rangle,$$

where  $\{\mathbf{n}\}$  is the set of all Slater determinants constructed from L one-particle states

⇒ Number of variational parameters is reduced to 4*L* local matrices

#### Relation MPS ← CI expansion

• *C*<sub>I</sub> coefficients can be reconstructed from the position-dependent transformation matrices and the expansion coefficients:

G. Moritz, M. Reiher, J. Chem. Phys. 2007, 126, 244109.

#### $C_l$ coefficient corresponding to a Slater determinant $\mathbf{n}$

$$C_{\mathbf{n}} = \sum_{m^{S}}^{m} \sum_{m^{E}}^{m} \psi_{m^{S} n_{l+1} n_{l+2} m^{E}} (A_{2}[n_{2}] \dots A_{l}[n_{l}])_{n_{1}; m^{S}}$$

$$(A_{l+3}[n_{l+3}] \dots A_{L-1}[n_{L-1}])_{m^{E}; n_{L}}$$

- Unfeasible to create the entire basis of the N-particle Hilbert space
- C<sub>I</sub> vector is sparse: only a subspace of the N-particle Hilbert space is decisive for a reliable representation of the wave function
- $\Rightarrow$  Collect only the most important configurations  $\{\tilde{\mathbf{n}}\}$

#### Sampling the N-particle Hilbert space: the SRCAS algorithm

#### Sampling-reconstruction CAS (SRCAS) routine

Perform excitation of the type:

$$a_{p_1}^{\dagger} a_{q_1} a_{p_2}^{\dagger} a_{q_2} \dots a_{p_i}^{\dagger} a_{q_i}$$

from a predefined reference (Hartree-Fock) with random numbers

$$i \in \{1, ..., N\}, p_j, q_j \in \{1, ..., L\}$$

 Number of particles, projected spin, and point-group symmetry are preserved

#### Completeness measure (COM) to monitor the accuracy:

$$\mathrm{COM} = 1 - \sum_{\{\tilde{\mathbf{n}}\}} |\textit{\textbf{C}}_{\{\tilde{\mathbf{n}}\}}|^2$$

K. Boguslawski, K.H. Marti, M. Reiher, J. Chem. Phys. 2011, 134, 224101.

#### **Excitation patterns**

- Substitution pattern for predefinition of many-electron basis states
- Example: excitation pattern for CAS(11,11) and CAS(13,20) for [FeNO]<sup>2+</sup> in a point charge environment from DMRG calculations



A large number of determinants is of little importance (small absolute C<sub>I</sub> coefficient)

#### Unconventional approaches

- For an MPS parameterization, the orbital basis must be mapped on a 1-dimensional lattice
  - ⇒ Quantum information theory (mutual information, single-orbital entropies)
  - ⇒ Correlation is transmitted over the lattice
  - → MPS state difficult to optimize for a general molecule (long-range correlation, non-localized orbitals)
  - ⇒ Incorporate non-local correlation in a non-local tensor network ansatz
- Complete-Graph Tensor-Network-States (CGTNS)
  - Replace C<sub>1</sub> coefficient by a network of tensors which connect all orbitals (pair correlations)

#### CGTN ansatz

$$|\Psi^{\mathrm{CGTN}}\rangle = \sum_{n_1...n_L}^q \prod_{lpha}^L \prod_{eta < lpha} f_{lphaeta}^{n_lpha n_eta} |n_1 \ldots n_L
angle$$

Optimize CGTN state by a variational Monte Carlo scheme

K.H. Marti, B. Bauer, M. Reiher, M. Troyer, F. Verstraete, New J. Phys. 2010, 12, 103008.

#### Unconventional approaches

- ⇒ Increase flexibility of tensors by
  - higher-order correlators (three-orbital, four-orbital, etc.)
    H. J. Changlani, J. M. Kinder, C. J. Umrigar, G. K.-L. Chan, *Phys. Rev. B* 2009, *80*, 245116.
  - ② larger bond dimension (scalars → matrices)
- Tree-tensor network state (TTNS)
  - Generalization of MPS:
    - Consider arbitrary structure of network with different coordination numbers *z* per site
  - C<sub>I</sub> coefficients emerge from the contraction of a set of tensors for each vertex m of the form

$$[A_m]_{a_1...a_z}^{n_i}$$

• For z = 2, the one-dimensional MPS is recovered

### Extraction of local quantities from multi-reference wave function: Local spin

- Decomposition of the expectation value of the total spin-square operator  $\langle \hat{S}^2 \rangle$  into one- and two-electron terms
  - Determine spin state of an atom or group of atoms
  - ② Describe magnetic interactions between the atoms

