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ABSTRACT: Noncovalent interactions play a central role in many chemical and
biological systems. In a previous study, Johnson et al. developed a noncovalent
interaction (NCI) index to characterize and visualize different types of weak
interactions. To apply the NCI analysis to fluctuating environments as in the
solution phase, we here developed a new averaged noncovalent interaction (i.e.,
aNCI) index along with a fluctuation index to characterize the magnitude of
interactions and fluctuations. We applied aNCI for various systems including
solute−solvent and ligand−protein noncovalent interactions. For water and
benzene molecules in aqueous solution, solvation structures and the specific
hydrogen bond patterns were visualized clearly. For the Cl− + CH3Cl SN2 reaction
in aqueous solution, charge reorganization influences over solvation structure
along SN2 reaction were revealed. For ligand−protein systems, aNCI can recover
several key fluctuating hydrogen bond patterns that have potential applications for
drug design. Therefore, aNCI, as a complementary approach to the original NCI method, can extract and visualize noncovalent
interactions from thermal noise in fluctuating environments.

1. INTRODUCTION

Noncovalent interactions play a predominant role in chemistry
and biochemistry.1,2 For instance, such interactions are the
driving force to fold3 and stabilize protein structures,4 to coil
the DNA into a double helix, and to self-assemble molecules.5

In our previous studies6,7 a novel noncovalent interaction
(NCI) index was proposed to characterize NCI and estimate
their strength. This index is a valuable tool to study weak
interaction within biological systems.8,9 Using a promolecu-
lar10,11 density, NCI can characterize large systems with low
computational cost and with insightful results. NCI was also
applied to metal complexes12,13 and visualized binding modes
of the cations. Influence of noncovalent interactions on the
reaction mechanism was also investigated in several studies8,14

using the NCI analysis. For instance, Gillet et al.15 showed that
an interpretative analysis crossing Electron Localization
Function (ELF) and NCI results could allow following every
step of a reaction mechanism to reveal reaction details. Finally
Contreras-Garciá et al.7 linked the NCI index with the
interaction energy for the specific case of hydrogen bonding.
In this study they proposed a scheme to integrate the density
on the NCI surfaces and showed that, using this approach, the
NCI integrated density could give accurate estimation of the
interaction energy. This study made a first quantitative link
between NCI analysis and interaction energy.
One limitation of the NCI analysis is that the noncovalent

interactions are characterized based on one single structure.
However, geometric fluctuations are constantly present in
practical molecular systems. For example, in solutions, the
positions of solvent molecules fluctuate and the solvent
molecules change between solvation shells, which play
important roles in solvation and chemical reactions. As such,
the application of the NCI index for fluctuating systems is still

unclear. In this work, we developed an averaged noncovalent
interaction index (aNCI), which uses an ensemble of the
structures, to overcome this problem.
This paper is organized as follows: In the next section, we

briefly review the NCI analysis and introduce the aNCI
analysis. We also explain how aNCI can be readily combined
with classical or QM/MM simulations such as the QM/MM-
MFEP (Quantum Mechanics/Molecular Mechanics Minimum
Free-Energy Path16,17) method. In Section 3, we provide the
details of simulations and model systems. In Section 4, we
elucidate how to choose between different averaged reduced
density gradient definitions. Then, using the aNCI index and
fluctuation index, we scrutinize three cases, including solvation
structures, an SN2 reaction, and ligand−protein binding
environments. We demonstrate the strength and robustness
of aNCI analysis to characterize noncovalent interactions in
fluctuating systems. Finally, we conclude our works in Section
5.

