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Notation

In the following sections we will often deal with coordinates, usually elec-
tronic coordinates. The coordinates of an electron are indicated by a three-
dimensional vector ~r ≡ r (indistictly indicated by an arrow or boldfaced num-
ber) and a spin (α or β, generically indicated by the σ). Therefore, many
textbooks indicate the coordinates of electron as ~x1 or x1, where ~x1 = (~r1, σ1).
For the sake of simplification in these notes we have used the short-hand nota-
tion 1 ≡ (~r1, σ1) and d1 ≡ d~r1dσ1 for the derivates.

N denotes the number of electrons in the system. Ψ is the Greek letter
used to represent the electron wavefunction, Ψ(1,2, . . . ,N). φ(1) will be used
to indicate an orbital: an atomic orbital if we use a Greek letter as a subindex,
φµ(1), or a molecular orbital if we use a Latin letter, φi(1).

Vector are indicated in bold or using an superscripted arrow, e.g. , n = ~n =

(nx, ny, nz). Keep in mind that the nabla operator is a vector, ∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂z

)

and it can be also indicated as ~∇ in some textbooks.
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Chapter 1

Theoretical Background

In this section we will briefly review the notions of quantum mechanics that are
needed to follow this course. We assume the basic knowledge of quantum me-
chanics provided in the bachelor of chemistry or physics, including the quantum
nature of matter, the structure of the atom, the concept of the wavefunction,
the uncertainty principle and the Pauli principle. Besides, is given for granted
that the reader is familiar with the classical concepts of chemistry, such as bond
(types of bonds), polarity, ionicity, aromaticity, bond order, the Lewis picture
or resonant structures.

In the following we assume the quantum mechanics description of a system
of N electrons in terms of an electron wavefunction that depends on the four co-
ordinates of each electron (1 ≡ (σ1, ~r1): the spin, σi, and the three-dimensional
vector, ~r1, that gives the position of the electron in the space) and parametrically
on the nuclei coordinates in the framework of Born-Oppenheimer approxima-
tion. The simplest wavefunction in terms of molecular orbitals, φki

(1), that
respects the antisymmetry nature of electrons is a Slater determinant:

ψ
K

(1,2, . . . ,N) =
1√
N

∣

∣

∣

∣

∣

∣

∣

∣

∣

φk1
(1) φk1

(2) . . . φk1
(N)

φk2
(1) φk2

(2) . . . φk2
(N)

...
...

. . .
...

φkN
(1) φkN

(2) . . . φkN
(N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

A more accurate description of the system can be obtained by using a wave-
function that includes a linear combination of nC Slater determinants,

Ψ(1,2, . . . ,N) =

nC
∑

K=1

c
K
ψ

K
(1,2, . . . ,N) with

nC
∑

K=1

|c
K
|2 = 1 (1.1)

The Hartree-Fock (HF) wavefunction and the Kohn-Sham density functional
theory (KS-DFT) use wavefunctions with only one Slater determinant, i.e. ,
single-determinant wavefunctions (SD or SD-wfn, hereafter). Wavefunctions
composed of more than one Slater determinant are obtained in configuration
interaction (CI), complete active space self-consistent field (CASSCF), coupled-
cluster (CC), and second-order Moller-Plesset (MP2) calculation, among oth-
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ers.a These wavefunction will be referred as correlated wavefunctions or mul-
tideterminant wavefunctions. The name correlated is given to emphasize that,
unlike HF, these wavefunctions include electron correlation.

1.1 The Electron Density

The electron density is the central quantity of density functional theory (DFT) [1]
and the quantum theory of atoms in molecules (QTAIM); vide infra. Unlike the
wavefunction, which depends on 3N spatial coordinates, the density is actually
a simple quantity to deal with because only depends on three spatial coordi-
nates. In addition, the density is an observable (a quantity we can measure)
often used in experimental analysis through the study of X-ray crystallography.

From Born’s rule [2] we know that the probability density of finding one
electron at d1 (the infinitesimal volume around the position of electron 1 with
spin σ1) is given by the square of the wavefunction that describes the system,

P (1)d1 =

∫

d2

∫

d3 . . .

∫

dN |Ψ(1,2, . . . ,N)| d1 (1.2)

from which we can define the density

ρ(1) = NP (1) (1.3)

where N is the number of electrons in the system and P (1) is the probability of
finding one electron at position 1 (i.e. , at position ~r1 with spin σ1), regardless
the position of the other (N -1) electrons (i.e. they can be everywhere in the
space, including d1). Since electrons are indistinguible, the previous function is
actually accounting for the probability of finding at least 1 electron by 1. Thus
Eq. 1.2 is the probability of finding at least one electron at d1.

The electron density integrated over an arbitrary region Ω of the molecular
space gives the average number of electrons in that region.

NΩ ≡ 〈N(Ω)〉 =

∫

Ω

ρ(1)d1 (1.4)

This is the basis of electronic populations that we will see in section 2.4.

In quantum mechanics the calculation of the electron densities presents no
difficulties and in the case of SD-wfns, the density can be easily constructed
from the molecular orbitals:

ρ(1) =

N
∑

i

φ∗i (1)φi(1) =

N
∑

i

|φi(1)|2 (1.5)

where we have assumed that the system consists of N electrons occupying N
orbitals. For closed-shell systems with doubly-occupied orbitals, the expression

aIn practice, only CI and CASSCF admit straightforward expansions of the wavefunction
in terms of Slater determinants. However, CC and MP2 cannot be obtained from the use of
a single determinant.
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reads:

ρ(1) = 2

N/2
∑

i

|φi(1)|2 (1.6)

The two previous expressions are valid for Hartree-Fock (HF) wavefunctions or
wavefunctions obtained from Kohn-Sham (KS) formulation of DFT –as these
wavefunctions are composed of a single Slater determinant.b For the sake of
generality, hereafter we will not assume doubly-occupied orbitals.

In the case of correlated wavefunctions the density cannot be represented by
a linear combination of the square of the molecular orbitals (i.e.using Eq. 1.5).
For correlated wavefunctions the density is written as:

ρ(1) =

M
∑

ij

1Di
jφ

∗
i (1)φj(1) (1.7)

where M is the total number of molecular orbitals in our system. 1Di
j will be

called 1-density and it is a matrix representing the electron density in terms of
molecular orbitals. Such matrix has a diagonal form for SD-wfns and contains
zero in the diagonal for elements greater than N ,

1Di
j = δij ∀i ≤ N ∧ ∀j ≤ N

1Di
j = 0 ∀i > N ∧ ∀j > N

It is easy to prove that Eq. 1.7 reduces to Eq. 1.5 for SD-wfns. For correlated
wavefunctions, we can simplify the calculation of the electron density by using a
set of orbitals that diagonalize the 1-density.c These orbitals are called natural
orbitals, ηi(1), and together with their associated occupancies, ni, define the
density

ρ(1) =
∑

i

niη
∗
i (1)ηi(1) (1.11)

Unlike molecular orbitals, natural orbitals do not have an associated energy.
Instead, there is an orbital occupancy, ni, associated to it, which can be inter-
preted as the probability that an electron occupies this particular natural orbital
from the orbital set. Notice that Eq. 1.11 is a general expression that can be
also used for single-determinant wavefunctions. Indeed, Eq. 1.5 can be retrieved
from Eq. 1.11 by setting the first N occupancies to one (occupied orbital) and
the rest to zero (unoccupied).

bLet us recall that within DFT the density is, in principle, the exact one. However, the
orbitals (and the SD-wfn constructed from them) are those that correspond to the fictitious
non-interacting system, whose density corresponds to the exact density.

c

1DL = Ln n = Diag (n1, . . . , nM ) (1.8)

where
η = Lφ ηi(1) =

X

j

Lijφj(1) (1.9)

and
φ = (φ1(1), . . . , φM (1))T η = (η1(1), . . . , ηM (1))T (1.10)
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Finally, let us give the formula for the first-order reduced density matrix (1-
RDM) that will be used to define several chemical bonding tools. The 1-RDM
expression reads:

ρ1(1;1′) = N

∫

d2d3 . . .

∫

dNΨ∗(1,2, . . . ,N)Ψ(1′,2, . . . ,N) (1.12)

where we have used different coordinates for the first electron of the two wave-
functions that are included in the integrand, so that the 1-RDM depends on
two sets of coordinates. The density function (or simply the density), Eq. 1.11,
is actually the diagonal part of the 1-RDM, i.e. , ρ(1) = ρ1(1;1). In terms of
natural orbitals and occupancies the 1-RDM can be written as

ρ1(1;1′) =
∑

i

niη
∗
i (1)ηi(1

′) (1.13)

1.2 The Pair Density

Born’s interpretation can be further extended to include the pair density,

ρ2(1,2) = N(N − 1)P (1,2) (1.14)

with

P (1,2)d1d2 =

∫

d3 . . .

∫

dNΨ∗(1,2, . . . ,N)Ψ(1,2, . . . ,N)d1d2 (1.15)

where N(N − 1) is the number of electron pairsd and P (1,2) is the probability
of finding two electrons, one at 1 and the other at 2, regardless of the position
of the other N − 2 electrons [4]. Thus, it represents the probability of finding
at least a pair of electrons: one in d1 and the other in d2. Notice the difference
between the 1-RDM, Eq. 1.12, and the pair density, Eq. 1.14. Analogous def-
initions and interpretations can be done for the n-densities (n > 2) and those
are left to the reader.

The expected number of electron pairs in Ω can be calculated from the pair
density:

NΩΩ ≡
〈

N2(Ω)
〉

=

∫

Ω

∫

Ω

ρ2(1,2)d1d2 +NΩ (1.16)

where we have included the last term to account for the self-pairing that is not
included in the pair density because wavefunctions attain the Pauli’s principle.
In the case of two regions Ω1 and Ω2, the expected number of electron pairs
with one electron at Ω1 and another at Ω2 reads:

NΩ1Ω2
≡ 〈NΩ1

NΩ2
〉 =

∫

Ω1

∫

Ω2

ρ2(1,2)d1d2 +NΩ1∩Ω2
(1.17)

i.e. for non-overlapping regions (Ω1∩Ω2 = ∅) the expected number of electrons
pairs is calculated as the expectation value of the pair density integrated over

dIt is actually the number of unsorted pairs, the so-called McWeeny (or Dirac) normaliza-
tion [3] of the pair density. Other textbooks take Löwdin’s normalization, i.e. the number of
sorted pairs, N(N-1)/2.
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Ω1 and Ω2.

The pair density can be written in a molecular orbital basis using a tensor
representation that depends on the four indices:

ρ(1,2) ≡ ρ2(1,2;1,2) =
M
∑

ij
kl

2D
ij
klφ

∗
i (1)φ∗j (2)φk(1)φl(2) (1.18)

where 2D
ij
kl will be called 2-density. The pair density is the diagonal part of the

second-order reduced density matrix (2-RDM) that can be calculated as

ρ2(1,2;1′,2′) = N(N − 1)

∫

d3 . . .

∫

dNΨ∗(1,2, . . . ,N)Ψ(1′,2′, . . . ,N)

(1.19)
For the calculation of the electronic energy of a molecular system there is no
need to know the form of the full 2-RDM. The electronic energy of a molecular
system is composed of three ingredients: the kinetic energy, the electron-nucleus
attraction and the electron-electron repulsion. The kinetic energy is a known
functional of the 1-RDM, the electron-nucleus attraction can be calculated only
from the electron density, whereas the electron-electron repulsion is a well-known
functional of the pair density. Even though the 2-RDM is not needed to calcu-
late the electronic energy, it is used in quantum mechanics. For instance, the
calculation of the total angular spin momentum, 〈S2〉, depends explicitly on the
2-RDM [5].

Unlike the density, the pair density contains explicit information about the
relative motion of a pair of electrons. A concept which is important to explain,
among other things, the so-called electron correlation effects. In order to extract
these effects it is costumary to define other pair functions. A popular function
in DFT is the exchange-correlation density (XCD) [6],

ρxc(1,2) = ρ(1)ρ(2) − ρ2(1,2) (1.20)

which is the difference between the pair density and a fictitious pair density of
independent electrons that do not respect the Pauli principle,

ρIE
2 (1,2) = ρ(1)ρ(2) (1.21)

which gives the probably of finding at least one electron at 1 and, at the same
time, at least one electron at 2. The latter probably is usually greater than
the exact pair probability, although this is not strictly necessary except for
monodeterminantal wavefunctions,

ρSD
xc (1,2) = ρ(1)ρ(2) − ρSD

2 (1,2) = ρ1(1;2)ρ1(2;1) = |ρ1(1;2)|2 ≥ 0 (1.22)
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becausee

ρSD
n (1,2) =

∣

∣

∣

∣

ρ(1) ρ1(1;2)
ρ1(2;1) ρ(2)

∣

∣

∣

∣

(1.24)

where the superscript SD is used to identify a SD-wfn. Therefore, using Eqs. 1.22,
1.16 and 1.17, for a SD-wfn we can prove that

NΩ1Ω2
≤ NΩ1

NΩ2
+NΩ1∩Ω2

(1.25)

so that the maximum number of pairs between two regions is obtained by direct
multiplication of its electron averages (plus the population of the intersection
of the two regions), and such situation is only given when the electrons are
independent.f Taking the definition of the variance of the number of electron in
Ω

σ2 [NΩ] = NΩΩ −N2
Ω (1.26)

and using Eq. 1.25 expression we can get an additional relation,

0 ≤ σ2 [NΩ] ≤ NΩ (1.27)

that holds for SD-wfn. The latter inequality puts forward an interesting bound
to the uncertainty of the number of electrons in a given region. In particular,
from the definition of the variance (and the latter inequality) one can deduce
that: 1) the uncertainty in the population of a certain region Ω is only reduced
to zero when the XCD (twice) integrated in that region is equal to the number
of electrons in that region. The most trivial case when this situation occurs is
when the number of electrons outside this region is zero. 2) The uncertainty
is maximal, when the electron pairs are maximal, i.e. , when the electrons are
independent.

We can also define the covariance of electrons populations

cov (NΩ1
, NΩ2

) = NΩ1Ω2
−NΩ1

NΩ2
= NΩ1∩Ω2

−
∫

Ω1

∫

Ω2

ρxc(1,2)d1d2 (1.28)

which gives the measure of how much the number of electrons in Ω1 and Ω2

change together. The variance (Eq. ??) is actually a special case of the covari-
ance,

σ2 [NΩ] = cov (NΩ, NΩ) (1.29)

and for SD-wfn we can prove the following bound,

−min
(

NΩ1\Ω2
, NΩ2\Ω1

)

≤ cov (NΩ1
, NΩ2

) ≤ NΩ1∩Ω2
. (1.30)

eIn general, a n-RDM can be written in terms of the 1-RDM for a SD-wfn:

ρSD
2 (1′,2′, . . . ,N′;1,2, . . . ,N) =

˛

˛

˛

˛

˛

˛

˛

˛

˛

ρ1(1′;1) ρ1(1′;2) · · · ρ1(1′;N)
ρ1(2′;1) ρ1(2′;2) · · · ρ1(2′;N)

...
...

