

Post-VBSCF Methods & VB Methods for Solvation Effect

Wei Wu Department of Chemistry Xiamen University

July 16, 2012 Paris

The tree of VB methods that are based on classical VB theory. Wu; Su; Shaik; Hiberty, Chem. Rev. 2011. 111, 7557-7593.

Outlines

Valence Bond Self-consistent Field (VBSCF)

Both structure coefficients and VB orbitals are optimized simultaneously to minimize the total energy.

VBSCF provides qualitative correct description for bond breaking/forming, but its accuracy is still wanting.

VBSCF takes care of the static correlation, but lacks dynamic correlation.

van Lenthe; Balint-Kurti, J. Chem. Phys. 1983, 78, 5699.

Breathing Orbital Valence Bond (BOVB)

The degree of freedom introduces dynamic correlation with very compact wave function. It improves considerably the accuracy of the results.

Levels: L-BOVB; D-BOVB; SL-BOVB; SD-BOVB.

Hiberty, et al. Chem. Phys. Lett. 1992, 189, 259.

molecule	$D^{ m HF}$	$D^{ m B3LYP}$	D ^{CCSD}	D ^{VBSCF}	$D^{ ext{L-BOVB}}$	D^{VBCIS}	D^{VBCISD}
H ₂	84.6	111.7	105.9	95.8	96.0	96.0(11)	105.9(55)
LiH	32.5	57.2	49.5	42.4	43.0	42.8(27)	49.6(118)
HF	94.9	132.4	127.2	105.1	115.9	25.0(40)	126.0(274)
HCl	77.6	103.1	99.1	85.8	89.9	92.0(40)	98.0(274)
F_2	-33.1	41.4	28.3	10.9	31.5	40.4(81)	33.9(1089)
Cl ₂	14.5	48.4	41.6	26.2	35.6	38.9(81)	42.1(1089)

TABLE 1: Bond Energies (*D*) with Various Methods(kcal/mol)

Post-HF in MO theory

For single-reference, post Hartree-Fock methods, such as CI, MP2, and CC;

For multi-reference, CASPT2, MRCI, etc.

Can we have post-VBSCF methods?

VBCI & VBPT2

$$\left| \Psi^{\text{Post-VBSCF}} \right\rangle = \left| \Psi^{\text{VBSCF}} \right\rangle + \sum_{R} C_{R} \left| \Phi_{R} \right\rangle$$

Φ_{R} Excited VB structures

How to define localized VB orbitals (HAOs)?

$$\{\chi_{\alpha}\} = \{\chi_1^A, \chi_2^A, \cdots, \chi_{m_A}^A; \chi_1^B, \chi_2^B, \cdots, \chi_{m_B}^B; \chi_1^C, \chi_2^C, \cdots, \chi_{m_C}^C; \cdots\}$$

A: atom or fragment

Localized occupied VB orbitals

$$\phi_i^A = \sum_{\beta} c^A_{\beta i} \chi^A_{\beta}$$

Occupied VB orbitals are obtained by VBSCF calculations. Virtual orbitals are not necessary in VBSCF.

How to define virtual orbitals?

Scheme 1: Schmidt Orthogonalization to occupied orbitals on their own fragments Scheme 2: Schmidt Orthogonalization to all occupied orbitals

$$\chi'_{\mu,A} = \left(\chi_{\mu} - S_{\mu\nu}T_{n}^{\mu}S^{nm}\phi_{m}\right)_{\mu,\nu\in A} \quad \chi'_{\mu} = \chi_{\mu} - S_{\mu\nu}T_{n}^{\mu}S^{nm}\phi_{m}$$

Localized Used in VBCI Delocalized Used in VBPT2 Note:

- Virtual basis functions are not linearly independent.
- To remove the redundant basis functions, one may diagonalize the overlap matrix of the transformed basis functions.