A. E. Clark, E. R. Davidson, J. Chem. Phys. 2001, 115, 7382.

$$\langle \hat{S}^2 \rangle = \sum_{A} \langle \hat{S}^2 \rangle_{A} + \sum_{A,B \atop A \neq B} \langle \hat{S}^2 \rangle_{AB}$$

- Partitioning into several components is usually not unique
  - E. Ramos-Cordoba, E. Matito, I. Mayer, P. Salvador, J. Chem. Theory Comput. 2012, 8, 1270.
- Two requirements are important for the decomposition of  $\langle \hat{S}^2 \rangle$ 
  - No spins for covalent systems described by closed-shell singlets
  - Asymptotic values of atomic spins for large distances should be equivalent to the atomic spins of the free atoms
    - C. Herrmann, M. Reiher, B. A. Hess, J. Chem. Phys. 2005, 122, 034102.

### Extraction of local quantities from multi-reference wave function: Local spin

#### $\langle \hat{S}^2 angle$ in terms of density matrices in the orbital basis

$$\langle \hat{S}^2 \rangle = \frac{3}{4} \sum_i D_{ii} - \frac{1}{2} \sum_{ik} d_{iikk} - \sum_{ik} d_{ikki}$$

- Rewrite equation in spin-orbital basis and introduce cumulant matrix  $\Gamma_{j\sigma l\sigma'}^{i\sigma k\sigma'}$  ( $\equiv$  correction term if  $d_{pqrs}$  is written in terms of  $D_{pq}$ )
- $\ominus$  Partitioning requires knowledge about the second-order density matrix in the spin-orbital representation  $\overline{d}_{pars}$
- $\ominus$  For non-singlet states:  $\overline{d}_{pqrs}$  matrix elements depend on  $S_z$  substates
- I. Mayer, Chem. Phys. Lett. 2009, 478, 323.

### Extraction of local quantities from multi-reference wave function: Spin-free treatment

• Introduce a spin-free second order density matrix and cumulant matrix  $\Lambda_{pqrs}$  and the effectively unpaired electron matrix  $u_{ij}$ 

#### $\langle \hat{S}^2 angle$ partitioning in terms of a spin-free treatment

$$\langle \hat{S}^2 \rangle = \frac{1}{2} \sum_i (uS)_{ii} - \frac{1}{2} \sum_{ik} \sum_{jl} (S)_{ij} \Lambda_{jkli}(S)_{kl},$$

given in the atomic orbital basis with overlap matrix elements  $(S)_{ij}$ 

#### One-center local spins (trace over redundant indices)

$$\langle \hat{S}^2 \rangle_A = rac{1}{2} \sum_{i \in A} (uS)_{ii} - rac{1}{2} \sum_{i,k \in A} \sum_{ij} (S)_{ij} \Lambda_{jkli}(S)_{kl}$$

- $\Rightarrow$  One-center and two-center terms are  $S_z$ -independent
- ⇒ Required: **S**, **D** and **d** (all matrices are available)

D. R. Alcoba, A. Torre, L. Lain, R.C. Bochicchio, J. Chem. Theory Comput. 2011, 7, 3560.

### Single-determinant description of multi-determinant cases: broken (spin) symmetry

 To enforce a one-determinant picture may lead in general to breaking symmetries

```
G. E. Scuseria, C. A. Jimenez-Hoyos, T. M. Henderson, K. Samanta, J. K. Ellis, J. Chem. Phys. 2011, 135, 124108.
```

 Typical example: description of antiferromagnetically (or ferromagnetically) coupled states in terms of a Heisenberg coupling model

$$\uparrow \uparrow \quad \cdots \quad \downarrow \downarrow \\ A \quad \cdots \quad B$$

 Broken symmetry (BS) determinants: determinants with certain amount of spin excess on one (metal) atom and the opposite spin excess on other (metal) atoms

L. Noodleman, J. Chem. Phys. 1981, 74, 5737.

### Single-determinant description of multi-determinant cases: broken (spin) symmetry

- Construction of BS states:
  - Ohose suitable starting approximation for the orbitals
  - Constrained DFT approach
    - Q. Wu, T. van Voorhis, Phys. Rev. A 2005, 72, 024502.
    - I. Rudra, Q. Wu, T. van Voorhis, J. Chem. Phys. 2006, 124, 024103.
    - C. Herrmann, M. Podewitz, M. Reiher, Int. J. Quantum Chem. 2009, 109, 2430.
- ⇒ 'VB-like' description with semi-localized magnetic orbitals (nonorthogonal spatial orbitals)
- ⇒ Extraction of magnetic orbitals for spin-unrestricted calculations not obvious for many-electron systems