. . .
...

ρ1(N′; 1) ρ1(N′;2) · · · ρ1(N′;N)

˛

˛

˛

˛

˛

˛

˛

˛

˛

(1.23)

fNotice that for SD-wfns the electrons are not correlated but their are not independent.
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where
Ω1\Ω2 = Ω1 − Ω1 ∩ Ω2

In addition, one can use the well-known Cauchy-Shwarz inequality to set new
bounds

|cov (NΩ1
, NΩ2

)| ≤
√

σ2 [NΩ1
]σ2 [NΩ2

]

The XCD is the workhorse for the methods that account for electron local-
ization. Upon integration of the XCD we obtain the density,

∫

ρxc(1,2)d2 = ρ(1), (1.31)

and, therefore, the XCD fulfills this sum rule:

∫ ∫

ρxc(1,2)d1d2 = N. (1.32)

The XCD has been used to define many popular tools in bonding analysis,
such as the electron-sharing indices (or bond-orders), [7–10] —as we shall see in
section 2.4.3.

1.3 Electron Correlation

The term electron correlation was introduced in quantum chemistry in 1934 by
Wigner and Seitz, [11] when they studied the cohesive energy of metals. By
1953, Slater complained about the fuzziness of the concept that received a more
solid definition a few years later due to Löwdin [12]

ECORR = EFCI − EHF (1.33)

where EHF is the Hartree-Fock energy (energy calculated from a SD-wfn) and
EFCI is the energy calculated with a full-configuration interaction (FCI) wave-
function and, therefore, it is the exact energy of the system. ECORR is called
correlated energy.

We will distinguish between uncorrelated electrons and independent elec-
trons. The electrons are uncorrelated if ECORR = 0, whereas electrons are
independent if and only if

ρ2(1,2) =
N − 1

N
ρ(1)ρ(2) (1.34)

where we have taken into account the different normalization factors of the
independent-electrons pair density (Eq.1.21) and the actual one (Eq. 1.14). The
former is a formal definition that measures the deviation from a SD-wfn and the
latter refers to the probabilistic nature of the electrons motion. Independent
electrons are uncorrelated but the opposite is usually not true.

It is costumary to define a pair function that measures the deviation of the
actual pair density and a pair density of uncorrelated electrons,

λ2(1,2) = ρ2(1,2) − ρSD
2 (1,2) = |ρ1(1;2)|2 − ρxc(1,2) (1.35)
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and it usually called the cumulant (of the pair density). One can also define the
cumulant of the 2-RDM,

λ2(1,2;1′,2′) = ρ2(1,2;1′,2′) − ρSD
2 (1,2;1′,2′) (1.36)

= ρ1(1;2′)ρ1(2;1′) − ρxc(1,2;1′,2′)

Several previous bounds can now be set for correlated wavefunctions in terms
of the cumulant matrices,

−min
(

NΩ1\Ω2
, NΩ2\Ω1

)

− λ(Ω1,Ω2) ≤ cov (NΩ1
, NΩ2

) ≤ NΩ1∩Ω2
− λ(Ω1,Ω2)

0 ≤ σ2[NΩ] ≤ NΩ − λ(Ω,Ω) (1.37)

where
Ω2 = R

3 − Ω2 = R
3\Ω2 (1.38)

and

λ(Ω1,Ω2) =

∫

Ω1

∫

Ω2

λ2(1,2)d1d2 (1.39)

By measuring the importance of λ2 we can assess the importance of electron
correlation in these quantities. For instance, it is well-known that correlation
usually decreases the electron fluctuation between regions [8]. Hence, in atomic
regions, the electron correlation usually increase the covariance bound and it
tightens the variance bound, thus contributing to a lower uncertainty in the
number of electrons [8] (in other words, it contributes to electron localization
—as we shall see in section 2.4.3).
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Chapter 2

The Atom in the Molecule

The notion of atom dates back to the fourth century BC, when Democritus
stated that everything was composed of atoms. Although his ideas were far
from the actual concept of an atom, he was the first to conceive the atoms
as the constituents of the nature. Unfortunately, his ideas opposed those of
Aristotle and Plato, which were far more known in Athens and, consequently,
Democritus’ works were mostly ignored on the Ancient Greece.

In 1807 Dalton, the English chemist and physicist, recovered Democritus’
ideas and formulated the modern atomic theory. Dalton realized that study-
ing chemistry one should first understand the constituents of matter. Dalton
formulated the atoms as indivisible, and his atomic theory provides a formula-
tion of compounds as integer combinations of atoms, introducing the notion of
chemical reaction as the process by which atoms are combined to form molecules.

In 1891 Stoney coined the term electron to name the unit of charges that
should compose the matter according to Faraday’s electrolysis experiments. The
series of events that led to the discovery of quantum mechanics were partially
motivated by the need to suggest a model for the structure of the atom. The
experiments of Wilhelm, Goldstein, Crookes and Schuster were culminated by
the well-know experiment of J.J. Thompson that proved that atoms are com-
posed of electrons and protons.

In 1913 Bohr’s atomic model was formulated, suggesting that electrons in
an atom occupy states with quantized energy. In 1916, Lewis suggested that
atoms are held together by sharing a pair of electrons between them, giving a
first (uncompleted) definition of the chemical bond. The notion of electron pair
is central in Lewis theory and it remains one of the most important concepts to
explain the chemical bonding.

In 1924, Pauli demonstrated that four quantum numbers are necessary to
characterize the electrons, thus explaining the shell-like structure of an atom.
Actually the contribution of Pauli was the fourth quantum number itself, the
spin, an intrinsic property of the electron as proved a year later in the experiment
of Uhlenbeck and Goudsmit. The spin of the electrons is actually important in
order to fully understand the chemical bond; the concept of electron pair would
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have not withstood the new discoveries of the atomic structure without the no-
tion of the spin.

2.1 The definition of an atom in a molecule

Since Lewis theory most chemistry have been rationalized using the concept
of an atom in a molecule. For instance, we know from undergraduate organic
courses that carbon binds to itself in many different ways, forming mostly sin-
gle, double, triple and aromatic bonds. Although the carbon atom is the same
building block in all these bonds, the character of each carbon is clearly dif-
ferent. In order to characterize the electronic structure of these molecules it is
convenient to distinguish and characterize the role of the atoms that form these
molecules, i.e., to define an atom in a molecule (AIM).

By characterizing atoms inside a molecule we are defining an atomic par-
tition. An atomic partition (or partitioning) is a well-defined method to sub-
divide the atoms in a molecule. An atomic partition provides the means to
define atomic properties that can be used to (chemically) rationalize the elec-
tronic structure of a given molecule; for instance, they are used to define partial
charges, partial multipoles and to perform a bonding analysis.

There is not a unique way to define an atomic partition and, to some extent,
all the proposals are, in one way or another, arbritary. Therefore, it is important
to know the limitations and the drawbacks of the partition we employ. There
are two ways to define an atomic partition: (i) by partitioning the Hilbert space
(the mathematical space were the wavefunction is defined) or (ii) by partition-
ing the real space that the molecular structure occupies.

2.2 Hilbert space partition

The solution of the Schrödinger equation is often attained by using approxi-
mate wavefunctions expanded by a set of basis functions. The basis set func-
tions are usually a set of one-particle functions. In principle one can use any
basis sets from the Hilbert space to expand a wavefunction: for instance plane
waves (used in solid state) or atomic orbitals constructed from either Slater or
Gaussian primitive functions. In gas phase or solution is customary to employ
atom-centered functions, making the assignment of the basis set functions to
atoms straightforward.

In a Hilbert space partition, the atom in a molecule is defined as the set of
atomic functions centered over that atom. With such scheme, one only needs
to decompose the atomic property into basis functions and then it is easy to
calculate the atomic contributions to that property. For instance, if we take the
definition of a molecular orbital (MO) in terms of atomic orbitals (AO):

φi(1) ≡ φMO
i (1) =

m
∑

µ

cµiφ
AO
µ (1) (2.1)
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we can take the part of the MO that corresponds to atom A as the set of m AO
functions centered in A:

φA
i (1) =

m
∑

µ∈A

cµiφµ(1) (2.2)

It is easy to prove that this assignment provides a partition of the MO:

φMO
i (1) =

∑

A

φA
i (1) =

∑

A

m
∑

µ∈A

cµiφµ(1) (2.3)

Such atomic decomposition is usually easy to compute and, in particular,
the atomic population (see below for a definition) is available in most compu-
tational programs under the name of Mulliken population analysis, who first
suggested this possibility in 1955 [13].

One of the main advantatges of the Hilbert space partition is that for some
properties, like the atomic populations, the atomic decomposition can be done
analytically, i.e., it bears no significant computational cost and it can be done
without committing a numerical error (because the integrals needed can be com-
puted analytically). However, the Hilbert space partition presents two major
drawbacks. The first obvious inconvenient is that the method is basis-set de-
pendent, i.e., the result is quite dependent on the quality of the basis set used
for the calculation. The second drawback concerns the ambiguity of assigning a
basis set function to an atom. Some atomic basis set functions lack a prominent
atomic character and, therefore, it is not obvious whether this function can be
entirely assigned to one atom. This is the case of diffuse functions, which are
assigned to a particular atom but actually are spread over a wider region.

Table 2.1 contains the QTAIM’s (see below) and Mulliken atomic charges
for methane calculated using three different basis sets (DZ: doble zeta, DZP:
doble zeta with polarization and TZ2P+: triple zeta with doble polarization and
diffuse functions). QTAIM charges do not depend largely on the basis set used
(only DZ basis shows a slightly different result due to the smallness of the basis
and, in general, DZ is actually not a good basis set for computational studies),
whereas Mulliken’s provides quite disparate results, giving an unphysical charge
of +0.6 on the carbon atom of methane for the TZ2P+ basis. These results put
forward that Mulliken charges should never be used in the presence of
diffuse functions. Notice that DZP basis is a small but reasonably balanced
basis set and provides very similar numbers for both Mulliken and QTAIM
charges.

2.3 Real space partition

There are several real-space partition methods. They are based on assign-
ing every three-dimensional point of the real space to a particular atom. In
some cases, the partition assigns weight functions to every point in the real
space, distributing the importance of the point among the different atoms in
the molecule. Among real space analysis we can mention Voronoi cells [14], Hir-
shfeld partition [15], Becke’s partition [16], Bader’s atoms [17] and Becke-rho
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Atom Basis set Mulliken QTAIM
C DZ -0.982 -0.329

DZP 0.047 0.038
TZ2P+ 0.607 0.047

H DZ 0.246 0.082
DZP -0.012 -0.009

TZ2P+ -0.152 -0.011

Table 2.1: Bader and Mulliken atomic charges for methane calculated using
three different basis sets (DZ: double zeta, DZP: double zeta with polarization
and TZ2P+: triple zeta with double polarization and diffuse functions).

Figure 2.1: (left) Richard Bader (1931-2012) from McMaster University is the
father of the quantum theory of atoms in molecules (QTAIM). (right) A typical
molecular plot of QTAIM showing the real-space partition.

methods [8, 18].

2.3.1 The quantum theory of atoms in molecules (QTAIM)

The quantum theory of atoms in molecules (QTAIM) is a very popular theory
which, among other things, provides a real-space atomic partition. The theory
is due to Richard F.W. Bader and uses as a central concept the electron density.
The theory defines the atom through a partitioning of the real space as deter-
mined by the topological properties of a molecular charge distribution (i.e. , the
electron density, c.f. , Eq. 1.3).

Since the atoms are composed of electrons and most of the chemistry and
reactivity can be explained by the behavior and the distribution of the electrons
in the molecule, it is natural to take the electron density as the central quantity
to define an atomic partition.

In 1972, Bader and Beddall showed that the atom (or a group of atoms)
that has the same electron distribution makes the same contribution to the to-
tal energy of the system [19]. The atom in molecule (AIM) within QTAIM is
a quantum subsystem. Quantum subsystems are open systems defined in real
space, their boundaries being determined by a particular property of the elec-
tronic charge density [17]. In the next section we study the electron density.
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The topological analysis of the electron density

The density is a continuous nonnegative function defined at every point of the
real (three-dimensional) space. Therefore, it easily renders to a topological anal-
ysis. The calculation of the first derivative (in the present context the gradient
because the density depends on three coordinates) of a function provides the
set of critical points of the function:

∇ρ(rc) = 0 (2.4)

the characterization of these critical points is done through the analysis of the
second derivatives of the density at the critical point. All the second derivatives
of the density are collected in the so-called Hessian matrix:

H[ρ](rc) = ∇T
r
∇rρ

∣

∣

r=rc
=









∂2ρ(r)
∂x2

∂2ρ(r)
∂x∂y

∂2ρ(r)
∂x∂z

∂2ρ(r)
∂y∂x

∂2ρ(r)
∂y2

∂2ρ(r)
∂y∂z

∂2ρ(r)
∂z∂x

∂2ρ(r)
∂y∂z

∂2ρ(r)
∂z2









r=rc

(2.5)

that is a real symmetric matrix and thus can be diagonalized through a unitary
transformation, L,

H[ρ]L = LΛ (2.6)

i.e., put in a diagonal form,

Λ =









∂2ρ(r)
∂x2

1

0 0

0 ∂2ρ(r)
∂y2

1

0

0 0 ∂2ρ(r)
∂z2

1









r1=rc

=





λ1 0 0
0 λ2 0
0 0 λ3



 (2.7)

where (λ1 ≤ λ2 ≤ λ3) are the three eigenvalues of the Hessian matrix, i.e., the
curvatures. We will label each critical point according its rank and signature as
(ω, σ). Assuming non-zero eigenvalues we can classify the CP by the sign of its
curvatures. Each positive curvature contributes +1 to the signature and every
negative curvature adds -1, giving four different CPs:

• (3,-3). Attractor or Nuclear Critical Point (ACP). All the cur-
vatures are negative in a ACP, and thus this CP is a maximum of the
electron density. These regions usually coincide with an atomic position
and an atom-in-molecule within QTAIM theory is characterized by one
and only one ACP. Although it is not usual one may encounter maxima of
the electron density which do not coincide with an atomic position; those
are known as non-nuclear maxima (NNA).

• (3,-1). Bond Critical Point (BCP). A BCP presents two negative
curvatures and a positive one. The BCP is found between two ACP.
The positive eigenvalue (λ3) corresponds to the direction connecting these
two ACP and the negative eigenvalues form a plane in the perpendicular
direction. The existence of a BCP is often used as an indicator of the
presence of a chemical bond between the atoms identified by the two ACPs
(see controversy below).
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Figure 2.2: The journal Chemistry a European Journal published a series of
articles dicussing the possibility of a bonding interaction between hydrogens
atoms in biphenyl molecule. [23–26]

• (3,+1) Ring Critical Point (RCP). A RCP has two positive curvatures
and one negative one (λ1). Its presence indicates a ring structure, which
sits in the plane formed by the positive eigenvalues. If the molecule is
planar the RCP is located in the minimum of the electron density inside
the ring structure.