2. THEORETICAL METHOD
2.1. Brief Review of NCI Analysis. To reveal the weak

interactions, Johnson et al.6 constructed the NCI index based
on the study of reduced density gradient (RDG or s) as a
function of electron density ρ(r):
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By plotting RDG with respect to electron density, noncovalent
interaction regions can be identified when the RDG approaches
zero. The spikes which appear in the 2D plot are associated
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with the interaction of critical points (ICP). These ICP regions
with both low density and gradient of the density can be
visualized in three-dimensional (3D) grid space, which reveals
where noncovalent interactions occur. Moreover, based on the
analysis of sign(λ2) (where λ2 is the second eigenvalue of the
density Hessian matrix ∂ρ(r)/∂xi∂xj, with i, j = 1, 2, 3, and xi
representing one Cartesian direction), attractive (negative sign)
and repulsive (positive sign) interaction regions can be
identified (as previously exposed6). As such, with visualization
tools, such as VMD,18 the interaction regions in 3D space can
be visualized and colored depending on effective density
(sign(λ2)ρ(r)). The following color codes are employed to
distinguish interaction types in NCI:

• Blue for the highly attractive interactions (such as
hydrogen bonds)

• Green for the weak interactions (such as dispersive-like
van der Waals)

• Red for repulsive interactions (such as steric clashes)

2.2. aNCI Analysis. The above NCI analysis has been useful
to study weak interactions within static structures. However, in
order to analyze noncovalent interactions in thermally
fluctuating systems, for instance, trajectories generated from
molecular dynamics simulations, a new definition of NCI index
is required. Here, we consider two possible definitions of
averaging reduced density gradient (aRDG):
Definition a: using averaged density ρ(r) and averaged

density gradient Δρ(r), one can define
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Definition b: using RDG of each single structure, one can
define
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We will scrutinize both definitions in Section 4.1.1.
To illustrate how thermal motions can affect the weak

interactions, we define the thermal fluctuation index as
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where ρi(r) is the electron density from structure i.
The color codes for fluctuation index f are

• Blue for highly stable interactions, which can be barely
affected by thermal motions

• Red for flexible interactions, which can be easily distorted
by thermal motions

• Green for fluctuations between blue and red types

2.3. aNCI Combined with QM/MM MFEP Simulations.
In principle, one can use eqs 2 and 4 to carry out the aNCI
analysis for any system with thermal motions. However, some
technical problems can make aNCI unfeasible. For instance, all
the structures generated by molecular dynamics simulations are
required to be aligned based on some criteria such as the
minimization of root-mean-square deviations. This alignment
process can cause artificial bias in the aNCI analysis. Hence, we
partition the entire system into the subsystem (that is the
targeting region analyzed by aNCI, such as solute in solution)
and the environment (that is the surrounding regions of the
subsystem, such as solvent). The subsystem structure is fixed at
an optimized structure in the aNCI analysis while the
environment fluctuates. Therefore, the aNCI analysis needs a
representative subsystem structure and an ensemble of
structures for fluctuating environment.
Since aNCI is an analysis technique based on given system

conformations, it is possible to interface the aNCI analysis with
any classical or QM/MM simulation methods. In this work, we
incorporate the recently developed quantum mechanics/
molecular mechanics minimum free energy path (QM/MM-
MFEP) optimization technique into the aNCI analysis. QM/
MM-MFEP has been applied to solvation reactions and enzyme
systems8,17,19.20−22 In QM/MM-MFEP, the subsystem is
described by QM while the environment is simulated by
classical force fields. The QM/MM-MFEP optimized structure
of the subsystem is ensemble-averaged since the subsystem
region is optimized over the potential of mean force surface,
which is defined by

∫β
β= − −A E r rr r( )

1
ln( d exp( ( , )))QM MM QM MM

where E(rQM,rMM) is the total energy of the entire system
expressed as a function of the Cartesian coordinates of the QM
and MM subsystems. The QM/MM interaction energy in
E(rQM, rMM) includes the electrostatic interactions from classical
point charges and van der Waals (vdW) interactions between
QM and MM subsystems. The integration of QM/MM MFEP
into the aNCI analysis is efficient and intuitive. The aNCI
analysis can also be combined with any other type of molecular
dynamics simulation. One just needs to fix the solute molecules
at an optimized geometry and carry out the molecular dynamics
simulation with the solvent molecules.

