Block-Localized Wavefunction (BLW) Method and Its Applications

Yirong Mo

Department of Chemistry Western Michigan University

Introduction

Lewis structure:

A molecule can be visualized with a dot diagram where each pair of electrons (dots) locates on one atom (lone pair) or between two atoms (chemical bond).

Resonance theory:

When one Lewis structure is not enough to describe the structure and properties of a molecule, more Lewis (often ionic) structures are called.

Resonance energy:

"obtained by subtracting the actual energy of the molecule in question from that of the most stable contributing structure."

Wheland, The Theory of Resonance, John Wiley & Sons, New York, 1944.

Introduction

π -Conjugated donor-acceptor chromophores:

Tancini, et al. Eur. J. Org. Chem., 2756-2765 (2012).

How to understand the intramolecular charge-transfer (ICT) in terms of donor, acceptor and π -conjugated spacer?

Introduction

Mulliken two-state theory (1952):

For charge-transfer (donor-acceptor complexes)

$$\Psi_{GS} = c_a \psi_{D,A} + c_b \psi_{D^+A^-}$$
$$\Psi_{ES} = c_b \psi_{D,A} - c_a \psi_{D^+A^-}$$

$$\mathbf{H}_{\mathrm{DA}} = \left\langle \psi_{\mathrm{D,A}} \middle| \hat{H} \middle| b \psi_{\mathrm{D}^{+}\mathrm{A}^{-}} \right\rangle$$

(Assuming $S_{DA} = 0$)

Marcus-Hush two-state theory (1963):

Nuclear coordinate

Illustration of the Marcus-Hush two-state model.

The rate constant for nonadiabatic ET reactions (i.e., $V_{AB} < 200 \text{ cm}^{-1}$)

$$k_{\rm ET} = \frac{2\pi}{\hbar} |V_{AB}|^2 \left(\frac{1}{4\pi\lambda k_B T}\right)^{1/2} \exp\left(-\frac{\left(\Delta G^0 + \lambda\right)^2}{4\lambda k_B T}\right)$$
$$\lambda = \lambda_{\rm int} + \lambda_s$$

Methodology: Constrained DFT (CDFT)

To study the electron transfer effect, both the non-ET and ET states better be defined explicitly.

Constrained density functional theory (CDFT) method

Kohn-Sham method

$$E[\rho] = 2\sum_{i}^{N/2} \left\langle \phi_{i} \right| - \frac{1}{2} \nabla^{2} \left| \phi_{i} \right\rangle + \int V_{n}(\vec{r}) \rho(\vec{r}) d\vec{r} + J[\rho] + E_{xc}[\rho]$$

Adding a general constraint

$$\int_{C} \rho(\vec{r}) d\vec{r} = \int W_{C}(\vec{r}) \rho(\vec{r}) d\vec{r} = N_{C}$$

$$= \left[-\frac{1}{2} \nabla^2 + v_n(\vec{r}) + \int \frac{\rho(\vec{r}')}{\left|\vec{r} - \vec{r}'\right|} d\vec{r}' + v_{xc}[\rho](\vec{r}) + v_c w_c(\vec{r}) \right] \phi_i = \varepsilon_i \phi_i$$

Dederichs, Bluegel, Zeller, Akai, *Phys. Rev. Lett.*, 53, 2512-2515 (1984); Wu, Van Voorhis, *Phys. Rev. A: At., Mol., Opt. Phys.*, 72, 024502 (2005).

Methodology: Valence Bond (VB)

Ab initio Valence Bond (VB) method

Heitler-London-Slater-Pauling (HLSP) function

$$\Psi_{K} = N_{K}\hat{A} \left[\phi_{1}(1)\phi_{2}(2)\cdots\phi_{N}(N)\prod_{(ij)} 2^{-1/2} [\alpha(i)\beta(j) - \beta(i)\alpha(j)] \prod_{k} \alpha(k) \right]$$

Software

XMVB – An ab initio non-orthogonal VB program.