• (3,+3) Cage Critical Point (CCP). A CCP has three negative eigen-
values and it is thus a minimum of the electron density. Its presence
indicates a cage structure and the CCP locates close to its center.

The topology of electron density fulfills the Poincaré-Hopf expression, that
gives the relationship that should be fulfilled between the number of critical
points:

nACP − nBCP + nRCP − nCCP = 1 (2.8)

If after performing the critical point search the number of points does not fulfill
the previous expression we should look carefully at the structure and try to
locate the missing critical points.

The critical points are connected between them through gradient lines. For
instance, the line that connects two ACPs through a BCP is known as a bond
path and, according to Bader’s theory it provides a universal indicator of bond-
ing between the atoms so linked [20]. This statement has not been exempt from
controversy. Namely, the bond path found between two hydrogens atoms in
biphenyl molecule (see Fig. 2.2 that has been the subject of debate in the litera-
ture [21–26]). It is worth mentioning that Bader never claimed that bond path
are indicators of chemical bond but indicators of chemical bonding or bonding
interaction [27].

Let us take a look at the two-dimensional representation of the electron den-
sity and its critical points. In Fig. 2.3 we can see the density countor plots and
the position of ACPs, BCPs and the bond path of NaCl. The gradient lines
(perpendicular to the countor lines) are depicted in red and they all end up in
the infinity or in the separatrix surface defining the boundaries of the atomic
domains. The atoms in molecules as defined by QTAIM have its boundaries lim-
ited by the zero-flux surface in the gradient vector field of the electron density.
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Figure 2.3: (left) The molecular representation of a molecule in terms of its CPs.
The smallest balls represent the BCP (red) and the RCP (yellow). (middle) the
countor plot of the electron density for NaCl. The critical points are represented
by triangles and the separatrix surface by a blue line. (right) the same picture
including also the gradient lines (red) and the bond path (light blue). The
curvature of the separatrix and the sizes of the atoms are in accord with the
electronegativity of the atoms; therefore, it is easy to identify Na in the left and
Cl in the right.

This zero-flux surface is given by: [17]

∇ρ(r) · n(r) = 0 ∀r ∈ S(r) (2.9)

where n(r) is the unit vector perpendicular to the zero-flux surface S(r) or sep-
aratrix. This surfaces show the boundaries betweens AIMs which are, therefore,
non-overlapping regions. a

To perform a QTAIM analysis of the topology of the electron density we can
use many different programs. Here we consider the use of three programs:
AIM2000 [28], AIMall [29] and AIMPAC [30]; all of them use a wavefunc-
tion file (extension wfn) generated by Gaussian [31] (g98 or latter versions)
or GAMESS [32]. Exercise 4 is about the use of AIM2000 (even though it can
be performed also with the use of AIMall), whereas subsequent exercises can
be performed with AIMPAC or AIMall. For molecules containing transition
metals (TM) it is costumary to use effective core potentials (ECP) or pseu-
dopotentials to account for inner-shell electrons. The wfn-file does not store
the ECP information and we need to use a wfx-file (to my knowledge, only
produced by Gaussian09c or latter versions) that can only be used by AIMall
program or Todd Keith. The wfx-file is obtained by using the keyword out=wfx
in Gaussian09c.

EXERCISE 4 (AIM2000)

Perform a full topological study of a molecule of your choice. Pick up a molecule
with, at least, a ring structure and draw the molecular representation (3D) and
the contour plot of the electron density. Include critical points, bond paths,
sepatrices and gradient lines when possible. Perform integrations over atomic
regions to obtain some atomic properties. Follow the following steps:

aWithin QTAIM, the AIM do not overlap, i.e. a given point in the real space belongs to
one and only one atom in the molecule. Other atomic partitions, the overlapping ones, assign
weights to each point in the real space so that a given point belongs to more than one atom.
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1.- Run you gaussian calculation (GAMESS also possible) with the keyword
out=wfn to obtain your wavefunction file (hereafter wfnline:

Figure 2.4: Gaussian input to obtain a wavefunction file for H2 molecule. Notice
the blank lines (marked by blue left bracket, which should not be included in
the input) before and after the wavefunction file name.
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2.- Open your wfnfile with AIM2000. Calculate first the CPs and bond paths
in the molecular representation (they show up in the black window where
you can freely rotate the molecule to visualize them).

Figure 2.5: Snapshot of AIM2000 program and the most interesting features.

Figure 2.6: Molecular representation of benzene. The atoms (C in black, H in
light grey), the BCPs (red), the RCP (yellow) and the paths connecting the CP
are presented.
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3.- In the plot menu select contour plot and construct a two-dimensional plot
as this one below:

Figure 2.7: The contour plot of the electron density of benzene (contour lines
given in black). The molecule is composed of carbon atoms (dark blue) and
hydrogens (light grey). The BCPs (red), the RCP (green) and the bond paths
(dark blue) connecting C-C and C-H are also given. In brown we can see the sep-
aratrix surfaces as they intersect the molecular plane. The spaces left between
separatrix surfaces (that extent to infinity in H atoms) define the AIMs.

4.- Calculation of properties: Select the atoms you want and perform the
integration over them (make sure to integrate in natural coordinates).

Figure 2.8: Menu on I3 (see Fig. 2.5) to perform the integration over C1. Before
performing the integration over C1 we should have characterized its topology
(ACP, BCP, etc.). NB: the integration takes some computer time. After inte-
gration you obtain several atomic properties, here we show the atomic electron
population.
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The Laplacian of the electron density

Bader’s theory goes beyond the concept of an AIM. There are many other as-
pects that have evolved in useful chemical tools and are widely employed in the
literature. The scope of this course is, unfortunately, limited to the aspects of
the theory already presented and the discussion of the Laplacian of the electron
density.

The second derivative of a function gives the curvature of this function and,
therefore, provides information on the concentration or depletion of the quan-
tity represented. Positive second derivatives indicate the presence of a minimum
(magnitude depletion) and negative ones show for a maximum of the function
(magnitude concentration). Therefore, in the case of the Laplacian of the elec-
tron density,

∇ · ∇ρ(r) = ∇2ρ(r) =
∂2ρ(r)

∂x2
+
∂2ρ(r)

∂y2
+
∂2ρ(r)

∂z2
(2.10)

we have

• ∇2ρ(r) < 0 electron accumulation → localization.

• ∇2ρ(r) > 0 electron depletion → delocalization.

Figure 2.9 illustrates the Laplacian of the density for N2 molecule. In the contour
plot we can appreciate large negative values (large localization of electrons) close
to the nuclei and in the bonding region above the intermolecular axis. The latter
corresponds to the π-electrons of the bond in N2. These feature are revealed
when we choose a medium-range contour value (the largest values correspond
to the nuclei) in the three-dimensional plot. Contour pictures can be done with
AIM2000. The three-dimensional plot is done with Molekel [33] (using a cube
file with Laplacian values) but it could be also done with Vmd [34] (cube file) or
with molden [35] (using a log file from Gaussian [31] with the gfinput keyword).

Figure 2.9: The N2 molecule: (left) Contour plot of the negative values (con-
centration of charge) of the Laplacian of the density. (right) three-dimensional
representation of the ∇2ρ(r) = −0.004.

2.3.2 Other real-space partitions

There are other important AIMs defined over the real space.

The simplest of the real space methods is perhaps the Voronoi cell. In this
scheme the atoms are defined as Voronoi polyhedra that assign the point in the
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space to the nearest atom. This method provides a non-overlapping partition of
the real space. The partition is thus defined using only the molecular geometry
and atom types are not explicitly considered. This partition provides chemically
meaningless results in a number of situations.b

Atoms can be also defined as overlapping regions, i.e. , each given point in
the real space is assigned to more than one atom. Overlapping atomic partitions
define atoms as fuzzy entities that interpenetrate each other and extent all over
the space. Each atom is assigned a weight function (defined between 0 and 1)
that gives the contribution of the atom in each point of the molecular space.
The simplest of such partitions is Hirshfeld’s which defines the weight functions
as follows [15]:

wA(r) =
ρ0

A(r)
∑

B ρ
0
B(r)

(2.11)

where ρ0
A is the density of the isolated atom and the sum of atomic densities

gives the so-called promolecular density.c The sum of the weights gives the unit:

∑

A

wA(r) = 1 ∀r (2.12)

The main criticism to this classical Hirshfeld method is that the choice of
the electronic state of the isolated atoms can influence the resulting atomic
population. This is particularly evident when using ionic atomic densities. This
serious drawback has been recently overcome by Bultinck et al. [36] with the
Iterative Hirshfeld approach or Hirshfeld-I. The essence of the method is that
the density of the isolated atoms must integrate to the same population of the
atom in the actual molecule. See Refs. [36–38] for further details.

In 1988, Axel Becke defined a multicenter integration technique [16] that
assigns weights to atoms in the molecule and it was used by Mayer and Salvador
to define the fuzzy atom partition [39]. In particular they use the following
weight functions:

wA(r) =
fA(r)

∑

B fB(r)
(2.13)

these functions fA(r) are obtained from empirical atomic radii. A popular
alternative to the fuzzy atoms is known as Becke-rho partition and uses the
BCP (or in the absence of the BCP the point with the lowest density in the
straight line connecting two atoms) instead of the atomic radii [8, 18]. Becke-
rho has the advantage of providing values close to QTAIM ones but using an
integration scheme that reduces significantly the computational cost. Recently,
Ramos-Córdoba and Salvador have improved the definition of fA providing a
new atomic partition known as topological fuzzy Voronoi cells (TFVC) [40]. The
use of the latter methodology is recommended over the previous definitions and
it is available in program APOST-3D [41].

bFor instance, Voronoi partition assigns a charge of +0.7 to oxygen in water molecule.
cThe promolecule is the molecule naively formed by superposing the densities of the isolated

atoms (or fragments).
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2.3.3 References

Recommended bibliography: Bader’s book [17], Bader’s reviews [42,43] and the
notes of Ángel Martin-Pendás in Ref. [44]. We will use AIM2000 program [28].
For the historical part we can use Atkins’ [45] or simply browse the relevant
concepts in Wikipedia.

2.4 Population analysis

The population analysis is a technique in computational chemistry that as-
signs a number of electrons, the atomic population, to each atom in a molecule.
Therefore, it is a way to distribute the N electrons in a molecule among their
constituent parts. It is costumary to give also the atomic charge, which is
calculated as the atomic population minus the atomic number (ZA), i.e.,

QA = ZA −NA (2.14)

The population analysis are calculated by using the definition of a certain
AIM. Therefore, there are as many population schemes as atomic partitions.

2.4.1 Mulliken population analysis

The most popular population analysis is that performed using the Hilbert space
partition (see above). It is straightforward to be calculated and thus it is avail-
able in any computational chemistry code. Its definition uses the expression of
the electron density in terms of the set of atomic orbitals (basis set) used in the
calculation. Namely, assuming m number of basis functions (AO) a MO can be
expanded in terms of them:

φMO
i (1) =

m
∑

µ

cµiφ
AO
µ (1) (2.15)

its squared value reads

|φi(1)|2 =

m
∑

µν

cµicνiφ
∗
µ(1)φν(1) (2.16)

and by using the definition of the electron density, Eq. 1.11, we get:

N =

∫

ρ(1)d1 =

N
∑

i

ni

∫

|φi(1)|2 d1 =

N
∑

i

m
∑

µν

cµicνini

∫

φ∗µ(1)φν(1)d1

=

m
∑

µν

(

N
∑

i

cµicνini

)

∫

φ∗µ(1)φν(1)d1 =

m
∑

µν

PµνSµν = Tr (P · S) (2.17)

where P and S are the density matrix (in AO) and the overlap matrix, respec-
tively. The Mulliken population of atom A is defined as

NA =
∑

µ∈A

m
∑

ν

PµνSµν (2.18)
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The values of Mulliken populations and charges can be found in the output
of Gaussian if we use the keyword pop=full. The results of Mulliken popu-
lation analysis have no numerical error associated because they come from an
integral (Sµν) that in the case of gaussian functions can be performed analyt-
ically. Most computational chemistry codes (Gaussian, GAMESS, NWCHEM,
QCHEM, etc.) use gaussian functions as basis sets.

2.4.2 Population from real space partitions

The calculation of populations from a real space partition is a bit more com-
plicated than in the Hilbert space case. In the real space we need to perform a
numerical integration over the atomic domain of A:

NA =

∫

A

ρ(1)d1 =
∑

i

ni

∫

A

|φi(1)|2 d1 =
∑

i

niSii(A) (2.19)

where we need the diagonal part of the atomic overlap matrix (AOM):

Sij(A) =

∫

A

φ∗i (1)φj(1)d1

Since the shape of the AIMs is usually not regular, the calculation of the AOMs
is necessarily numerical. The computational cost and the numerical error asso-
ciated to a population analysis comes from the calculation of the corresponding
AOMs. Therefore, it is highly recommended to check the accuracy of the integra-
tion after such analysis. The QTAIM population analysis can be obtained from
AIMall [29], AIM2000 (see Figure 2.8), using APOST-3D [41] or ESI-3D [46]
(by providing the pertinent AOMs).

2.4.3 The electron-sharing indices (bond orders)

The concept of bond order is crucial to understand the bonding in molecules
and it measures the number of chemical bonds between a pair of atoms. In
his seminal work Coulson [47] put forward a measure of the order of a bond,
which he applied within Hückel molecular orbital (HMO) theory to explain the
electronic structure of some polyenes and aromatic molecules. This measure of
the order of a bond, more commonly know as Coulson bond order (CBO), has
been connected with HMO calculations done so far.

Nowadays very few calculations are performed within the HMO method,
as more sophisticated (and now computational affordable) methods are easily
available. As a consequence, the CBO has been replaced by what we could call
electron sharing indices (ESI), which measure at which extent two atoms are
sharing the electrons lying between them.

In this course we will study the ESI that are calculated from the so-called
the XCD (Eq. 1.20; see section 1.2). The XCD compares a fictitious pair den-
sity of independent electron pairs [ρ(1)ρ(2)] with the real pair density, ρ2(1,2)
[see Eq. 1.14]. The smaller the difference, the more independent the electrons
in these positions are. The larger the difference, the more dependent, i.e., the
more coupled they are. Therefore, for pairs of electrons shared between points
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belonging to two different atoms we expect a large XCD value.

The XCD gives rise to the electron sharing indices (ESI). Namely, the delo-
calization index (DI):

δ(A,B) = 2

∫

A

∫

B

d1d2ρxc(1,2) = 2cov (NA, NB) (2.20)

and the localization index (LI)

λ(A) =

∫

A

∫

A

d1d2ρxc(1,2) (2.21)

The ESI is actually related to the covariance between the population of atoms A
and B and it is thus a measure of the number of electrons simultaneously fluc-
tuating between these atoms. It is costumary to take this value as the number
of electron pairs shared between atoms A and B, a quantity commonly known
as the order of the bond or simply bond order [47].