3. COMPUTATIONAL DETAILS
We carried out the aNCI analysis on systems that are
summarized in Table 1, including single molecule solvation,
SN2 reaction in water, and ligand-protein binding systems. In
QM/MM simulations, the subsystem was treated as quantum
mechanics at a B3LYP/6-31+G* level.23 CHARMM22 force
field24 and TIP3P water model25 were employed for environ-
ments. The protein systems were prepared with MolProbity.26

Each system was optimized by QM/MM-MFEP with a 640 ps
simulation. The 320 ps simulations then were performed to
generate the snapshots for the aNCI analysis. 1000 snapshots
were generated for each system.

Table 1. Model Systems for aNCI Analysis

solute−solvent system SN2 reaction in solvent ligand−protein system

subsystem H2O benzene reactant state transition state BIIB021 VHD
environment water water water water protein, water protein, water
cubic box length 40 40 50 50 70 70

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4001087 | J. Chem. Theory Comput. 2013, 9, 2226−22342227



The aNCI analysis was carried out with modified version of
NCIPLOT software.12 To reduce the computational cost, the
promolecular density6 from atoms within a 15 Å radius cutoff of
the subsystem were chosen to compute the indices using eq 2
and 4. The cube grids, with a 0.05 (if not further mentioned) Å
step size along x, y, and z directions, were generated with 3.0 Å
buffer regions from the subsystem. In the 3D visualization
process with VMD, the threshold for RDG/aRDG was 0.25,
and the color scale was [−2, 2], [0, 1.5] for aNCI analysis and
fluctuation index, respectively.

4. RESULTS AND DISCUSSION
4.1. Benchmark Study: One Water Molecule in Water.

4.1.1. aRDG Definition: s(r) vs ⟨s(r)⟩. To validate two possible
definitions for aNCI, we used promolecular density to
characterize the noncovalent interactions of one water molecule
in water. As shown in Figure 1, s(r), defined in eq 2 approaches

zero at small density regions and the spikes can be clearly
identified. In contrast, the ⟨s(r)⟩ defined in eq 3 does not have
(close) zero RDG regions and only two spikes can be observed.
According to the original NCI paper,6 such spikes represent
noncovalent interaction regions. These indicate that the
microscopic details of interactions are lost in ⟨s(r)⟩. This
phenomenon can be further explained by a detailed analysis
over the RDG distribution. Three 3D grids, located at three
ICPs (with effective density as −0.04, −0.02, and 0.005, which
will be observed later to correspond with hydrogen bond
donor, hydrogen bond acceptor, and vdW regions, respectively)
under s(r) definition were selected. For each grid, 1000 RDG
values were calculated from each snapshot and their
distributions are shown in Figure 2. Some interactions were
blurred by the broad RDG distribution, although these
interactions do exist under averaged density and gradient
sense. This suggests that large thermal fluctuations of unstable
interactions can bury the useful information of aNCI in ⟨s(r)⟩.
Therefore, we chose the definition s(r) for our aNCI analysis.
4.1.2. Electron Density: ab Initio vs Promolecular. To

examine how promolecular and ab initio electron densities
affect the aNCI analysis, we compared the computed RDGs
using both electron densities. The ab initio density is
constructed using density functional theory calculations with
a B3LYP/6-31G* basis set over a small rectangle water box

(around 200 atoms) with 5.0 Å buffer zone to the QM water
molecule for each snapshot. As shown in Figure 3, two aRDG

plots (black and red dots) against effective density are similar in
terms of overall shapes. Furthermore, the absolute electron
density at critical points is slightly smaller in ab initio
calculations (0.032 and 0.019) than promolecular results
(0.039 and 0.021). Therefore, promolecular density is
qualitatively accurate to perform the aNCI analysis, which is
also confirmed in previous single snapshot NCI analysis.