HLSP in an alternative form:

$$\Psi_{K} = N_{K} \hat{A} (\varphi_{12} \varphi_{34} \cdots \varphi_{n-1n})$$

where the bond function:

$$\varphi_{ij} = \hat{A} \Big\{ \phi_i \phi_j \big[\alpha(i) \beta(j) - \beta(i) \alpha(j) \big] \Big\}$$

Methodology: Valence Bond (VB)

Approximate Valence Bond (VB) Methods:

GVB method:

$$\psi_{K} = \hat{A} \left\{ \varphi_{1}^{2} \varphi_{2}^{2} \cdots \varphi_{n/2-1}^{2} \phi_{i} \phi_{j} [\alpha(i)\beta(j) - \beta(i)\alpha(j)] \right\}$$

Bond function method:

$$\varphi_{ij} = \hat{A} \left\{ \phi_{ij} \phi_{ij} \alpha(i) \beta(j) \right\} \longrightarrow \psi_{K} = \hat{A} \left\{ \varphi_{1}^{2} \varphi_{2}^{2} \cdots \varphi_{n/2-1}^{2} \varphi_{n/2}^{2} \right\}$$

One Slater determinant

Methodology: Block-Localized Wavefunction (BLW)

Block-localized wavefunction (BLW) Method

Mo, Peyerimhoff, J. Chem. Phys. 109(5), 1687-1697(1998).
Mo, Gao, Peyerimhoff, J. Chem. Phys. 112(13), 5530-5538(2000).
BLW-DFT: Mo, Song, Lin, J. Phys. Chem. A 111(34), 8291-8301 (2007). Cembran, Song, Mo, Gao, JCTC, 5(10), 2702-2716(2009).

For a diabatic state with N electrons and M primitive orbitals which are partitioned into *k* subgroups, the BLW is

$$\Psi_I^{BLW} = \hat{A} \{ \Phi_1 \Phi_2 \cdots \Phi_k \}$$

where

$$\Phi_i = \varphi_{i1} \alpha(1) \varphi_{i1} \beta(2) \varphi_{i2} \alpha(3) \cdots \varphi_{i\frac{n_i}{2}} \beta(n_i)$$

$$arphi_{ij} = \sum_{\mu=1}^{m_i} C_{ij\mu} \chi_{i\mu}$$

Block-Localized Wavefunction (BLW)

Overlap integrals:

$$\left\langle \varphi_{ij} \left| \varphi_{kl} \right\rangle = \begin{cases} \delta_{jl} & i = k \\ s_{jl}^{ik} & i \neq k \end{cases}$$

The difference between HF and BLW lies in the transformation matrix:

$$C^{BLW} = \begin{pmatrix} C_{1} & 0 & \cdots & 0 \\ 0 & C_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & C_{k} \end{pmatrix} \qquad C^{HF} = \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1k} \\ C_{21} & C_{22} & \cdots & C_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ C_{k1} & C_{k2} & \cdots & C_{kk} \end{pmatrix}$$

Methodology: Block-Localized Wavefunction (BLW)

The energy for a diabatic state

$$E_{I} = \left\langle \Psi_{I}^{BLW} \mid \hat{H} \mid \Psi_{I}^{BLW} \right\rangle = \sum_{\mu,\nu} D_{\mu\nu} (h_{\mu\nu} + F_{\mu\nu})$$

where

 $D = C(C^+SC)^{-1}C^+$

For the example of two-block case:

$$\boldsymbol{C} = \begin{pmatrix} \boldsymbol{C}_{a} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C}_{b} \end{pmatrix} \longrightarrow \boldsymbol{S} = \begin{pmatrix} \boldsymbol{S}_{aa} & \boldsymbol{S}_{ab} \\ \boldsymbol{S}_{ba} & \boldsymbol{S}_{bb} \end{pmatrix}$$

By defining

$$S_{a}' = S_{aa} - S_{ab} D_{b} S_{ba} \qquad F_{a}' = (1_{a} / - S_{ab} D_{b}) F \begin{pmatrix} I_{a} \\ - D_{b} S_{ba} \end{pmatrix}$$
$$\begin{cases} F_{a}' C_{a} = F_{a}' C_{a} L_{a} \\ C_{a}^{+} S_{a}' C_{a} = I_{a} \end{cases}$$

Gianinetti, E., Raimondi, R., Tornaghi, E. J. Int. J. Quantum Chem. 60, 157-166(1996).