Since the XCD integrates to the number of electrons, we can classify the
electrons as localized and delocalized and assign them to atoms (localized) and
pairs of atoms (delocalized). Therefore, the following sum rule is fulfilled:

N =
∑

A

NA =
∑

B,A<B

δ(A,B) +
∑

A

λ(A) (2.22)

An electron totally localized within an atom contributes 1 to the localization
index. A localized pair of electrons contributes 2 to the localization index and
an electron shared between two atoms contributes 1/2 the localization index
and 1/2 to the delocalization index. [7]

Figure 2.10: The N2 molecule: (left) The Lewis structure. (right) Distribution
of electrons as localized and delocalized.

Let us take a look at N2. N has a configuration like this: 1s22s22p3 and N2

shows a triple bond (2 × 2p3), and each nitrogen has a lone pair (2s2) and two
core electrons (1s2). There is a total of 14 electrons that can be thus distributed
as 3 delocalized (each of the 3 electrons shared by each nitrogen contribute 1/2,
i.e., 2 × 3 × 1/2) and 5.5 localized (2 come from the lone pair, 2 from the core
pair and 3 × 1/2 from each electron shared). The numbers in Fig. 2.10 match
this counting. Single-, double- and triple-, bonds usually exhibit DI values close
to 1, 2 and 3; whereas aromatic bonds show DI values around 1.5. The less
Lewis-like structure the molecule is, the less predictable the localization and
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delocalization indices are.

Finally it is worth defining the total delocalization in a given atom,

δ(A) =
∑

B 6=A

δ(A,B) =
1

2

∑

B,A<B

δ(A,B) (2.23)

that some authors [48] relate to the valence of an atom, and provide a natu-
ral division of the number of electrons in an atom as the delocalized and the
localized ones.

NA =
1

2
δ(A) + λ(A) =

1

2

∑

B 6=A

δ(A,B) + λ(A) (2.24)

By using the bounds stablished in Section 1.2 for the variance and the co-
variance we can find some useful bounds for the ESIs,

0 ≤ δ(A,B) ≤ 2NA (2.25)

0 ≤ λ(A) ≤ NA (2.26)

In the case of correlation wavefunctions (see section 1.3), the bounds become
more convoluted,

δc(A,B) ≤ δ(A,B) ≤ 2NA − δc(A,B) (2.27)

λc(A) ≤ λ(A) ≤ NA (2.28)

where λc(A) and δc(A,B) are the correlated parts of the ESI, calculated by
replacing ρxc by λ2 (Eq. 1.35) in Eqs. 2.20 and 2.21. B stays for the region of
the molecular space that is complementary to B, i.e. , B = R

3 −B.

2.4.4 Multicenter Indices

Lewis theory [49] has been one of a few survivors to the advent of quantum
chemistry. The idea of electron pairs behind Lewis theory has been used to
rationalize much of the chemistry known nowadays. In the previous section we
have studied a modern tool to characterize the bonding between two atoms,
the so-called delocalization index [7], i.e. , the generalization of the concept of
bond order, which gives the electron sharing number between two atoms A and
B. Remarkably, a number of molecular species do not fit within the model
suggested by Lewis. Most of them involve more than two atoms in the chemical
bond. For instance, diborane contains a B2H2 ring that is held by four electrons
forming two 3-center 2-electrons bonds. Therefore, expressions that account for
multicenter bonding are particularly important in order to fully characterize the
electronic structure of molecules. There have been a few attemps in the past to
characterize multicenter bonds but most of them rely on the molecular orbital
picture [50] or 2c-ESIs [51]. To the best of our knowledge the first attempt to
use a multicenter expression for the calculation of multicenter bonding is due
to Giambiagi [52]. Giambiagi and coworkers developed a formula,

I(A1, A2, . . . , An) =

∫

A1

d1

∫

A2

d2 · · ·
∫

An

dN ρ1(1;2)ρ1(2;3) . . . ρ1(N;1)

(2.29)
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that depends on the 1-RDM, ρ1(1;2), defined in Eqs. 1.12 and 1.13. Notice
that this index depends on the particular order of the atoms in the string for
n > 3. Following the work of Giambiagi, some authors [53–55] used similar ex-
pressions and discovered that the sign of three-center indices was an indicator of
the number of electrons involved: three-center two-electron (3c-2e) bonds yield
positive I and three-center four-electron (3c-4e) yield negative Id [55].

In 1994 Giambiagi [57] reformulated his definition of the multicenter index
in terms of the n-order reduced density matrices (n-RDM), which we shall call
the n-center ESI (nc-ESI) [58]

δ(A1, . . . , An) =
(−2)n−1

(n− 1)!

〈

n
∏

i=1

(

N̂Ai
−NAi

)

〉

(2.30)

Unlike Eq. 2.29 this definition is invariant with respect to the order of the atoms
in the ring and is proportional to the n-central moment of the n-variate proba-
bility distribution. Eq. 2.30 measures the probability of having simultaneously
one electron at A1, another at A2, etc. regardless of how the remaining N − n
electrons of the system distribute in the space. Therefore, δ(A1, . . . , An) gives a
mesure of how the electron distribution is skewed from its mean, which may be
related to simultaneous electron fluctuation between the atomic population of
the basins (A1, . . . , An). Usually the regions Ai are atoms in the molecule, but
one could use also molecular fragments or other relevant regions of the space. It
was also Giambiagi who pointed out that multicenter indices could be used to
account for the aromaticity of molecular species [59] and postulated Eq. 2.29,
which he called Iring, as a measure of aromaticity [60]. Afterwards, Bultinck
suggested a new aromaticity index, MCI, which is based on the summation of
all possible Iring values in a given ring (c.f. Eq. 3.7) [61]. Lately, in our group
we suggested a normalization for both Eqs. 2.29 and 2.30 which avoids ring-size
dependency [62]. These expressions for multicenter bonding have been used in
a number of situations such as the analysis of conjugation and hyperconjuga-
tion effects [63], to distinguish agostic bonds [64], to understand aromaticity in
organic [65] and all-metal compounds [66–69], and they have also been used to
account for electron distributions in molecules [70].

In the next section we will study once again the multicenter indices and we
shall see how the same formulae apply to study aromaticity. Of course, the
study of aromaticity from multicenter indices will be limited to the electron
delocalization aspect of aromaticity.

EXERCISES 5 & 6 (Population analysis, ESIs and multicenters)

Perform a population analysis on both Hilbert space and real space (in the lat-
ter case use TFVC and QTAIM). Pick up a molecule of your choice. Follow the
following steps:

1.- Run you Gaussian09 calculation (GAMESS also possible) with the key-
word out=wfn (to obtain your wavefunction file; see exercise 4), fchk=all

dOnly for 3c-ESI calculated from single-determinant wavefunctions. [56]
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(to obtain the formatted checkpoint file), iop(6/7=3) and gfinput (to
give explicit orbital information in the output that can be used to plot the
density and the Laplacian with molden), iop(3/33=4) (to include the
overlap and density matrix that enter Eq. 2.18 and will be used by ESI-
3D to perform a Hilbert space calculation), and pop=full to obtain a full
population analysis in the Hilbert space. If you want to obtain the Mayer
bond-orders (which are the definition of DI [Eq. 2.20] for a Hilbert space
partition) use iop(6/80=1). You do not need to specify the name of the
fchkfile, by default it will be Test.FChk. Make sure your script includes
a line to move this generic file name to yourfile.fchk. In the following we
will use this file name.

2.- From the output of gaussian you can already take the Mulliken population
analysis data. Look at this extract from gaussian for N2 molecule:

Gross orbital populations:

1

1 1 N 1S 1.99714

2 2S 0.78709

3 2PX 0.72794

4 2PY 0.72794

5 2PZ 1.10875

...

16 2 N 1S 1.99714

17 2S 0.78709

18 2PX 0.72794

19 2PY 0.72794

20 2PZ 1.10875

It indicates the number of electrons assigned to each function (µ) that is
centered in atom A, i.e. ,

Nµ
A =

m
∑

ν

PµνSµν ∀µ ∈ A (2.31)

Afterwards we see the condensed version, which shows in a matrix form

Condensed to atoms (all electrons):

1 2

1 N 6.273954 0.726046

2 N 0.726046 6.273954

and by summing up the condensed fraction we get the Mulliken population
on atom A, NA. In this case NN = 6.273954 + 0.726046 = 7 for both N
atoms, which are equivalent by symmetry. Gross orbital populations may
give unphysical numbers that violate the Pauli principle, namely, popu-
lations below zero or above two. The output also contains the summary
of the Mulliken charges, QA (see Eq. 2.14) and the summation of them
which should coincide with the charge of the molecule.
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Mulliken charges:

1

1 N 0.000000

2 N 0.000000

Sum of Mulliken charges = 0.00000

Finally, Gaussian also prints the DI (Eq. 2.20) in the Hilbert space (com-
monly known as Mayer Bond Orders [48]):

Atomic Valencies and Mayer Atomic Bond Orders:

1 2

1 N 2.760249 2.760249

2 N 2.760249 2.760249

δ(N,N ′) = 2.76, very close to the ideal value of 3 that we can predict
from the Lewis theory.

3.- After running gaussian with the option in point 1, the program generates
two files: yourfile.wfn and Test.FChk (that you change to yourfile).fchk.
The first will be used with AIMPAC/AIMall to produce the QTAIM re-
sults and the second will be used with APOST-3D to generate the TFVC
(or Fuzzy or Becke-rho) analysis.

[3a.-]AIMall only uses as an input file the yourfile.wfn or yourfile.wfx
and generates yourfile.sum file containing the information about QTAIM
populations, N(A) [Eq. 2.19], localization indices, LI(A) [Eq. 2.21] and the
total delocalization of atom A, DI(A,A’) [Eq. 2.23]

--------------------------------------------------------------...

Atom A N(A) LI(A) DI(A,A’)/2 ...

--------------------------------------------------------------...

N1 7.0000000752E+00 5.4813310823E+00 1.5186689929E+00...

N2 7.0000000752E+00 5.4813310823E+00 1.5186689929E+00...

--------------------------------------------------------------...

Total 1.4000000150E+01 1.0962662165E+01 3.0373379857E+00...

as well as delocalization indices, DI(A,B) [Eq. 2.20].

-------------------------------------------------------...

Atom A Atom B 2*D2(A,B) DI(A,B) ...

-------------------------------------------------------...

N1 N2 4.7481331985E+01 3.0373381361E+00 ...

These results match those already commented in Fig. 2.10. The your-
file.sum contains additional information about the topology of the electron
density and AIM properties that are beyond the contents of this course.

[3b.-]APOST-3D uses the yourfile.fchk file and an input file named your-
file.inp with the following contents:

# METODE ###################

TFVC

DOINT

#########

30



The DOINT keyword is used to produce a set of int-files (int extension)
that contain the AOMs (Eq. 2.20) that will be used by ESI-3D (see next
point). Replace TFVC by BECKE-RHO to produce Becke-Rho results
(see above). If no partition keyword is specific the program produces
fuzzy-atom partition analysis. The output also contains a Mulliken anal-
ysis regardless the partition employed. The output of APOST-3D is self-
explanatory and contains populations, charges and the delocalization in-
dices in a BOND ORDER MATRIX form. The program does not provide
localization indices, but they can be retrieved from atomic population
and total atomic delocalization (Eq. 2.23), which in the output of fuzzy
appears as ”VALENCES USED IN BONDS” and correspond to δ(A)/2.

4.- If you are only interested in populations, delocalization or localization in-
dices you do not need to run any other program. However, if you want
to perform multicenter analysis, fragment analysis, aromaticity analysis
or decompose into atomic orbitals you need to run ESI-3D program (see
Appendix II for a manual with the full list of options). ESI-3D needs
the AOMs generated by AIMall/AIMPAC or APOST-3D. APOST-3D
and AIMPAC produce the files into the same directory where you run
your calculation (yourfilefuz *.int and yourfile *.int, respectively), while
AIMall creates a separate folder yourfile atomicfiles with your int-files in-
side (*.int). ESI-3D uses an input file that can have any name but I
recommned using yourfile.bad for AIMall/AIMPAC inputs and yourfile.fuz
for APOST-3D. They are executed as follows:

[4a.-]ESI yourfile.bad >yourfile bad.esi
[4b.-]ESI yourfile.fuz >yourfile fuz.esi

A generic input for B2H6 looks like this:

$TYPE

hf

$BASIS

8

$ATOMS

8

b1.int

b2.int

h3.int

h4.int

h5.int

h6.int

h7.int

h8.int

$MULTICENTER

2

3 5 1 8

3 5 2 8

where $TYPE always preceeds hf to specifiy single-determinant wave-
function (replace by uhf for open-shell calculations), $BASIS is used to
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introduce the number of occupied orbitals (here 16 electrons occupying 8
orbitals) and $ATOMS is followed by the number of atoms and the files
containing the pertinent AOMs. These three keywords are obligatory.
$MULTICENTER is used to calculate multicenter indices (Eq. 2.29 and
Eq. 2.30). See Appendix II for the use of $MULTICENTER and other
options that can be included in the input files for ESI-3D.

5.- We have performed a numerical integration over atomic domains so we
should first check that the integration is correct (search for WARNING
messages, check the magnitude of the error of the integration and the dif-
ferent summation in the outputs of ESI).

The structure of the output of ESI-3D is the same regardless the partition
used. Let us analyze here the output for P2−

4 :

Integration errors : Error(S), Lapl. (only if QTAIM integration) and the
total quantities (i.e., 61.9963 instead of 62)

-------------------------------------------

Error(S)=Sum(|I-Sum(S(A))|)= 0.0025945

-------------------------------------------

........

---------------------------------------------------------------

| Atom N (Sij) N (int) Lapl. loc. deloc. N1 N2

---------------------------------------------------------------

| P 1 15.4991 15.4991 0.0006 13.8377 3.3227 11.9993 3.4998

| P 2 15.4991 15.4991 0.0006 13.8377 3.3227 11.9993 3.4998

| P 3 15.4991 15.4991 0.0006 13.8377 3.3227 11.9993 3.4998

| P 4 15.4991 15.4991 0.0006 13.8377 3.3227 11.9993 3.4998

---------------------------------------------------------------

| - 0 61.9963 61.9963 0.0025 55.3509 13.2910 47.9972 13.9992

---------------------------------------------------------------

The firts column of the last table gives the population calculated from the
AOMs, the second column gives the same quantity as taken from the inte-
gration files (they should coincide if the integration is good), the Laplacian
of density (for QTAIM we say an integration is acceptable if the quantity
is smaller than 0.001), the localization index (Eq. 2.21), the delocalization
index (Eq. 2.23), and the populations can be decomposed into two orbital
group contributions, N1 (σ orbitals) and N2 (π orbitals). This molecules
has D4h and its molecular orbitals can be classified into σ and π orbitals
because the symmetry group Cs (with irreducible irrepresentations A’ [σ]
and A” [π]) is a subgroup of D4h and, therefore, each irreducible represen-
tation of this group can be mapped into either A’ or A”. To obtain an or-
bital decomposition with ESI-3D we should use the keyword $GROUPS
to distribute the orbitals into 2 groups (see Appendix II). The orbital
symmetry information can be found in the Gaussian log-file.