4.2. Case I: Solute−Solvent Systems. In Case I, we
applied the aNCI analysis to two systems: water in water and
benzene in water, which represent prototypical examples of
highly fluctuating systems. While the normal NCI analysis
shows information about time dependent noncovalent
information and so does not reveal solvation interactions (see
Figure 5), s(r) does. Figure 4 illustrates the evolution of the
aRDG as a function of the number of snapshots; 1000
snapshots can achieve the converged aRDG at low-density
regions in terms of number and positions of spikes. In the
water−water system (Figure 4a), the effective density value at
the most negative ICP is −0.06 with 1 snapshot and −0.04 with
10 snapshots and is converged with −0.038 under 100 and
1000 snapshots. In the benzene−water system, the effective

Figure 1. aRDG vs effective density plot under different RDG
definitions.

Figure 2. Monitored RDG probability distribution for selected points
from three regions: (1) hydrogen bond acceptor, (2) hydrogen bond
donor, and (3) van der Waals interaction region.

Figure 3. aRDG vs effective density plot for a water molecule in water
with promolecular density and wave function density.
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value at the most negative ICP increases from −0.038 with 1
snapshot to −0.014 with 1000 snapshots. These modifications
of ICP’s effective density indicate that the use of an ensemble of
structures influences the interaction strength. For example, the
actual hydrogen bonding would not be as strong as it can be in
a single snapshot because fluctuations exist. More importantly,
the visualized aNCI pictures can reveal the microscopic
solvation structures as shown in Figure 5 for the water−water
and benzene−water systems, respectively.
Figure 5a,c represents the single snapshot NCI analysis for

both systems. In the NCI analysis, an increased number of weak
interactions are observed which results in a nonsymmetrical
geometry for the ICP’s and in a concealment of the important
interactions. They all are averaged out in aNCI calculations.
Therefore, in aNCI, the main (or important) interactions are
clearly visualized (as shown in Figure 5b,d): water−water
hydrogen bond and benzene−water π−hydrogen bond. These
comparisons explicitly show that aNCI is required in a
fluctuating environment. The detailed interactions of both
systems are discussed below.
Water−Water Interactions. Many studies on water

structures have been carried out.27,28 In ideal conditions,
water molecules interact with each other through two hydrogen
atoms as hydrogen bond donors and oxygen atom as hydrogen
bond acceptor. The solute oxygen atom interacts with two
other hydrogen atoms from other waters and a tetrahedral
hydrogen bond pattern is formed. Both hydrogen bond

donors/acceptors should have the same interaction strength
due to its symmetry. The aNCI analysis results, which positions
the four hydrogen bond ICPs under tetrahedral shape, are
consistent with the experimental symmetry. In addition, the
hydrogen bond donor is observed to have larger effective
density (−0.037) than the hydrogen bond acceptor (−0.021),
with the negative sign indicating that both regions are attractive
interactions between subsystem and environment. When a
hydrogen bond network forms, environment water hydrogen
atoms can interact with subsystem water oxygen atom from any
direction, and this fluctuation is reflected on the decreased
density value. As pointed out by Kumar et al.,29 the average
hydrogen bond number per water molecule in liquid state is
3.2−3.6 (less than 4), and this corresponds to the strength
decrease of the two hydrogen bond acceptors in our analysis.
The aNCI picture is also similar with a spatial position function
in the water−water environment as described in ref 30. This
demonstrates the advantages of aNCI in revealing the spatial
distribution, the interaction type, and the strength.

Benzene−Water Interaction. The benzene−water system
has also been studied previously.31,32 After the interesting π−
hydrogen bonding31,32 was proposed, many theoretical and
experimental studies33−39 have been carried out. The π−
hydrogen bonding was found to be at both sides of the benzene
ring, and the benzene molecule was shown to act as a hydrogen
bond acceptor. The interaction strength was much smaller and
more flexible than water−water hydrogen bond networks. The
π−hydrogen bond was also found to be highly unstable in
nature. In the aNCI analysis, the π−hydrogen bond structure of
benzene in 3D space appears clearly for the first time. The
overlap between repulsive (effective density 0.013) and
attractive (effective density −0.014) contributions have similar
nature as the solute water oxygen atom (hydrogen bond
acceptor): since the π−hydrogen bonding region is fairly broad,
steric clash contributes to the positive effective density value.
The fluctuation indexes of both systems are depicted in