Block-Localized Wavefunction (BLW)

First-order derivative of E_{BLW} with respect to $\{q_i\}$:

$$\frac{\partial E_{I}}{\partial q_{i}} = 2\sum_{\mu\nu}^{m} d_{\mu\nu} \frac{\partial h_{\mu\nu}}{\partial q_{i}} + \sum_{\mu\nu\rho\sigma}^{m} [2d_{\mu\nu}d_{\rho\sigma} - d_{\mu\rho}d_{\nu\sigma}] \frac{\partial(\mu\nu|\rho\sigma)}{\partial q_{i}} - 2\sum_{\mu\nu}^{m} W_{\mu\nu} \frac{\partial S_{\mu\nu}}{\partial q_{i}}$$

Mo, Y. J. Chem. Phys. 119(3), 1130-1136 (2003).

BLW at the DFT level:

 $F^{\alpha} = H + J + F^{XC\alpha}$

BLW-DFT has been ported to GAMESS.

Mo, Y., Song, L., Lin, Y. J. Phys. Chem. A, 111, 8291-8301 (2007) (Feature Article).

BLW Energy Decomposition (BLW-ED)

Block-localized wavefunction energy decomposition (BLW-ED): Mo, Gao, Peyerimhoff, J. Chem. Phys. 112, 5530-8 (2000).

 $\Delta E_{\text{int}} = E(AB) - E(A) - E(B) + BSSE = \Delta E_{def} + \Delta E_{HL} + \Delta E_{pol} + \Delta E_{ct}$

BLW Energy Decomposition (BLW-ED)

σ/π interactions in metal-carbonyl bonding:

Nakashima, Zhang, Xiang, Lin, Lin, Mo, J. Theo. Chem. Comput. 7, 639 (2008).

SCHEME 1

 σ donation

 π back-donation

Optimal bond distances and stretching frequencies of CO for MCO (M = Ni, Pd, Pt, Cu⁺, Ag⁺ and Au⁺)

Correlation between v_{CO} in diabatic states and $\Delta E_{pol}(CO)$

М	DFT			BLW-DFT				
	R _{MC}	R _{CO}	ν _{co}	$\Delta v_{\rm CO}$	R _{MC}	R _{CO}	v _{co}	$\Delta v_{\rm CO}$
Ni	1.672	1.151	2079	-133	2.044	1.120	2293	+81
Pd	1.879	1.142	2112	-100	2.406	1.123	2257	+45
Pt	1.791	1.146	2120	-92	2.360	1.121	2280	+68
Cu ⁺	1.884	1.116	2316	+104	2.177	1.114	2342	+130
Ag ⁺	2.199	1.116	2314	+102	2.570	1.117	2307	+95
Au ⁺	1.968	1.116	2310	+98	2.517	1.116	2320	+108

BLW Energy Decomposition (BLW-ED)

Electron density difference (EDD) maps for CuCO+:

CO polarization

overall polarization

π charge transfer

overall charge transfer

Block-Localized Wavefunction (BLW)

Applications and further development of the BLW method:

- Resonance or conjugation;
- Hyperconjugation;
- Two-state model for electron transfer;
- Intermolecular interaction (BLW-ED);
- Reactions in condensed states within the combined QM(MOVB)/MM theory.

Limitations of the BLW method?

Basis set artifact!

Computational results must be justified by viable experimental data.

BLW results are stable with small to midsize basis sets.

Mo, *J. Phys. Chem. A* 113, 5163 (2009); Mo, Hiberty, Schleyer, *Theor. Chem. Acc.*, 127, 27 (2010).

Applications of BLW: Resonance in Benzene

Experimental resonance energy:

Isodesmic evaluation:

 $3C_2H_6 + 3CH_2 = CH_2 \rightarrow C_6H_6 + 6CH_4 + 65.5$ kcal/mol

Wodrich, Wannere, Mo, Jarowski, Houk, Schleyer, Chem. Eur. J. 13, 7731 (2007)

Applications of BLW: Resonance in Benzene

Computational analysis:

Mo, Y., Schleyer, P. v. R. *Chem. Eur. J.* 12, 2009 (2006); Mo, Y. *J. Phys. Chem. A* 113, 5163 (2009); Mo, Y., Hiberty, P., Schleyer, P. v. R. *Theor. Chem. Acc.*, 127, 27 (2010).

BLW-NMR: A Proof of Concept

BLW-NMR: A Proof of Concept

BLW-NMR:

A combination of our BLW method with Kutzelnigg's IGLO method.

Steinmann, Jana, Wu, Schleyer, Mo, Corminboeuf, Angew. Chem. Int. Ed., 48, 9828 (2009).