--------------------------------------
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| Pair DI DI1 DI2

--------------------------------------

| P 1-P 1 13.8377 10.8808 2.9569

| P 1-P 2 0.4200 0.1620 0.2580

| P 1-P 3 1.4504 1.0368 0.4136

| P 1-P 4 1.4504 1.0368 0.4136

| P 2-P 2 13.8377 10.8808 2.9569

The second table gives the DI and LI values, i.e. , Eqs. 2.20 and 2.21. If
the pair involves the same atom the value given is the LI, otherwise the
corresponding DI. Notice that the last two columns once again represent
the A’ and A” contributions.

Finally, we request a multicenter analysis by including the following lines
in the input file (either yourfile.fuz and yourfile.bad):

$MULTICENTER

2

4 1 2 3 4

3 1 2 3

Please notice that the atoms should be given in the order they are con-
nected in the ring. In this previous lines we request a calculation of two
multicenter indices (P-P-P-P and P-P-P):

-------------------------------------------------------

| Multicenter:

| Atom-Group Iring-like MCI-like

| P 1-P 2-P 3-P 4 = 0.030794 0.042156

| P 1-P 2-P 3 = 0.019248 0.019248

which gives the Iring value, Eq. 2.29, and MCI, Eq. 3.7.
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Chapter 3

Aromaticity

Chemistry is essentially an experimental science that evolved through experi-
mentation and it has been built upon a series of empirically proved laws and
models. On the other side, quantum mechanics relies on postulates from which
a solid theory has been constructed. Both focus on the study of matter, how-
ever, quantum mechanics can anticipate the electronic structure of matter and
it could, in principle, replace the laws and models of chemistry by physically
sound theories. Notwithstanding, after many years of the advent of quantum
mechanics, several chemical concepts with high predictable power still prevail.
Most of these concepts have not found (and most likely cannot find) a solid root
in the quantum theory because there is no observable behind them. One finds
many such concepts in the literature (e.g. , chemical bonding, bond order, ionic-
ity, electron population, agostic bond, etc.) that are still widely used to predict
or explain the electronic structure of molecules or reaction mechanisms [71].
One of the most employed terms in literature —and one of the most contro-
versial [72] ones— is aromaticity [73–77]. Aromaticity is associated with cyclic
electron delocalization in closed circuits that gives rise to energy stabilization,
bond length equalization, large magnetic anisotropies and abnormal chemical
shifts, among other effects. Various of these aromaticity manifestations can be
measured by appropriate quantities, the aromaticity indices, that allow for aro-
maticity scales. As a result, nowadays there is a number of indices available in
the literature, often offering disparate results about the aromaticity of certain
chemical species [78]. The discovery of new aromatic species [79–81] that extend
well beyond the realm of organic chemistry has challenged our understanding
of aromaticity and it has put forward the limitations of the existing aromaticity
indices to deal with these new chemical creatures [69].

Indeed, aromaticity is an ill-defined concept. It does not correspond to a
physical observable like many other properties that populate the world of tools
used in the routine analysis of chemical reactions. Bond orders, reaction con-
certedness or oxidation states are properties that cannot be measured directly
and, therefore, unambiguously assigned. However, aromaticity is still more con-
troverted than other similar quantities like bond ionicity or bond order because
it refers to not one, but several properties that are not necessarily mutually re-
lated. Despite its fuzziness, chemists still use this concept to elucidate phenom-
ena such as chemical stability/reactivity, bond length equalization/alternation,
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among others. Therefore, aromaticity is a concept used by chemists world wide
and it cannot be so easily ignored or put aside.

Aromaticity is a multifold property [78,82–85] because of its different mani-
festions which range from purely energetical to structural ones. Indeed, the use
of different aromaticity measures (even if they are based on the same manifesta-
tion) is highly recommended because, as it has been recently proved [67,86], no
aromaticity index is infallible. On the other hand, saying that aromaticity is a
multidimensional phenomena (an accepted fact), sometimes hinders the draw-
backs of certain aromaticity indices, which fail to fulfil this or that feature of
aromaticity that any chemist would agree with [86]. These drawbacks should be
identified and the limits and features of aromaticity indices stablished to avoid
a wrong use of these quantities. In some cases, we should ask ourselves which
manisfestation of aromaticity we are looking for. Aromaticity criteria based on
electron delocalization are good to identify conjugated-electron circuits, which
might play important roles in the electronic distribution of the electrons in a
ring, the mobility of the electron cloud or the assignment of electronic spec-
trum transitions. On the other hand, energetic criteria are important to iden-
tify molecules that benefit from extra energy stabilization. In some molecules,
conjugated-electron circuits along a ring structure cause bond-length and bond-
order equalization as well as an important energy stabilization in the molecule
(many organic molecules show this behavior). However, the transition state of
the Diels-Alder reaction is the most aromatic point along the intrisic reaction
coordinate (IRC) but there is no bond-length or bond-order equalization and
this point is the most energetic point along the IRC.a

Despite the approximations inherent in the Hückel Molecular Orbital (HMO)
approach, organic aromatic molecules are specially well described within the
HMO method. It is thus usual to learn the HMO at the same time than 4n+ 2
Hückel’s rule and other aromaticity measures given by the HMO method, such
as the resonance energy (RE), the RE per electron (REPE) or even the topolog-
ical REPE (TREPE) [89]. Since the studies of Hückel on organic molecules, the
concept of aromaticity has extended importantly including all sort of new aro-
matic molecules such as metalloaromatic molecules, fullerens [90], nanotubes,
porphyrins [91,92], molecules with a Möbius-like structure [93–95] and all-metal
clusters [69], among others.

In the literature there are many indices of aromaticity and they can be
classified as either energetic [96], magnetic [75] geometric [76] and electronic
indices [77], corresponding to the different manifestations of aromaticity, i.e.,
energetic stabilization, exalted magnetic suceptibilities, particular geometrical
features (such as bond length equalization or planarity) or electron delocaliza-
tion along the aromatic ring, respectively. There are various energetic criteria to
assess aromaticity but perhaps the most popular one is the use of homodesmotic
or isodesmotic reactions from which one can calculate the aromatic stabiliza-
tion energy (ASE) [96]. Among the structural-based (or geometric) indices it
is worth to highlight the HOMA index. The most popular index of aromaticity

aOne could argue that the energy stabilization should be compared with the transition state
of similar reactions. Yet, pseudopericyclic reactions are essentially barrierless and produce
similar products through a non-aromatic transition state [87, 88].
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is perhaps the NICS index [97], which belongs to the set of magnetic indices.
Finally, among the electronic indices we find the multicenter indices (Iring and
MCI), which perform the best among the different aromaticity indices existing
in the literature [67, 86].

In this course we will mostly focus on the study of a geometric index of
aromaticity (HOMA) [98], a magnetic one (NICS) [97] and several electronic in-
dices of aromaticity, which include FLU [99], Iring [60], MCI [61] and PDI [100].

3.1 Geometrical indices

In this subsection we will analyze the so-called harmonic oscilator model of
aromaticity (HOMA) as defined by Kruszewski and Krygowski. [98] The HOMA
only relies on geometrical data and it can be computed using this expression:b

HOMA = 1 − 257.7
1

n

n
∑

i

(Ropt −Ri)
2

(3.1)

= 1 − 257.7
1

n

(

(

Ropt − R
)2

+
n
∑

i

(

Ri −R
)2

)

(3.2)

= 1 − (EN + GEO) (3.3)

The closer to one the index, the more aromatic. The formula depends on some
reference bond distances and, unfortunately, there is a limited number of bonds
for which these references have been tabulated (C-C, C-N, C-O, C-P, C-S, N-N
and N-O). This set suffices to calculate most organic molecules but imposes a
serious drawback to extend the use of HOMA to new aromatic molecules.

3.2 Magnetic indices

If an aromatic molecule is exposed to an external magnetic field, this field in-
duces a π-electron ring current that can be measured and used to characterize
aromaticity. The magnetic susceptibility exaltation or the anisotropy of the
magnetic susceptibility are measures of aromaticity based on this property of
aromatic systems. However, the most important (and by far the most popular)
magnetic index of aromaticity is NICS. The nucleus independent chemical shift
(NICS) is the negative value of the absolute shielding computed at the center
of the ring (or other relevant point of the system, see below). It was defined by
Paul Schleyer and coworkers [97] and assesses that the most aromatic molecules
will be those with the most negative values. On the contrary, the more positive
the NICS values, the more antiaromatic the rings are.

There is many variants of NICS indices, which can be calculated at the ring

bPlease notice that the step from Eq. 3.1 to Eq. 3.2 assumes that all bonds are of the same
type. The expression for rings with different bonding patterns can also be decomposed into
EN and GEO terms but its derivation is less straightforward [101].
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center [NICS(0)], at one Ångstrom above or below the ring plane [NICS(1)]c

or taking only its out-of-plane tensor component [NICS(0)zzand NICS(1)zz ].
Finally, it is worth saying that some authors recommend to compute the NICS
not at the geometric center but at the point of the lowest density in the ring
plane, i.e., at the RCP [102]. This recommendation proves particularly wise
in the case of heterocyclic or metalloaromatic compounds, where the RCP is
usually displaced from the geometric ring center.

3.3 Electronic indices

Despite aromaticity does not accept a unique definition, there has been many
attempts to define it. Perhaps the most remarkable ones are due to Sondheimer
(1963) and Paul Schleyer (1996) in two articles from the official journal of the
International Union of Pure and Applied Chemistry (IUPAC) [73, 103]:

A compound is considered to be aromatic if there is a measurable
degree of delocalization of a π-electron system in the ground state
of the molecule.

F. Sondheimer (1963)

Aromaticity is now associated with cyclic arrays of mobile elec-
trons with favorable symmetries. In contrast, the unfavorable sym-
metry properties of antiaromatic systems lead to localized, rather
than to delocalized electronic structures. The ”mobile electron” ar-
rays are not restricted to π, but may be σ or mixed in character.

P. Schleyer and H. Jiao (1996)

In this sense, Sondheimer considers aromatic molecules as those that have
a measurable degree of cyclic delocalization of a π-electron system. Similarly,
Schleyer and Jiao think of aromaticity as associated with cyclic arrays of mobile
electrons with favorable symmetries while the unfavorable symmetry properties
of antiaromatic systems leads to localized rather than to delocalized electronic
structures. This cyclic mobility of electrons is translated into characteristic
aromatic manifestations such as bond-length equalization, abnormal chemical
shifts, magnetic anisotropies, and energetic stabilization.

It thus, seems only natural to try to define aromaticity from its origin, the
particular electronic distribution, rather than from it consequences. Lately aro-
maticity indicators based on the electronic structure of molecules are becoming
popular, and several research groups have contributed to the issue by providing
new aromaticity indices [77]. Among others we can mention the Iring [60] of
Giambiagi et al., the MCI [61] of Bultinck and coworkers or the θ index [104]
of Matta. More recently, Szczepanik and coworkers have contributed with a
index capable of accouting for multicenter bonding [105, 106]. Our group has

cThe NICS(1) should in principle capture the presence of π-electron delocalization because
the maximum of the electron of p orbitals is larger at ca. 1Å. NICS(1) is thus more suitable
for organic molecules, which exhibit classical π aromaticity.
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been also extensively working in this issue [74, 77], and the latest efforts have
provided the PDI [100] and FLU [99] aromaticity measures as well as the nor-
malized versions of Iring and MCI [62] and AV1245, which is an index for large
porphyrinic rings [107].

Some of the aromaticity indices have been proposed without an exhaustive
justification further from the fact that these indices correlate well with previ-
ously reported aromaticity indices. It is thus recommended to know the limita-
tions of the existing aromaticity indices. Let us examine several indices. We are
concerned with the calculation of the local aromaticity of a given molecule which
possesses at least one ring structure. Let us a suppose such ring structure con-
sists of n atoms, represented by the following string A={A1,A2,...,An}, whose
elements are ordered according to the connectivity of the atoms in the ring. For
such system we can calculate the following electronic aromaticity indices.

3.3.1 The Aromatic Fluctuation Index: FLU

Based on the comparison with cyclic electron delocalization of typical aromatic
molecules, FLU index is defined as follows [99, 108]:

FLU(A) =
1

n

n
∑

i=1

[(

δ(Ai)

δ(Ai−1)

)α(
δ(Ai, Ai−1) − δref (Ai, Ai−1)

δref (Ai, Ai−1)

)]2

(3.4)

where A0 ≡ An and δ(A) is the atomic valence that for a closed-shell system,
Eq. 2.23, and α is a simple function to ensure the first term in Eq. (3.4) is always
greater or equal to 1,

α =

{

1 δ(Ai−1) ≤ δ(Ai)

−1 δ(Ai) < δ(Ai−1)
(3.5)

δ(A,B), δref (A,B) are quantities that account for the electron sharing of
A and B; the latter is taken from an aromatic molecule which has the pattern
of bonding A − B. In hydrocarbons, where only C-C bonds will be taken into
account, the molecule chosen as an aromatic reference is benzene. FLU is close
to zero in aromatic species, and greater than zero for non-aromatic or antiaro-
matic species.

The aromaticity indices based on references do not actually measure aro-
maticity but they measure the similarity with respect to some aromatic molecule.
In this sense, these indices (HOMA and FLU) are not adequate to describe reac-
tivity. For instance, in the case of the Diels-Alder reaction they cannot recognize
the transition state (TS) as the most aromatic point along the reaction path
because the product, cyclohexene, is more similar to benzene (the reference
molecule for C-C bonds) that the TS, which shows large C-C distance in the
bonds that will be formed. [109]

3.3.2 A Multicenter based index: Iring

Based on the multicenter index (which account for the simultaneous electron
sharing of various centers) Giambiagi and coworkers, proposed this quantity,
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Iring , as a measure of aromaticity. The formula reads as follows [60]:

Iring(A) =
occ
∑

i1,i2,...,in

Si1i2(A1)Si2i3(A2)...Sini1(An) (3.6)

where Sij(A) is the overlap of molecular orbitals i and j in the atom A.
Iring will provide large values (larger simultaneous electron sharing of atoms in
the ring) for aromatic molecules. Eq. 3.6 is the single-determinant version of
Eq. 2.29.

3.3.3 The Multicenter Index: MCI

With the aim to improve the Iring , Bultinck and coworkers [61] proposed to
sum not only the contribution from the Kekulé structures (as Iring does), but
also the contribution from all possible structures generated by permuting the
position of all the atoms in the ring. Such possibility was already discussed by
Ponec and cowokers [55, 110] among others [111]. Thus, the formula reads:

MCI(A) =
∑

P(A)

Iring(A) = (3.7)

=
∑

P(A)

occ
∑

i1,i2,...,in

Si1i2(A1)Si2i3(A2)...Sini1(An) (3.8)

where P(A) stands for n! permutations of elements in the string A. Al-
though the original proposal of MCI differs from this one in a numerical factor,
we will skip it for the reasons already commented in ref. [62]. As Iring , MCI
produces large numbers for aromatic species, and the authors claim negative
numbers are produced by antiaromatic species [112]. This fact has only been
proven for three member rings [55] and heuristically for six-member rings [?].