Figure 6. For the water−water system, the lowest fluctuations
are encountered around the hydrogen bond donor interaction
region (0.30%). Therefore, these interactions are mostly stable
compared to the hydrogen bond acceptor ones (0.61%).
Finally, the vdW interactions appear to be the most flexible
ones (∼1.2%). For the benzene−water system, the relative
stability of interactions follows: π−hydrogen bonding (0.67%)
> benzene planar vdW interaction (0.95%) > close to π−
hydrogen bonding vdW interactions (1.3%). In these cases, the
stronger the interaction is, the smaller the fluctuations are. It is
also obvious that the π−hydrogen bonding is more flexible than
all the polar interactions in the water−water system, which is
consistent with the experimental observations.40,41 The
fluctuation index is demonstrated to be physical and could be
used to analyze the rigidity of different interactions.

4.3. Case II: Solvation Structures during SN2 Reaction.
In this case, the aNCI analysis is used to analyze the solvation
effect through simple SN2 reaction of Cl− + CH3Cl→ CH3Cl +
Cl− . The transition state is taken from a reaction path
generated using QM/MM-MFEP, and the reactant state is fully
optimized. In Figure 7, the aRDG vs effective density is plotted
for both reactant and transition states. The aNCI interactions
and its fluctuation index between the subsystem and environment
were visualized in Figure 8.
In Figure 7, along the nucleophile attack toward to the

transition state, the spikes are getting narrower and the density
of the strongest interactions (both repulsive and attractive)

Figure 4. In the (a) water−water system and (b) benzene−water
system, (a)RDG vs effective density plot for 1, 10, 100, 1000 snapshots
are shown in blue, green, red, and black, respectively.
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decreases. Both effects may be caused by a rearrangement of
the electron density (and therefore the atomic charges) within
the subsystem. Indeed, in the reactant state, the charge of the
attaching/leaving Cl is −1.0/−0.23 au, respectively, while in the
transition state, both of them have −0.71 au and small positive
charge migrates on the hydrogen atoms. The surrounding water
molecules respond to the substrate charge change, and the
radial distribution function (RDF) between Cl and water
hydrogen atoms has been plotted in Figure 9. In the transition
state, both Cl has a similar RDF with environmental water
hydrogen atoms, which is consistent with the charge equity. In
the reactant state, the attaching Cl attracts more first shell water
hydrogen atoms than the transition state Cl. That indicates
that, with a more negative charge, the interactions between the
ion−water pair are stronger, and our fluctuation index agrees
with the understanding that the stronger interaction is less
fluctuating. Although our approach is based on the static solute
conformation, a prevoius ab initio molecular dynamics study42

on the same system has observed that the static and dynamics
approaches have similar global features, and this further
validates our conclusion.

4.4. Case III: Ligand−Protein Binding Interactions.
Crystal structures are commonly used to characterize binding
pockets and positions of specific ligands to guide drug design.
However, a direct observation over crystal structures would be
subjective and it could be insufficient to reveal critical binding
interactions between ligand and protein. Furthermore, crystal
structure is static and may not be helpful to extract binding
information. Here, aNCI analysis is applied to analyze the
binding patterns of ligand−protein systems.
We chose two ligands in our study. The first one is a

preclinical drug molecule, BIIB021.43−45 It is a small molecule
inhibitor of the heat shock protein Hsp90 that binds
competitively with geldanamycin in the ATP-binding pocket
of Hsp90. The molecular structure is taken from PDB: 3O6O.
The second one is an in silico drug design intermediate

Figure 5. Interactions of water−water and benzene−water systems under 1 snapshots NCI analysis in (a) and (c) and 1000 snapshots aNCI analysis
in (b) and (d).

Figure 6. Fluctuation index visualization of water−water and benzene−water systems.
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compound in ligand-protein binding study,46 named VHD as
from structure PDB: 2XAB. Both ligands have a purine scaffold
and aromatic moiety. The bound proteins, Hsp83 and Hsp90,
have similar global folding and active site structures. The
interactions between substrate and environments have been
scratches in Figure 10a,b. In both figures, all polar atoms with a
distance less than 4.0 Å from the ligand are shown, with no
explicit hydrogen atoms.