A direct assessment of electron delocalization on NMR:

δ(¹H)/ppm

Existing explanations:

- Steric repulsion;
- Brunck-Weinhold: Vicinal σ_{CH} and σ_{CH}^{*} interactions;
- Bader et al: Weakening (polarization) of the CC bond;
- Goodman: Hyperconjugation model.

Mulliken (1939): "Hyperconjugation in ethane is only of second order" and "should have little or no direct effect in restricting free rotation".

Mulliken, R. S. J. Chem. Phys., 7, 121 (1939)

Considering C_2H_6 constructed from two CH_3 groups of C_{3v} symmetry:

Hyperconjugative interaction

Steric repulsion

Overall interaction

Figure. Diagrams for molecular orbital interactions.

HF wavefunction:

$$\Psi = \hat{A}(1a_1^2 2a_1^2 3a_1^2 4a_1^2 5a_1^2 1e^4 2e^4)$$

BLW wavefunction:

$$\Phi_L = \hat{A}(1a_1^2 2a_1^2 3a_1^2 4a_1^2 5a_1^2 1\pi)^4 (1\pi')^4)$$

Hyperconjugation energy:

$$E_{hc} = E(\Psi) - E(\Psi_L)$$

Steric energy:

 ΔE_s = Energy change with group orbitals frozen in rotation.

Molecular orbitals; Orthogonal

Group orbitals; Nonorthogonal

With 6-311+G(d,p) basis set

 $\Delta E_{b} = -E_{hc}(s) + \Delta E_{s} + \Delta E_{e} + \Delta E_{g} + E_{hc}(e) = \Delta E_{hc} + \Delta E_{s} + \Delta E_{e} + \Delta E_{g}$ 3.06
0.76
2.87
-0.03
-0.54

Mo, Gao, Acc. Chem. Res. 40, 113 (2007).

Energy decomposition of the rotational barriers from staggered conformations to eclipsed conformations (kcal/mol):

Molecule	Basis Set	∆E _{hc}	∆ E _s	∆ <i>E</i> _e	ΔE_{g}	∆ E _b
CH ₃ CH ₃	6-31G(d)	0.76	2.73	-0.01	-0.50	2.98
	6-311+G(d,p)	0.76	2.87	-0.03	-0.54	3.06
SiH ₃ SiH ₃	6-31G(d)	0.30	0.71	0.00	-0.06	0.95
	6-311+G(d,p)	0.26	0.77	-0.01	-0.04	0.98
GeH ₃ GeH ₃	6-31G(d)	0.09	0.78	-0.01	-0.05	0.81
	6-311+G(d,p)	0.14	0.67	0.00	-0.08	0.73
CH ₃ SiH ₃	6-31G(d)	0.38	1.16	-0.01	-0.13	1.40
	6-311+G(d,p)	0.37	1.27	-0.02	-0.16	1.46

Concept: with the example of substituted tetrahydropyrans

β-anomer

 α -anomer

The preference of α increases with the increasing electronegativity of Y.

Newman projections of the R-O-C-Y moiety

Two explanations for the anomeric effect:

Electrostatic model

Hyperconjugation model

Experimental evidence: Aqueous solvation effects stabilize the β-anomer.

Experimental evidence: Shortened $O-C_1$ bond and the lengthened C_1 -Y bond.

Extended block-localized wavefunction method:

Allow basis orbitals to appear in more than one block.

Under development.

$$\Phi_L = N_L \hat{A} \{ \Omega^1 \Omega^2 \cdots \Omega^K \}$$

$$DE = E(\Phi_L) - E(\Psi^{Del})$$

Examples:

Dimethoxymethane

Substituted tetrahydropyrans

 $Y = F, CI, OH, NH_2 and CH_3$

Dimethoxymethane:

(a) gauche-gauche (GG)

(b) gauche-anti (GT)

(c) anti-anti (TT)

BLW partition scheme:

Energies (kcal/mol) with the 6-311+G(d,p) basis set:

	GG	GT	тт
RE(MP2)	0.00	2.74	6.56
RE(HF)	0.00	2.07	5.20
RE(BLW)	0.00	2.94	7.02
DE	56.72	57.59	58.55

Electron density difference (EDD) maps:

Dimethyl ether as a reference:

DE = 28.6 kcal/mol

There is no remarkable difference between the $n \rightarrow \sigma_{CO}^*$ and $n \rightarrow \sigma_{CH}^*$ hyperconjugative interactions in dimethoxymethan.