3.3.4 The para-Delocalization Index: PDI

Based on the finding of Fulton [113] and Bader [114], which showed that benzene
has larger para-related atoms electron sharing than meta-related one, the index
uses the para-related atoms electron sharing as a measure of aromaticity for
six-membered rings:

PDI(A) =
δ(A1, A4) + δ(A2, A5) + δ(A3, A6)

3
(3.9)

thus, the larger the index the greater the aromaticity. Obviously, the index
cannot be applied to rings with more or less than six members. The PDI is less
realiable for heterocycles and rings made of highly polarazible atoms.
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3.3.5 EXERCISE 8 (Aromaticity)

In this exercise we will perform an aromaticity calculation to use all the afore-
mentioned indices. We will take two molecules benzene and cyclohexane.

Electronic aromaticity indices. To obtain the electronic aromaticity
indices we just need to perform the same steps that we did to calculate the
electronic sharing indices (see exercises 5 and 6) and the output of ESI-3D will
include all the electronic aromaticity indices for the rings specified by the key-
word $RING (see Appendix II).

Keep in mind that FLU uses reference values and it only has values for the
bonds C-C, C-N, B-N and N-N, any other bond patterns in the rings cannot be
calculated with FLU and should be disregarded. On the other hand, PDI can
only be calculated in six-member rings. MCI and Iring do not have any limita-
tion and can be calculated in any molecular ring; the only exception being large
porphyrinc rings [107].

See below an extract from ESI program:

----------------------------------------------------------------------

| Aromaticity indices - FLU [JCP 122, 014109 (2005)]

| HOMA [Tetrahedron 52, 10255 (1996)]

| PDI [CEJ 9, 400 (2003)]

| Iring [PCCP 2, 3381 (2000)]

| MCI [JPOC 18, 706 (2005)]

| I_NB, I_NG [JPCA 111, 6521 (2007)]

| For a recent review see: [CSR 44, 6434 (2015)]

----------------------------------------------------------------------

| FLU 1 = 0.000082

| TREPE 1 = 0.045432

----------------------------------------------------------------------

| PDI 1 = 0.103425 ( 0.103427 0.103429 0.103419 )

| Iring 1 = 0.048553

| I_NG 1 = 0.041397

| MCI 1 = 0.072991

| I_NB 1 = 0.041177

----------------------------------------------------------------------

In this case FLU is zero (i.e. maximum aromaticity) because the reference
molecule is benzene. PDI is 0.1, which is quite large value for a para-DI, thus
indicating that benzene is aromatic. The multicenter indices, Iring and MCI,
show large numbers, 0.049 and 0.073, respectively. I NG (normalized version
of Iring , see Ref. [62]) and I NB (normalized version of MCI, see also Ref. [62])
show also large numbers typical of aromatic molecules. For comparison we add
below the extract of cyclohexane:

----------------------------------------------------------------------

| FLU 1 = 0.095695

| TREPE 1 = 0.045432

----------------------------------------------------------------------
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| Ring EN GEO HOMA

| 1 5.656675 0.000006 -4.656682

----------------------------------------------------------------------

| PDI 1 = 0.008517 ( 0.008523 0.008546 0.008482 )

| Iring 1 = 0.000286

| I_NG 1 = 0.017594

| MCI 1 = 0.000315

| I_NB 1 = 0.016610

----------------------------------------------------------------------

Notice that TREPE produces the same value than benzene because this index
only takes into account the connectivity of the atoms and, therefore, should only
be used in annulene-like structures.

Geometric indices of aromaticity. The calculation of HOMA can be
done using the formulae given in the literature or using the ESI-3D program
with the keyword $GEOMETRY (see Appendix II).

benzene:

----------------------------------------------------------------------

| Ring EN GEO HOMA

| 1 0.034349 0.000000 0.965651

----------------------------------------------------------------------

cyclohexane:

----------------------------------------------------------------------

| Ring EN GEO HOMA

| 1 5.656675 0.000006 -4.656682

----------------------------------------------------------------------

The total HOMA value for benzene is 0.97, close to the maximum value
(one), in accord with the value one would expect for this molecule, which is the
reference to set the C-C optimal distance in HOMA (the disprepancy comes
from basis set and method effects which are usually small). On the other hand,
cyclohexane value is much smaller than zero, indicating that this molecules is
not aromatic at all. The geometrical criteria, GEO, (which measures the de-
viation from the average bond distance in the ring) is zero for both molecules,
indicating that all the bonds have the same length and, therefore, as far as the
symmetry is concerned, the molecules should be very aromatic. On the other
hand, EN is also close to zero because all the C-C are, obviously, very close to
the optimal C-C distance, whereas cyclohexane gives a very large EN value, in
accord to the C-C distances which are larger than in a typical aromatic molecule.

Magnetic indices of aromaticity. The calculation of NICS has to be
done with gaussian by requesting an NMR calculation (keyword to add in the
input file: NMR) and including a list of the relevant points that we want to
specify as Bq. See this example for benzene:

#HF/6-31G* NMR
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NICS automatic generation

0 1

C 0.00000000 1.38617405 0.00000000

C 1.20046194 0.69308703 0.00000000

C 1.20046194 -0.69308703 0.00000000

C 0.00000000 -1.38617405 0.00000000

C -1.20046194 -0.69308703 0.00000000

C -1.20046194 0.69308703 0.00000000

H 0.00000000 -2.46178023 0.00000000

H 2.13196422 -1.23089011 0.00000000

H 2.13196422 1.23089011 0.00000000

H 0.00000000 2.46178023 0.00000000

H -2.13196422 1.23089011 0.00000000

H -2.13196422 -1.23089011 0.00000000

Bq 0.00000000 0.00000000 0.00000000

Bq 0.00000000 0.00000000 1.00000000

Bq 0.00000000 0.00000000 -1.00000000

In this case, benzene is placed in the XY plane and the NICS(0) point is lo-
cated at (0,0,0), and NICS(1) can be calculated by placing Bq(s) at (0,0,-1)
and (0,0,1). In case your molecule is not symmetric, you need to use a script,
NICS.x, that creates an input file for gaussian including a list of Bqs. The
script uses the RCP, adjusts the best fitting plane with the atoms in the ring
and calculates the points laying 1Å above and below the plane. NICS script
needs a yourfile.ring file that assumes the units are Å, unless you specify au as
a second argument:

NICS yourfile au

In the case you yourfile.ring is in Å run NICS like this:

NICS yourfile

The list of Bqs included included in the input of gaussian (yourfile NICS.com)
generated by NICS.x contain in this order: the geometrical center, the position
1Å above the best-fitting ring plane and 1Å below the plane, and the set of
RCP contained in yourfile.ring. An example of the contents of yourfile.ring:

1 rings found

6 members of 1th ring

2 1 3 7 10 6

12 atoms

C 0.000000 0.000000 1.399576

C 0.000000 1.212026 0.699769

C 0.000000 -1.212026 0.699769

H 0.000000 2.156871 1.245296

H 0.000000 -2.156871 1.245296

C 0.000000 1.212026 -0.699769

C 0.000000 -1.212026 -0.699769

H 0.000000 2.156871 -1.245296
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H 0.000000 -2.156871 -1.245296

C 0.000000 0.000000 -1.399576

H 0.000000 0.000000 -2.490595

H 0.000000 0.000000 2.490595

X 0.000000 0.000000 0.000000

The output of gaussian which corresponds to the previous input looks like
this:

13 Bq Isotropic = 11.4581 Anisotropy = 8.5608

XX= 8.6045 YX= 0.0000 ZX= 0.0000

XY= 0.0000 YY= 8.6045 ZY= 0.0000

XZ= 0.0000 YZ= 0.0000 ZZ= 17.1653

Eigenvalues: 8.6045 8.6045 17.1653

14 Bq Isotropic = 12.8592 Anisotropy = 29.4313

XX= 3.0487 YX= 0.0000 ZX= 0.0000

XY= 0.0000 YY= 3.0487 ZY= 0.0000

XZ= 0.0000 YZ= 0.0000 ZZ= 32.4800

Eigenvalues: 3.0487 3.0487 32.4800

15 Bq Isotropic = 12.8592 Anisotropy = 29.4313

XX= 3.0487 YX= 0.0000 ZX= 0.0000

XY= 0.0000 YY= 3.0487 ZY= 0.0000

XZ= 0.0000 YZ= 0.0000 ZZ= 32.4800

We must take the negative value of the Isotropic contribution. Therefore, in this
case NICS(0)=-11.5, NICS(0)zz=-17.2, NICS(1)=-12.9 and NICS(1)zz=-32.5.
All the values indicate that benzene is an aromatic molecule, the important
total and zz-component NICS(1) values indicate that its aromaticity is due to
the π-electron delocalization along the ring.
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Chapter 4

Oxidation state

4.1 Definition

Historically, the oxidation state (OS) was defined as the stepwise increase in the
amount of oxygen bound by atoms that form more than one oxide. Nowadays,
the concept of OS is mostly used for transition metal (TM) complexes and,
therefore, the interest on calculating OS is focused on TM atoms. Figure 4.1
summarizes the OS of the first three rows of TM elements.
The OS is a property of an atom within a molecule. As such, its definition is
not completely unambiguous and there is a number of cases where the oxidation
state cannot be clearly assigned [115]. There are complicated bonding situations
involving noninnocent ligands or in intermediates or transition states of reac-
tions, where the formal OS assignment might be rather ambiguous. Therefore,
it is important to have realiable methods to assign oxidation states in trouble-
some cases.

The IUPAC defined the OS as the charge of the central atom (often a TM)
after removing its neighbors (the ligands) along with the shared electron pairs.
There are a number of papers published by the IUPAC about the OS, but let
us stay here with the extensive report of Pavel Karen published in 2014 [115].
For a short account of the OS and its state-of-the-art calculation see the essay

Figure 4.1: The common oxidation states of the first three rows of TM atoms
in the periodic table.
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Figure 4.2: The interaction of Fe4+ with PhO− can give rise to two oxidation
states. If we consider the formal oxidation state, the OS of Fe is IV, whereas
the spectroscopic measurements indicate that Fe only populates d orbitals with
4 electrons, i.e. , the OS of Fe is III.

by the same author, Ref. [116].

There have been attempts to define the OS in a less ambiguous way. For
instance, the physical or spectroscopic OS is the charge of the TM that comes
from dn and can be measured spectroscopically (e.g. Mössbauer). a Figure 4.2
illustrates one of the few examples where the formal definition of OS states
differs from the spectroscopic one.

4.2 Computational calculation of Oxidation States

There are many methods to calculate the OS, for a historical account see
Ref. [115] and for a short list see Ref. [116] (see also Refs. [117, 118]). Here
we will consider only a few approches: the empirical approach based on metal-
to-ligand distance, the bond valence sum, and three different computational
approaches: the population analysis, the spin density and orbital-localization
methods.

In order to perform a comparison between the different methods to calculate
oxidation states we have chosen a set of TM complexes, taken from Ref. [117];
these TM complexes and the oxidation state of its central atom are collected in
Table 4.1.

4.2.1 Bond Valence Sum

The Bond Valence Sum (BVS) method is an empirical technique based on the
metal-to-ligand distances (Ri) and some reference values (R0, b=0.37Å).b The

aJörgensen, In Oxidation Numbers and Oxidation States; Springer; Heildeberg, 1969.
Useful references:
http://www.edu.upmc.fr/chimie/mc741/PDFs/bond.pdf
http://www.chem.umn.edu/groups/harned/classes/8322/lectures/5ElectronCounting.pdf

bhttp://www.ccp14.ac.uk/solution/bond valence/index.html
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VII [V Cl6]
4− [V (H2O)6]

2+ [V (CN)6]
4− [V (CO)6]

2+

MnII [MnCl6]
4− [Mn(H2O)6]

2+ [Mn(CN)6]
4− [Mn(CO)6]

2+

MnIII [MnCl6]
3− [Mn(H2O)6]

3+ [Mn(CN)6]
3− [Mn(CO)6]

3+

FeII [FeCl6]
4− [Fe(H2O)6]

2+ [Fe(CN)6]
4− [Fe(CO)6]

2+

FeIII [FeCl6]
3− [Fe(H2O)6]

3+ [Fe(CN)6]
3− [Fe(CO)6]

3+

NiII [NiCl6]
4− [Ni(H2O)6]

2+ [Ni(CN)6]
4− [Ni(CO)6]

2+

ZnII [ZnCl6]
4− [Zn(H2O)6]

2+ [Zn(CN)6]
4− [Zn(CO)6]

2+

Table 4.1: The set of TM complexes from Ref. [117].

BVS expression reads:

V =
∑

i

(

Ri −R0

b

)

This method only needs the computational optimization of the TM complex
geometry.

4.2.2 Atom Population Analysis

In section 2.4, we studied different methods to calculate atomic populations.
In order to state the OS from atomic populations, we simply need to take
the closest integer number to the atomic charge, Eq. 2.14. Although it is a
common practice in the literature to estimate the OS from atomic populations,
the method is perhaps the least reliable one. The atomic populations have a
strong dependency on the method used to perform the atomic partition [119].
Besides, some atomic partitions, such as Mulliken’s (see section 2.4.1) show a
strong basis set dependency. In Table 4.2 we collect the OS of the set of TM
complexes calculated with Mulliken and TFVC partitions. Mulliken population
fails in all cases but TFVC fails more than 50% of the cases [120].

Cl
−

H2O
HS

H2O
LS

CN
−

CO Cl
−

H2O
HS

H2O
LS

CN
−

CO

V
II

0.98 1.12 0.05 0.64 1.60 1.76 - 1.60 1.64

Mn
II

1.10 1.24 1.18 0.10 0.64 1.36 1.64 1.70 1.53 1.53

Mn
III

0.93 1.58 1.52 0.35 0.80 1.46 2.05 2.09 1.58 1.67

Fe
II

0.86 1.22 1.15 0.01 0.51 1.27 1.63 1.77 1.46 1.44

Fe
III

0.99 1.64 1.48 0.24 0.66 1.44 2.06 1.98 1.49 1.58

Ni
II

0.99 1.08 -0.19 0.31 1.27 - 1.59 1.24 1.30

Zn
II

1.02 1.06 -0.03 0.52 1.25 - 1.45 1.15 1.19

Table 4.2: The OS for set of TM complexes from Ref. [117]. The values on the
l.h.s. correspond to Mulliken charges and the ones in the r.h.s. to TFVC, from
Ref. [120]. The values marked in green are correctly predicted.