#### Relation of BS orbitals to magnetic orbitals

- Especially problematic for the calculation of the overlap of BS magnetic orbitals (strong mixing with other orbitals, . . .)
- $\Rightarrow$  Corresponding orbital transformation (COT) generates new set of orbitals
  - ullet orbitals of lpha-set overlap at most with one orbital form the eta-set
  - ⇒ BS wave function invariant, but spin-orbitals with largest similarity are paired together:
  - MOs with spatial overlap close to unity (closed-shell orbitals)
  - MOs with spatial overlap very different than zero or unity (VB-like magnetic pairs)
  - **1** If  $M_S > 0$ , additional  $\alpha$  MOs (SOMOs)
- ⇒ COT straightforward to apply to the BS wave function
- ⇒ Interacting non-orthogonal VB-like orbital pairs can be extracted
- A. T. Amos, G. G. Hall, Proc. R. Soc. Lond. A 1961, 263, 483.
- H. F. King, R. E. Stanton, H. Kim, R. E. Wyatt, R. G. Parr J. Chem. Phys. 1967, 47, 1936.
- F. Neese, J. Phys. Chem. Solids 2004, 65, 781.

#### Case Study:

Magnetic open-shell molecules

⇒ spin densities

#### Example: [FeNO]<sup>2+</sup> model of a salen complex





- 4 point charges in xy-plane at  $d_{pc} = 1.133 \text{ Å}$
- Square planar ligand field emulates one-particle states of full complex
- d<sub>pc</sub> determines character of wave function

Model complex: [FeNO]<sup>2+</sup>

#### DFT single-particle picture

Spin density difference plots with respect to OLYP



K. Boguslawski, C. R. Jacob, M. Reiher, J. Chem. Theory Comput. 2011, 7, 2740.

#### Understandable in terms of orbitals



K. Boguslawski, C. R. Jacob, M. Reiher, J. Chem. Theory Comput. 2011, 7, 2740.

#### The multi-determinantal picture

 CASSCF spin density distribution with respect to a DMRG(13,29)[2048] reference spin density



 CASSCF spin densities oscillate around DMRG(13,29)[2048] reference distribution

K. Boguslawski, K.H. Marti, Ö. Legeza, M. Reiher, J. Chem. Theory Comput. 2012, 8, 1970.

#### Interpreted in terms of natural orbitals

Natural orbitals obtained from a CAS(11,14)SCF calculation



| CAS(11,11)SCF     | 1.943 | 0.067 | 0.012 | 0.010 | 0.000 | 0.000 |
|-------------------|-------|-------|-------|-------|-------|-------|
| CAS(11,12)SCF     | 1.943 | 0.045 | 0.012 | 0.010 | 0.009 | 0.000 |
| CAS(11,14)SCF     | 1.945 | 0.043 | 0.013 | 0.010 | 0.008 | 0.005 |
| CAS(13,15)SCF     | 1.944 | 0.045 | 0.012 | 0.011 | 0.008 | 0.000 |
| DMRG(13,29)[2048] | 1.943 | 0.042 | 0.013 | 0.010 | 0.006 | 0.008 |

### Deviation of one-particle picture from present-day DFT compared to *ab initio* reference

• DFT-DMRG(13,29)[2048] spin density difference distributions



Best agreement obtained for BP86, BLYP and TPSS

K. Boguslawski, K.H. Marti, Ö. Legeza, M. Reiher, *J. Chem. Theory Comput.* **2012**, *8*, 1970.

#### Conclusions & Perspective

- Multi-determinantal wave-function calculations are feasible and accurate, but not easy to interpret
- As a consequence, quantitative quantum chemistry has a hard time with Coulson's appeal "give me insights, not numbers"
- Moreover, novel wave function approximations introduce new ingredients/concepts (tensor networks) which lead to an even larger diversity of notions to describe/understand electronic structures
- This also holds true for concepts from quantum information theory that measure the entanglement of subsystems and the entropy among orbitals

Review: K.H. Marti, M. Reiher, Phys. Chem. Chem. Phys. 2011, 13, 6750.

#### Acknowledgments

- Prof. Dr. Markus Reiher
- Prof. Dr. Örs Legeza
- Dr. Christoph R. Jacob
- Dr. Konrad H. Marti
- and the rest of the group