Calculations strongly disapprove the hyperconjugation model.

Substituted tetrahydropyrans:

Reference molecules

Computational results for substituted tetrahydropyrans and cyclohexane (kcal/mol):

 $\Delta E_{a \rightarrow \beta}$

- $= E_{\beta}(MP2) E_{\alpha}(MP2)$
- $= E_{\beta}(HF) E_{\alpha}(HF) + \Delta E_{disp}$
- = $E_{\beta}(BLW) E_{\alpha}(BLW) + \Delta E_{del} + \Delta e_{disp}$
- $= \Delta E_{s} + \Delta E_{del} + \Delta E_{disp}$

Y	$\Delta E_{\alpha \rightarrow \beta}$	ΔE _s	∆E _{del}	ΔE_{disp}			
Substituted tetrahydropyran							
F	3.41	3.46	-0.66	0.61			
ОН	1.32	2.19	-1.42	0.55			
CI	2.69	1.76	0.70	0.33			
NH ₂	-2.73	-2.45	-0.61	0.34			
CH ₃	-3.30	-2.31	-1.18	0.18			
Substituted cyclohexane							
F	0.09	-0.07	-0.01	0.17			
ОН	-0.40	-0.60	-0.09	0.29			
CI	-0.96	-1.00	-0.17	0.21			
NH ₂	-1.71	-2.02	-0.03	0.33			
CH ₃	-2.19	-2.23	-0.16	0.19			

Mo, Nat. Chem. 2, 666 (2010).

Electrostatic potential surface

Relative orientations (degree) of local dipoles in $C_6H_{11}Y$:

Y	α	β
F	119.2	46.3
OH	169.3	92.1
Cl	116.5	48.4
NH ₂	112.3	127.5

Mo, Nat. Chem., 2, 666 (2010).

LETTER

doi:10.1038/nature09693

Sensing the anomeric effect in a solvent-free environment

Emilio J. Cocinero¹[†], Pierre Çarçabal¹[†], Timothy D. Vaden¹[†], John P. Simons¹ & Benjamin G. Davis²

Chem. Eng. News January 10, 2011 Volume 89, Number 2 p. 5 Probing The Anomeric Effect

Carbohydrate Chemistry: Peptide sensor provides clues to phenomenon that stabilizes sugars

Can a sensing molecule probe the anomeric effect?

(**b**) β -anomer

Strategy: Mutating the involved functional groups individually.

Key H-bond distances and vibrational frequencies:

Complex		R(06…H)	R(05…H)	R(H…O')	∨(N-H)	v(O2-H)
1	α	1.997	2.610	1.954	3328 -45	3569 +91
	β	2.098	2.444	1.900	3373	3478
2	α	2.018	2.546	1.935	3335 - <mark>60</mark>	3544 +5
	β	2.106	2.463	1.946	3395	3539
3	α	2.052	1	2.023	3365 - <mark>67</mark>	3568 +53
13 Parties	β	2.192	1	1.956	3432	3515
4	α	1	2.038	1.949	3379 -41	3566 +87
1000	β	1	2.181	1.873	3420	3479

Correlation between the n(N-H) and the O6…HN distance:

Electron density difference (EDD) maps:

Sensing or No Sensing: Can the Anomeric Effect Be Probed by a Sensing Molecule?

Changwei Wang,^{†,‡} Fuming Ying,[†] Wei Wu,^{*,†} and Yirong Mo^{*,‡}

Wang et al., J. Am. Chem. Soc. 133, 13731 (2011).

Methodology: Two-State Model Based on BLW

Approach I:

$$\Psi = \sum_{I} C_{I} \Psi_{I}^{BLW}$$

$$\begin{vmatrix} H_{AA} - E & H_{AB} - ES_{AB} \\ H_{AB} - ES_{AB} & H_{BB} - E \end{vmatrix} = 0 \implies V_{AB} = H_{AA} - E_1 = \frac{H_{AB} - S_{AB}H_{AA}}{(1 - S_{AB})}$$

Approach II (reverse CI):

 $\Psi_{GS} = a \psi_A + b \psi_B$ Assuming $\langle \psi_a | \psi_b \rangle = 0 \implies E_{GS} = a^2 E_a + b^2 E_b + 2abV_{ab}$

Since
$$\frac{\partial E_{GS}}{\partial a} = \frac{\partial E_{GS}}{\partial b} = 0$$
 $\implies a^2 = \frac{E_{GS} - E_b}{2E_{GS} - E_a - E_b}; b^2 = \frac{E_{GS} - E_a}{2E_{GS} - E_b}; b^2 = \frac{E_{GS} - E_b}{2E_{GS} - E_b}; b^2 =$

Mo, Y. J. Chem. Phys., 126, 224104 (2007).