Figure 7. aRDG vs effective density plot in Cl− + CH3Cl SN2 reaction:
reactant state (black) and transition state (red).

Figure 8. Reactant and transition state of Cl− + CH3Cl SN2 reaction in
water under: reactant state (a) 1000 snapshots aNCI analysis and (b)
fluctuation index and transition state (c) 1000 snapshots aNCI analysis
and (d) fluctuation index.

Figure 9. Radial distribution function of Cl and water hydrogen atoms
in reactant (RC) and transition (TS) states, for both leaving and
attaching Cl atoms.

Figure 10. BIIB02 and VHD interactions with environment, according
to crystal structure with PDB: 3O6O, 2XAB.
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In both systems, the substrate occupies the same active site
with different orientations. Two polar amino acids, Asp and
Thr, both directly and indirectly interact with the two
substrates: BIIB021 over the purine scaffold N1 and N2 and
VHD over the aromatic moiety O2 and linkage O3. Three
crystal water molecules were observed inside the active site for
both systems, and they are confined in hydrogen bond
networks. The BIIB021 aromatic moiety largely locates within
the active site and is surrounded by many nonpolar residues:
Phe123, Tyr124, Trp147, Leu92, Leu88, and Val135. In
contrast, most of the VHD purine part is solvent accessible,
which may indirectly stabilize the substrate binding.
To reveal more information based on crystal structures, we

carried out QM/MM-MFEP optimization for both systems.
The optimized substrate structures have only 0.148 and 0.161
carbon atom root-mean-square-deviation with respect to those
in crystal structures, respectively. This indicates that QM/MM-
MFEP optimization conserves the ligand binding poses. On the
basis of this subsystem structure, the aNCI analysis with 1000
snapshots is calculated. The 3D aNCI density and aNCI
fluctuation index for both substrates are shown in Figures 11
and 12, and the ICP effective density and fluctuation index are
listed in Tables 2 and 3, respectively.

4.4.1. BIIB021 Interaction Features. Polar interactions
between BIIB021 and environments are summarized in Table
2 and can be visualized in Figure 11. The two ICPs of the N1
atom correspond to strong hydrogen bonds (HB) with Asp83
(−0.048) and a crystal water molecule XWAT1 (−0.031). The
average HB distances are 1.73 Å and 2.01 Å, respectively. N2
behaves as the HB acceptor for both Thr169 (−0.016) and
XWAT1 (−0.016). A detailed analysis over the 1000 structures

demonstrates that the HB constantly switches between
XWAT2-N2 and Thr169-N2. This is so frequent that, in
average, N2 shares HBs with both groups. This effective density
is about half of the N1 atom interactions, which goes along with
the averaged HB distance between N2 and XWAT2 (2.62 Å),
Thr169-OH group (2.87 Å). N3 has only one HB with XWAT3
(−0.031), which is consistent with the crystal structure
observation. This water position is quite rigid with an averaged
HB distance of 2.03 Å. The N4 atom, which has XWAT4 nearby
from crystal structure, forms two directional hydrogen bonds
with bulk water molecules (during the MD simulations, several
water molecules moved around the N4 atom and no stable HB
exists). This difference between crystal structure observation
and aNCI results may be caused by the local environment,
which makes water molecules favor a two-side interaction
direction, not along the coplane of purine ring. On the other
hand, the N6 atom has only one strong interaction with bulk
water molecules, and this is because the local environment
around the N6 atom restricts the bulk water molecules to
approach it from this single direction. Besides the aNCI density,
the fluctuation index over these hydrogen bonds is observed to
be closely related with their interaction strength. For N2 and
N4, the fluctuation indexes are 0.55%, 0.58% and 0.47%, 0.60%,
respectively, and their effective densities are about half
comparing with those of N1 and N3. The weaker the effective
density amount is, which may be caused by interaction with
versatile waters, the more flexible these interactions are.
The π−π stacking between the aromatic moiety and the

Phe123 side chain creates the most stable vdW interaction with
fluctuation index around 0.25%, which is even less fluctuated
than the strongest hydrogen bond. The aromatic moiety ring
appears therefore rigid and suitable for substrate binding. The
purine ring’s interaction with Met83 and Asn36 is also stable,
with fluctuation index around 0.35%. However, since the latter
are comparably weaker than HBs, the contribution to the
substrate binding may be limited.