4.2.3 Spin Densities

Crystal Field Theory (CFT) is a model that describes the breaking of degenera-
cies of electron orbital states, usually d or f orbitals, due to a static electric field
produced by a surrounding charge distribution (anion neighbors). The CFT can
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be used in conjunction with the field strength of the complex ligands to pre-
dict the occupation of the d orbitals in the TM. From this occupation one can
infer the number of unpaired electrons in the TM for each possible oxidation
state. From an unrestricted computational calculation one can calculate the spin
atomic population, i.e. the number of unpaired electrons in a given atom. In
Fig. 4.3 we find the CFT for the formation of Oh complexes. The l.h.s. depicts
the five d orbitals of the isolated metal cation. These orbitals destabilize upon
the presence of the negative charges uniformly distributed around the metal due
to electron-electron repulsion (these negative charges are a rough representation
of the ligands). Upon octohedral organization around the metal, the d-orbitals
change their relative energy stabilization. The dxy, dxz and dyz (known as t2g)
are stabilized due to the fact the lobes of these orbitals do not face the ax-
ial and equatorial positions, where the ligands are placed. Conversely, the dz2

and dx2−y2 (known as eg) orbitals have important interactions with the four
equatorial ligands, whereas the dz2 orbital also shows important overlap with
the ligands in the axial positions. Upon consideration of the favorable elec-
trostic interactions (the attraction between the TM protons and the ligands’
electrons) the five d orbitals stabilize, so that the formation of the TM complex
is energetically favorable (see r.h.s. of Fig. 4.3).

The group symmetry of the TM complex determines the particular d-orbital
splitting (∆o) and, therefore, governs the occupation of d orbitals. The other
important factor, is the nature of the ligands that bind to the TM. The ligands
can be strong-field (large gap) or weak-field (small gap) ligands and determine
the actual energy gap between d orbitals. If a TM is surrounded by weak-field
ligands, the electron-electron repulsion among electrons in the same orbitals is
stronger than the energy between d-orbitals and, therefore, the TM complex
adquires the highest spin state. Conversely, strong-field ligands, generate an
important energy gap between d orbitals that is larger than the repulsion en-
ergy between electrons in the same orbital and thus the TM complex adopts
the lowest spin state possible. Strong field is used as synonym of low spin and
weak field is equivalent to high spin.

The procedure to determine the OS from spin population is: (i) first deter-
mine the d−orbital splitting from the TM complex symmetry using CFT; (ii)
determine the nature of the ligands so that we know which d-orbitals are occu-
pied first; (iii) calculate the number of unpaired electrons in the TM for different
electron numbers (STM ) ; (iv) compute the TM spin population from an unre-
stricted calculation and round to the closest integer number (Scomp

TM ). Match the
STM to the configurations calculated in (iii); once we have the configuration we
will assign the OS that results from substracting the atomic number of the TM
from the numbers of electrons in the configuration. Let us a consider an exam-
ple, where the TM is Fe and the ligands are Cl− (weak-field ligands) organized
in a Oh conformation. Fe0 has an electronic configuration of [Ar]3d64s2, i.e. ,
Fe2+:[Ar]3d6, which gives a spin population of S2+

TM = 4; by analogous reasons
we find that S3+

TM = 5 (3+:[Ar]3d5). Our unrestricted calculation has produced
a Scomp

TM = 4.53 ≈ 5, and therefore the OS of our TM complex is +3.
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Figure 4.3: Oh complexes d-orbital splitting according to CFT. This figure has
been taken from ChemWiki.
http://chemwiki.ucdavis.edu/Core/Inorganic Chemistry/Crystal Field Theory/Crystal Field Theory
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Unlike total populations, which strongly depend on the atomic partition,
spin population are quite more reliable. In Table 4.3 we find the OS of several
complexes using Mulliken and TFVC spin atomic populations.

Cl
−

H2O
HS

H2O
LS

CN
−

CO Cl
−

H2O
HS

H2O
LS

CN
−

CO

V
II

3.06 2.99 2.84 2.79 2.90 2.71 - 2.52 2.44

Mn
II

4.96 4.88 1.01 1.09 1.06 4.86 4.66 0.95 1.01 0.98

Mn
III

4.25 3.85 1.97 2.11 2.16 4.07 3.65 1.84 1.96 2.00

Fe
II

3.86 3.86 0.00 0.00 0.00 3.72 3.71 0.00 0.00 0.00

Fe
III

4.27 4.43 0.89 1.08 1.11 4.17 4.28 0.86 1.01 1.03

Ni
II

1.87 1.84 1.69 1.66 1.84 - 1.77 1.66 1.63

Zn
II

0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 0.00

Table 4.3: The OS for the set of TM complexes from Ref. [117]. The values
on the l.h.s. correspond to the OS estimated by Mulliken spin populations
and the ones in the r.h.s. to TFVC spin populations, from Ref. [120]. The
values marked in green with the number of unpaired electrons of the metal
(and, therefore, provide the correct OS).

4.2.4 Orbital-localization Methods: Effective Oxidation
State

We are concerned here with the effective oxidation state (EOS) method of
Ramos-Cordoba, Postils and Salvador [118] but there are other methods to cal-
culate effective oxidation states, such as the Localized Orbital Bonding Analysis
(LOBA) method of Head-Gordon’s group (see Ref. [117]).

Let us consider a spin-unrestricted single-determinant wavefunction built
from singly-occupied MOs (φMO

i (1)). For each atom in the molecule, A, one
can define the intra-atomic part of every MO as

φA
i (1) = wA(1)φMO

i (1)

where wA is the atomic weight (see section 2.3.2). For each atom we can con-
struct a intra-atomic overlap matrix as

QA
ij =

∫

φA
i (1)φA

j (1)d1

This matrix is Hermitian and its trace corresponds to the atomic population
of atom A (atomic population according to the atomic partition used, which is
determined by the weight function, wA),

TrQA = NA

The intra-atomic overlap matrix is Hermitian and, therefore, it can diagonalized
through a unitary transformation, LA,

QALA = LAΛA

49



Figure 4.4: A set of eff-AO and their occupation numbers.

producing a set of eigenvalues, λA
i ≡ (ΛA)ii, and eigenvectors, LA. These

eigenvectors can be used to produce normalized spin-resolved effective atomic
orbitals (eff-AO),

χA
i (1) =

1

λA
i

M
∑

µ

UA
µiφ

A
µ (1)

whose occupation numbers are λA
i . For real-space partitions the occupation

numbers are restricted to 0 ≤ λA
i < 1. These occupation numbers will be used

to assign electrons to atoms until a final oxidation state is assigned to each
atom. The procedure distributes the electrons among the atoms by comparing
the occupations of the eff-AOs on different atoms, rather than independently
rounding them [118]. The strategy follows three steps: (i) to collect the alpha eff-
AOs that are significantly populated for all centers, (ii) to sort them according
to decreasing occupation number, and (iii) to assign integer alpha electrons
(Iα

A) to the eff-AOs of the centers with higher occupation number, until the
total number of alpha electrons is reached. The procedure is repeated for the
beta electrons. By this procedure, an effective atomic population IA = Iα

A + Iβ
A

is obtained for each atom. From this population the effective oxidation state
(EOS) can be readily obtained:

EOSA = IA − ZA

The EOS technique of Ramos-Cordoba and coworkers reproduces the correct
OS for all the complexes in the test set of Table 4.1 [118]. The EOS can be
computed with APOST-3D program. We need to perform a TFVC population
analysis (see Exercise 5) but the input file should contain additional information:

# METODE ###################

TFVC

EOS

DOFRAGS

#########

## FRAGMENTS ####

2

1

1
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12

2 3 4 5 6 7 8 9 10 11 12 13

The EOS is more effective if we define an appropriate set of fragments. We
recommend to define a fragment for each ligand (or even a big fragment with all
ligands included). The keyword DOFRAGS is used to this aim, together with
the additional label ## FRAGMENTS ####, which is followed by the
numbers that define our fragments (the way to include this information is the
same used for $FRAGMENTS or $RINGS keywords in the ESI-3D program).
The best working DFT functionals for the calculation of EOS are UB3LYP and
UM062X, even though the EOS can be calculated with any method. The output
of APOST-3D for an EOS calculation looks like this (both the input above and
the ouput below correspond to a UB3LYP calculation of Cr(CO)6 taking two
fragments: one for Cr and the other for (CO)6):

--------------------------------------

DOING EFFAO-3D GENERAL FORMULATION

--------------------------------------

...

EOS ANALYSIS FOR ALPHA ELECTRONS

Fragm Elect Last occ. First unocc

-------------------------------------

1 7.00 0.516 0.207

2 42.00 0.715 0.412

-------------------------------------

RELIABILITY INDEX R(%) = 60.418

...

FRAGMENT OXIDATION STATES

Frag Oxidation State

-------------------------

1 0.00

2 0.00

-------------------------

Sum 0.0

OVERALL RELIABILITY INDEX R(%) = 60.418

The oxidation states of Cr within Cr(CO)6 us correctly predicted to be 0. From
the occupation numbers of the frontier eff-AOs (the orbital around the last
orbital assigned to a given atom), a simple global reliability index is constructed.
The index quantifies how reliable the formal oxidation states assignment is. For
each spin case, one can compute the following quantity

Rα(%) = 100 min
(

1,max(0, λLO
α − λFU

α + 1/2)
)

where λLO
α is the last-occupied eff-AO and λFU

α is the first-unoccupied eff-AO.
The last-occupied and the first-unoccupied orbitals are determined by the oc-
cupation numbers of all the atomic simultaneously. The reliability index is the
lowest such number of both spin cases: R = min(Rα, Rβ).
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Chapter 5

The Electron Localization
Function (ELF)

The first to recognize the importance of the electron pair in chemical bonding
was Lewis 100 years ago [49]. His model of chemical bonds formed by (shared)
electron pairs is one of the most sucessful in modern chemistry. The electron
pair is a powerful concept to rationalize and understand the molecular structure,
e.g. , through the valence shell electron pair repulsion (VSEPR) theory [121],
The electron pair concept is found in quantum mechanis through the pair density
or some of its variants. Perhaps a most useful quantity related to the pair
density is the conditional pair density [122,123]. The definition of the conditional
probability (CP), i.e. , the probability density of finding electron 2 nearby, 2,
when electron 1 is at 1, reads

P (1,2) =
ρ2(1,2)

ρ(1)
(5.1)

Both the pair density and the CP contain all the necessary information about
the relative motion of pairs of electrons. However, the advantage of the CP
function is that it is actually measuring the probability with respect to the
position of a reference electron and, therefore, is a it is not including the in-
formation concerning the position of the reference electron, which is superfluous.

The CP was used by Becke and Edgecombe to define the electron localiza-
tion function (ELF) [124]. Namely, they used the spherical average of the CP
expanded by Taylor series around the position of the reference electron

〈

es·∇P σσ(1,1 + s)
〉

=
1

4π

(∫ 1

−1

∫ 2π

0

es∇θdθdφ

)

P σσ(1,1 + s)|
s=0

=
sin (s∇)

s∇ P σσ(1,1 + s)|
s=0

(5.2)

which after applying the Taylor expansion of sinh around the reference electro
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(i.e. , s = 0) gives:

〈

es·∇P σσ(1,1 + s)
〉

=

(

1 +
1

6
s2∇2 + . . .

)

P σσ(1,1 + s)|
s=0

(5.3)

≈ 1

6
∇2

s P
σσ(1,1 + s)|

s=0
(5.4)

Notice that the first term of expansion are zero because of the Pauli principle
(ρ2(1,1) = 0) and thus the leading term of the expansion depends on the
Laplacian of the CP (or, equivalently, the Laplacian of the pair density). Becke
and Edgecombe used this term as the principal ingredient to construct the
ELF; namely, they did the ratio between this quantity (Dσ) and the same value
calculated for the homogenous electron gas (HEG), D0

σ,

D(1) =
Dσ(1)

D0
σ(1)

=

〈

es·∇P σσ(1,1 + s)
〉

/(
(

s2/3
)

3/5(6π2)2/3ρ
5/6
σ

∣

∣

∣

∣

∣

s=0

=
∇2

sρ2(1,1 + s)
∣

∣

s=0

cF 2ρ
8/3
σ

(5.5)

where cF = (3/10)(3π2)3/2 is the Fermi constant. The conditional probability
of finding an electron with spin σ when there is already another electron with
the same spin nearby is lower when the former is localized. Therefore, the ratio
in Eq. 5.5 accounts for electron localization, i.e. , the higher it is, the lower the
localization. Becke an Edgecombe decided to apply a Lorentz transformation to
the previous formulation so that the ELF would be defined in the interval [0, 1].

ELF(1) =
1

1 +D(1)2
(5.6)

thus ELF=1 corresponds to a completeley localized situation whereas ELF=0
is a fully delocalized system and ELF=0.5 is the value that matches the result
for the HEG. Becke and Edgecombe did their derivation for single-determinant
wavefunctions and using the HEG as a reference, however, several authors have
given a most general (and equivalent!) derivation valid of the ELF for cor-
related wavefunctions [125–127] that does not need to use the HEG as a ref-
erence [125, 126]. The ELF becomes computationally expensive for correlated
wavefunctions (wavefunction beyond the single-determinant approximation) be-
cause one should compute the pair density. Opportuntely, there exist some ap-
proximations to the pair density that can be used to simplify the calculation of
the ELF for correlation wavefunction [128].

5.1 The topological analysis of the electron den-
sity

The ELF is a one-coordinate function and likewise the density it admits a topo-
logical analysis. The procedure to perform an analysis of the topology of the
ELF follows the same procedure already described in section 5.1 of this text.
The position of the atomic nuclei also correspond to maxima of this function,
which often exhibits maxima in other positions. Typically, the ELF is also max-
imum in the bonding regions of covalent bonds and in the nonbonded regions
where electron accumulate, such as the lone pairs. In this regard, ELF basins
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Figure 5.1: (top) The ELF(1) = 0.6 (top-left) and ELF(1) = 0.8 (top-right)
isosurface plots of the CH3Li molecule using different color for ELF basins.
The core basins of Li [C(Li)] and carbon [C(C)], the valence basin of C [V(C)]
and the three valence basins of the C-H bonds [V(C,H)] are displayed. Figures
taken from Ref. [129]. (right) The ELF(1) = 0.8 isosurface plot of N2 molecule,
where we can see the core basins of N [C(N)], the valence basins of N [V(N)]
corresponding to N’s lone pairs and the valence bonding basin [V(N1,N2)].

can be defined as regions in the molecular space surrounded by zero-flux sur-
faces of this function. The topological analysis thus provides a decomposition of
the molecular space into basins. Typically, there exist two kinds of ELF basins:
the core (C) basins, which contain core electrons and are centered in atomic
positions and the valence (V) basins, which are all the other basins and are
populated with valence electrons. The synapticity characterizes the nature of
the ELF basin. Core basins are always monosynaptic, whereas valence basins
are said to by monosynaptic if they do not belong to more than one valence
shell. Lone-pairs are usually represented by monosynaptic basins, while 2c-2e
bonds are characterized by disynaptic basins. Multicenter bonds would present
polysynaptic basins. Unlike QTAIM’s partition (which is an atomic partition
of the molecular space), the topological analysis of the ELF reveals several con-
cepts from classical bonding theory such as lone pairs, bonds and core electrons.
The density can be integrated into these ELF basins providing core, bonds and
lone-pairs population analysis. Since there exist bonding basins that do not
belong exclusively to one atom, the ELF partition cannot be used to provide an
atomic population analysis. However, the ELF provides a powerful tool to vi-
sualize the bonds. These tools can be used together to get a complete electron
structure picture of complicated bonding patterns [129]. In atoms, the ELF
provides the shell structure of atoms [130,131].