Formamide and thioformamide in the gas phase (B3LYP):

6-31G(d) 6-311+G(d,p) $a^2 = 71.5\%$

 $a^2 = 71.7\%$

 $b^2 = 28.3\%$ $b^2 = 28.5\%$

$$\Delta E_{\pi \to \pi^*} = 4.82$$

4.86 eV

6-31G(d) 6-311+G(d,p) $a^2 = 57.9\%$

 $a^2 = 57.4\%$

 $b^2 = 42.6\%$ $b^2 = 42.1\%$

Correlation between the electronic coupling energy and the electron-transfer distance.

Mo, Wu, Zhang, J. Chem. Phys. 119(13), 6448-6456 (2003).

$$k_{\rm ET} = A e^{-\beta R_{AB}} \longrightarrow V_{AB} \propto e^{-\beta R_{AB}/2}$$

CH₂(CH₂CH₂)_nCH₂⁺

 $\beta_{comp} = 0.68 \text{ Å}^{-1}$ $\beta_{expt} = 1.0 \text{ Å}^{-1}$ $CH_{2}(CH=CH)_{n}CH_{2}^{+}$ $\beta_{comp} = 0.18 \text{ Å}^{-1}$ $\beta_{expt} = 0.2 \text{ Å}^{-1}$

 $\beta_{comp} = 1.36 \text{ Å}^{-1}$

Correlation between the electronic coupling energy and the electron-transfer distance.

Electron transfer between phenyl rings:

Interaction energy between a benzene ion and a neutral benzene.

Mo, et al., J. Chem. Theory Comput., 8(3), 800-805 (2012).

Correlation between the electronic coupling energy and the electron-transfer distance between an ionic benzene and a neutral benzene.

The ET reactions accompanied by nuclear rearrangements. Define a reaction coordinate Q_i

 $Q_i = \alpha Q_B + (1 - \alpha) Q_A$

Marcus hypothesized:

$$\Delta G^* = \Delta E_a + V_{AB} \approx \lambda / 4$$

Coupling energy V_{AB} , charge transfer barrier DE_a , and reorganization energy *I* (in eV) at several distances when the donor and acceptor groups are weakly coupled.

		Anion		Cation		
R (Å)	V_{AB}	ΔE_a	λ	V _{AB}	ΔE_a	λ
6.0	/	/	/	0.018	0.074	0.369
7.0	0.053	0.046	0.366	4.7×10 ⁻³	0.087	0.371
8.0	0.028	0.066	0.365	1.0×10 ⁻³	0.091	0.371
9.0	0.013	0.079	0.365	2.0×10-4	0.093	0.372
10.0	5.0×10 ⁻³	0.087	0.365	5.7×10 ⁻⁵	0.093	0.372

Summary

- BLW-ED can quantify the conjugation effect and explore its geometric and energetic impacts;
- BLW can uniquely define both the non-CT and CT states;
- The BLW-based two-state model can provides a quantitative means to derive the quantities in the Marcus-Hush theory;
- BLW results support the conventional view that the ethane rotation barrier comes from the steric repulsion;
- BLW computations disapproved the popular hyperconjugation explanation for the anomeric effect. Instead, alternative explanation such as the electrostatic model must be called.

Acknowledgements

Western Michigan University:

Dr. Lingchun Song; Dr. Yuchun Lin; Minghong Liu; Theresa B Obias; Kazuhito Nakashima; John F Beck; Changwei Wang.

University of Georgia: Prof. Paul R. Schleyer's group

Xiamen University (China): Profs. Wei Wu; Zexin Cao and their groups

Ecole Polytechnique Fédérale de Lausanne (Switzerland) Prof. Clémence Corminboeuf's group

University of Minnesota Prof. Jiali Gao's group

Philipps Universität Marburg (Germany) Prof. Gernot Frenking

\$\$ NSF; WMU; Keck Foundation \$\$