4.4.2. VHD Interaction Features. The interactions between
VHD and environment are listed in Table 3 and visualized in
Figure 12. The O2 atom is tightly bound to Asp93. Asp93 not
only directly stabilizes the O2 atom but also helps to confine the
crystal waters XWAT2 and XWAT3. The O1 atom is hydrogen
bonded with XWAT1 which is stabilized by Leu48, and this
interaction is the second strongest polar interaction. The O3
atom has two HBs: one with Thr184, and another with
XWAT3, which is stabilized by Asp93. The aNCI analysis is
consistent with direct crystal structure observations, and it
offers more information on interaction strength and stability.
Besides the polar interactions, the purine-scaffold ring makes

a hydrophobic interaction with Ala55 which has an effective
density value of −0.009. A hydrophobic interaction between
the aromatic ring and Asn51, Ser52 backbone, has a similar
strength and confines the substrate inside the active site.
According to our aNCI analysis, the purine scaffold is

accessible to bulk solvent and only has fluctuated weak
interactions with protein. If the binding mode does not change
with the chemical modifications, the C5 atom of purine scaffold
could be a promising site. Indeed, as found in experimental
studies,47 modifications over this region help to improve the
biological property without disturbing the binding ability. In
contrast, the modifications carried out on the aromatic moiety
(change of O1 and isopropanol groups) can dramatically
decrease the binding ability.

Figure 11. aNCI analysis and fluctuation index of BIIB021 and protein
environment under (a) 1000 snapshots aNCI analysis and (b)
fluctuation index.
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From aNCI analysis, both ligands were observed to bind the
protein very well: the BIIB021 utilizes mainly nitrogen atoms to
form hydrogen bond with the crystallized water and protein
residues; the VHD has three oxygen atoms that form a strong
hydrogen bond with environment. The Asp residue is in a
crucial role for the binding conformation: it not only forms a
direct hydrogen bond with substrate but also helps the creation
of an internal water hydrogen bond network. With these
confined water molecules, the substrate can bind the active site
strongly. A further design for a potential drug molecule would
maintain the critical interactions revealed by aNCI while ligand
modifications should be performed on those unstable and weak
interaction parts.

5. CONCLUSION
In this work, the NCI analysis is generalized to aNCI analysis,
which characterizes the interactions from an ensemble of
structures. With the aNCI density and aNCI fluctuation index,
both averaged noncovalent interactions and fluctuations can be
directly visualized. For the solute−solvent system, the
tetrahedral hydrogen interaction network in water−water and
the π−hydrogen bond in benzene−water system were
characterized. The π−hydrogen bond appears as a weaker
and more flexible interaction comparing with water−water
counterpart. In SN2 reaction, a reorganization of partial charges

changes the solvation structures, and as well as the interaction
strengths with environment. Further applications in ligand−
protein binding systems reveal the complex interaction
networks of two drug molecules in the heat shock protein
active site. With aNCI analysis, the crystal structure was further
illustrated, and it could help the drug design process.
The aNCI analysis is general and can be coupled with any

type of molecular dynamic simulation (QM, QM/MM,
polarizable and classical MM force fields). In this work it was
interfaced with the recently developed QM/MM-MFEP
approach with classical force field. However, in a system
difficult to represent by a classical force field, such as metal
cations, pure QM or polarizable force fields would play a critical
role. Further works are currently ongoing to study the influence
of these methods used on the aNCI results. Overall, aNCI is a
useful tool to characterize noncovalent interaction patterns in
fluctuating environments.
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