The ELF have found a plethora of application to analyze chemical bonding
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and reactivity, linking some classical concepts of traditional chemistry mod-
els such as the Lewis picture or the resonant structures [132]. The ELF has
been used to analyze all sort of systems, from solids [133] to organometallic
complexes [134] and its application include aromaticity analysis [74, 135, 136],
electronic structure studies along the IRC [137,138] and the mechanism of elec-
trocyclic reactions [87, 88], among many others [74, 134,139].

The ELF has been implemented in the TopMod package [140] and other
codes such as DGRID [141]. Both program use wavefunction files as those
provided by Gaussian and Gamess.
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Chapter 6

The local Spin

Lately, [5, 142–146] there has been an interest in assigning local spin values by
decomposing the expectation value of the total spin angular momentum as

〈Ŝ 2〉 =
∑

A

〈Ŝ 2〉A +
∑

A,B 6=A

〈Ŝ 2〉AB

where A and B are atoms or molecular fragments and 〈Ŝ 2〉A is the local spin of
fragment A. There are infinitely many ways [145] to define the terms entering
the r.h.s. of the latter expression. In a recent work some of us have suggested
a proper general definition of 〈Ŝ 2〉 that avoids the arbitrarity by imposing a
number of physical requirements and for pure singlet states yields: [145, 146]

〈Ŝ 2〉A =
3

4
uA + ΛAA + Λ

′

AA (6.1)

and

〈Ŝ 2〉AB = ΛAB + Λ
′

AB (6.2)

where the following compact forms in terms of the matrix representation (in
molecular or natural orbitals) of the 1-RDM (D), the 2C (Γ) and the fragment
overlap matrix (SA) are used,

uA =
(

2 Tr(DSA) − Tr(DSAD)
)

(6.3)

ΛAA =
1

2
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ijkl

Γij;klS
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kiS
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lj Λ
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ΛAB =
1
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∑
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Γij;klS
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lj Λ

′

AB = −1

2
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B
kj (6.5)
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Chapter 7

Appendices

7.1 Appendix I: The use of MAKE

The MAKE is an script constructed to simplify the process between the obtain-
ing the avefunction and running the ESI-3D program. It handles wfnfiles and
checkpoint files. It assumes that all the files have the name yourfile.extension,
e.g. the log file from gaussian should be called yourfile.log, the formatted check-
point file should be name yourfile.fchk and the wavefunction file yourfile.wfn.
MAKE uses options from the following menu:

-n name-of-wfn specify the name of the wfn file (compulsory!)

-u first-beta the wfn is unrestricted and gives first beta

orbital

-s point-group specify the subgrup of symmetry to perform

orbital decomposition

-f use fchk and only produce files for ESI-3D

(default if wfn not available)

-p request promega algoritm in input files

-h print this menu

7.2 Appendix II: Manual of ESI-3D

ESI-3D program performs the calculation of real-space indices from the AOMs
and density matrices (for correlated cases). The AOMs should be collected in
separated files and formatted in the AIMPAC way. Currently ESI-3D accepts
AOMs from AIMPAC, APOST-3D and AIMall. It can perform population
analysis, calculation of the electron sharing indices, multicenter indices and
various electronic aromaticity indices (MCI, Iring , FLU, PDI and TREPE).
It can decompose these quantities into orbital contributions and permits the
construction of fragments (groups of atoms).

7.2.1 How to cite the program

Please if you are publishing the results obtained with ESI-3D remember to cite
correctly the program:
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Matito, E. ESI-3D: Electron Sharing Indices Program for 3D Molecular
Space Partitioning; Institute of Computational chemistry and Catalysis (IQCC),
University of Girona, Catalonia, Spain, 2006; http://iqc.udg.es/ eduard/ESI

and please also cite the papers that deal with the most important features
of the program:

Matito E., Duran M., Solà M. The aromatic fluctuation index (FLU): A new
aromaticity index based on electron delocalization. J. Chem. Phys. 122, 014109
(2005)

Matito E., Solà M., Salvador P., Duran M.; Electron Sharing Indexes at the
Correlated Level. Application to Aromaticity Measures. Faraday Discuss. 135,
325-345 (2007)

7.2.2 Compulsory keywords

These keywords are only compulsory if $READLOG keyword is not used. If
we use $READLOG keyword is because we want to perform a Hilbert space
partition analysis and all the information can be extracted from the log file of
Gaussian. Therefore, we only need to include the following lines:

$READLOG

name_of_logfile

$ATOMS. The number of atoms and the files containing the atomic overlap
matrices.

$ATOMS

number of atoms (n)

file_1.int

file_2.int

...

file_n.int

The user can calculate all the atoms in the molecule are just a small subset of
them. In the latter case the accuracy of the integration can only be assessed
by the value of the Laplacian in the QTAIM partition. In the former case the
integration to the number of electrons, the inspection of the total overlap matrix
or the sum rule fulfilled by the delocalization indices can be used as additiona
criteria to assess the accuracy of the integration, regardless of the atomic par-
tition used.

$BASIS. The number of occupied molecular orbitals (or spinorbitals if open-
shell).

$BASIS

number of occupied (spin)orbitals
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$TYPE. Type of wave function: restricted (hf) or unrestricted (uhf) single-
determinant wave function (HF or Kohn-Sham DFT), or natural orbitals (no)
expected. If uhf then the program reads the number of the first beta spinorbital.
If no the program expects the name of the wavefunction file. If the user has
access to DMn program he can also use the dmn-files as input. The wavefunction
type will be specified as dm1, dm2, dm3 or dm4 and the user will provide the
name of this and lower densities (e.g. for dm2 one provides the name of dm1-
file first and dm2-file second). For higher order the program will only read the
highest order density matrix file.

$TYPE

hf, uhf, no or dmn

(first beta spinorbital) (wavefunction file) (dm1/dmn file)

(the dm2 file) etc.

7.2.3 Optional keywords

$NOWARN. Prints no warning messages.

$RING. Needed for the calculation of aromatic properties. Holds the informa-
tion of the connectivity of the ring(s). Important: the atoms of each ring must
be specified according to the connectivity of each ring.

$RING

number of rings (nr)

number of members in the first ring (nm1)

1 2 ... nm1 (the atom number according to their connectivity)

...

number of members in the n-th ring (nmn)

1 2 ... nmn

$GROUPS. Needed for the orbital decomposition of the ESI and the aromatic
indices. First we must provide the number of groups, and afterwards the number
assigned to each orbital according to the group they belong. For σ−π separation
of 5 occupied orbitals it might read:

$GROUPS

2

1 1 2 1 2

The decomposition applied is only exact in the case where Sij = 0 for any i
and j belonging to different groups (In the case of sigma-pi orbitals separation
the decomposition is only exact for planar molecules). In any other cases the
decomposition cannot be attained exactly and the orbital contributions to the
ESIs are approximated. We assume the terms Sij(A)Sij(B) can be assigned
half to orbital i and half to orbital j. Since ideally the overlap between i and
j should be zero, the larger the overlap the more crude the approximation. We
can estimate the error committed in the approximation into two ways: a) by
the absolute sum of the 1

2Sij(A)Sij(B) terms, given in the output as Differ-
ence and b) by recalculating the population contribution of different orbitals by
summing up the approximated delocalization indices. Since the decomposition
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of atomic population into orbitals contributions is exact, by comparison with
these populations from approximate delocalization indices we have an estimate
of the error committed. This information is given in the output as Error (from
population). If we use the keyword $DEBUG the program will also print the
approximate atomic populations under the columns taged n1, n2, etc. Note that
the population will be only a good estimate in case we integrate all the atoms in
the molecule, otherwise the sum-rule needs not to be fulfilled and thus there is
no guarantee we can reproduce the atomic populations from the delocalization
indices.

In addition, one can specify a negative number of groups. By doing so,
one requests a full decomposition (i.e. orbital by orbital, rather than by group
of orbitals) into atomic orbitals. The program will take the negative of this
number to estimate the number of basis set to decompose (this integer should
be larger than the one specified in $BASIS). The program will produce a file
decompose.out which contains the 2c-ESI and their orbital contributions up
to the specified orbital number. Please notice that the program will fail if it
tries to read the INT file beyond the number of orbitals included there. Make
sure the integration program (FUZZY/PROAIM/etc.) includes the integration
over these many orbitals.

$FUZZY. If the program founds this keyword it uses the ESI references calcu-
lated with Fuzzy-atom partition for the calculation of FLU.

$MULLIKEN. We should specify this keyword for the program to perform
the correct calculation with Mulliken’s partition (e.g. Mulliken’s atomic overlap
matrices are not symmetric).

$HIRSH. If the program founds this keyword it uses the references of HIRSHFELD-
ESI for the calculation of FLU. Nowadays these references are not included the
keyword is left for completeness.

$I-HIRSH. If the program founds this keyword it uses the references of iterative-
Hirschfeld-ESI for the calculation of FLU. Nowadays these references are not
included the keyword is left for completeness.

$NELECT. It reads the number of electrons in the molecule. Sometimes (e.g.
we do not provide the full list of atoms in the molecule) the program cannot
guess correctly this number and we need to provide the correct number.

$NOMCI. Avoids the MCI calculation.

$NOHYDROGENS. It does not include hydrogens in the output.

$OVERLAP. Provides a file with partial and total overlap matrices.

$DEBUG. Debug-mode on. Provide some extra information to help locating
errors.
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$SIC. No idea what it is... check!

$FMO. Frontier Molecular Orbital analysis. It will print extra information re-
garding the FMO. It needs at least the overlap elements involving the LUMO
orbital (nb! not provided by default in any program). The FMO numbers are
tightly related to the concept of softness kernel (see J. Phys. Chem. A, 115,
12459 (2011)).

$THRESOUT. Provide the threshold of significant values to be printed in the
output file.

$THRESOUT

(threshold)

$MULTICENTER. Iring and MCI values are printed for all the rings list
in $RING. If we want to perform the calculation of these indices for another
combination of atoms we shall use this keyword.

$MULTICENTER

number of measures

number of atoms in the first measure (nm1)

1 2 ... nm1 (the atom number according to the order requested)

...

number of atoms in the nth-measure (nmn)

1 2 ... nmn

$RENORM. Renormalizes the overlaps so that the trace of the total overlap
corresponds to the total number of electrons. This option should only be used
when all the atoms in the molecule are integrated.

$FRAGMENTS. Calculates properties of a user-made fragment. Notice that
population are additive properties, but delocalization/localization are not ad-
ditive (delocalization between elements in the fragment are, obviously, not re-
flected in the delocalization of the fragment).

$FRAGMENTS

number of fragments

number of atoms in the first fragment (nm1)

1 2 ... nm1 (the atom number according to the order requested)

...

number of atoms in the nth-fragment (nmn)

1 2 ... nmn

$MCIALG. Developers option (in progress, unpublished). Use MCIALG and
2 below if run into trouble when calculating MCI.

$GROUPS

2

1 1 2 1 2
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$GEOMETRY. Inputs the geometry of the molecule in free format (atom sym-
bol and three Cartesian coordinates in Å). Together with $RING it produces
the HOMA aromaticity index.

$FULLOUT. It produces a full output for ESI-3D. By default some details
(FLU specifications, thresholds, etc.) are omitted.

$FLUREFS. It gives the two-center electron sharing indices that should be
used as a reference. We will enter them as they appear listed in $RING (make
sure to include all rings).
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mance of 3d-space-based atoms-in-molecules methods for electronic delo-
calization aromaticity indices. J. Comput. Chem., 32:386–395, 2011.

[39] I Mayer and P Salvador. Overlap populations, bond orders and valences
for fuzzy atoms. Chem. Phys. Lett., 383(3):368–375, 2004.

[40] Pedro Salvador and Eloy Ramos-Cordoba. Communication: An approxi-
mation to bader’s topological atom. J. Chem. Phys., 139(7):071103, 2013.

66



[41] Pedro Salvador and Eloy Ramos-Cordoba. Apost-3d program, 2012. Uni-
versitat de Girona (Spain).

[42] R. F. W. Bader. A quantum theory of molecular structure and its appli-
cations. Chem. Rev., 91(5):893–928, 1991.

[43] Richard F. W. Bader. Molecular fragments or chemical bonds? Acc.
Chem. Res., 8:34–40, 1975.

[44] Juan Andrés Bort and Joan Bertrán Rusca. Theoretical and Compu-
tational Chemistry: Foundations, methods and techniques. Number 11.
Universitat Jaume I, 2007.

[45] Peter W Atkins and Julio De Paula. Atkins’ physical chemistry. 2010.

[46] E. Matito. ESI-3D: Electron sharing indices program for 3D molecu-
lar space partitioning, 2015. Institute of Computational Chemistry and
Catalysis, University of Girona, Catalonia, Spain.

[47] C. A. Coulson. Proc. Roy. Soc. A, 169:413, 1939.

[48] Istvan Mayer. Charge, bond order, and valence in the ab initio scf theory.
Chem. Phys. Lett., 97:270–274, 1983.

[49] G. N. Lewis. The atom and the molecule. J. Am. Chem. Soc., 38:762–786,
1916.

[50] W. N. Lipscomb. Three-center bonds in electron-deficient compounds. lo-
calized molecular orbital approach. Acc. Chem. Res., 6(8):257–262, 1973.

[51] I. Mayer. Bond orders in three-centre bonds: an analytical investigation
into the electronic structure of diborane and the three-centre four-electron
bonds of hypervalent sulphur. J. Mol. Struct. (Theochem), 186:43–52,
1989.

[52] M. Giambiagi, M. S. de Giambiagi, and K. C. Mundim. Definition of a
multicenter bond index. Struct. Chem., 1(5):423–427, 1990.

[53] A. B. Sannigrahi and T. Kar. Three-center bond index. Chem. Phys.
Lett., 173(5-6):569–572, 1990.

[54] T. Kar and E. Sánchez Marcos. Three-center four-electron bonds and
their indices. Chem. Phys. Lett., 192(1):14–20, 1992.

[55] Robert Ponec and Istvan Mayer. Investigation of some properties of mul-
ticenter bond indices. J. Phys. Chem. A, 101:1738–1741, 1997.
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gation and hyperconjugation from electronic delocalization measures. J.
Phys. Chem. A, 115:13104–13113, 2011.

[64] F. Feixas, E. Matito, J. Poater, F. Maseras, and M. Solà. Agostic bond-
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1977.

69
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Bonding in methylalkalimetals (ch3m) n (m= li, na, k; n= 1, 4). agree-
ment and divergences between aim and elf analyses. J. Phys. Chem. B,
110(14):7189–7198, 2006.

[130] M. Kohout and A. Savin. atomic shell structure and electron numbers.
Int. J. Quant. Chem., 60:875–882, 1996.

[131] M. Kohout and A. Savin. Influence of core-valence separation of electron
localization function. J. Comput. Chem., 18:1431–1439, 1997.

[132] B. Silvi. How topological partitions of the electron distributions reveal
delocalization. Phys. Chem. Chem. Phys., 6:256–260, 2004.
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