Virtual Orbitals from Scheme 1

Virtual Orbitals from Scheme 2

1. Valence Bond Configuration Interaction (VBCI)

Excited VB structures

$$\Psi^{\text{VBSCF}} = \sum_{K} C_{K}^{\text{SCF}} \Phi_{K}^{\text{SCF}}$$

An excited VB structure Φ_{K}^{i} is built from Φ_{K}^{SCF} by replacing occupied ϕ_{i}^{A} with virtual orbital ϕ_{α}^{A} .

 Φ_{K}^{i} and Φ_{K}^{SCF} describe the same classical VB structure.

By collecting all Φ_{K} , we have a wave function corresponding to VB structure *K*.

$$\Phi_{K}^{CI} = \sum_{i} C_{Ki}^{'} \Phi_{K}^{i}$$
Corresponding to a VB structure.

Condensed matrix elements and Weights

$$H_{KL}^{CI} = \sum_{i,j} C_{Ki} C_{Lj} \left\langle \Phi_{K}^{i} \left| H \right| \Phi_{L}^{j} \right\rangle$$
$$M_{KL}^{CI} = \sum_{i,j} C_{Ki} C_{Lj} \left\langle \Phi_{K}^{i} \left| \Phi_{L}^{j} \right\rangle$$
$$W_{K} = \sum_{i} W_{Ki}$$
$$W_{Ki} = \sum_{L,j} C_{Ki} \left\langle \Phi_{K}^{i} \left| \Phi_{L}^{j} \right\rangle C_{Lj}$$

All formulas are similar to those of VBSCF, and compact.

VBCI(A,I), A= D, S; I = D, S

A = Active electrons that are involved in a chemical process I = Inactive electrons that are NOT involved in ...

VBCI(D,D) = VBCISDVBCI(S,S) = VBCISVBCI(D,S)

The "inactive" electrons play an indirect role in a chemical process, and the dynamic correlation of inactive electrons is quasi constant during the process.

Davidson Correction of VBCISD

Size inconsistency problem is one of the most undesirable drawbacks in truncated CI methods.

$$\Delta E_Q = (1 - \sum_K W_K) \Delta E_D$$

to estimate the contribution of quadruple excitations that are product of double excitations

molecule	$D^{ m HF}$	$D^{ m B3LYP}$	D ^{CCSD}	D ^{VBSCF}	$D^{ ext{L-BOVB}}$	D^{VBCIS}	D^{VBCISD}
H ₂	84.6	111.7	105.9	95.8	96.0	96.0(11)	105.9(55)
LiH	32.5	57.2	49.5	42.4	43.0	42.8(27)	49.6(118)
HF	94.9	132.4	127.2	105.1	115.9	25.0(40)	126.0(274)
HC1	77.6	103.1	99.1	85.8	89.9	92.0(40)	98.0(274)
F ₂	-33.1	41.4	28.3	10.9	31.5	40.4(81)	33.9(1089)
Cl_2	14.5	48.4	41.6	26.2	35.6	38.9(81)	42.1(1089)

TABLE 1: Bond Energies (*D*) with Various Methods(kcal/mol)

Table 2. Weights of the VB structures for various VB methods

	H2	LiH	HF	HCl	F ₂	Cl ₂
VBSCF	0.8074	0.8919	0.5829	0.6708	0.7933	0.6949
	0.0963	0.0028	0.0106	0.0725	0.1033	0.1531
	0.0963	0.1053	0.4066	0.2567	0.1033	0.1520
BOVB	0.7606	0.8756	0.5182	0.6486	0.7012	0.6513
	0.1197	-0.0062	0.0637	0.0998	0.1494	0.1744
	0.1197	0.1306	0.4181	0.2516	0.1494	0.1744
VBCISD	0.7727	0.8799	0.5515	0.6547	0.7395	0.6637
	0.1137	-0.0137	0.0191	0.0847	0.1305	0.1681
	0.1137	0.1338	0.4293	0.2606	0.1300	0.1682

VBCI method provides significant improvement in accuracy from VBSCF method but still preserves the important feature of VB method.

		D _e (kcal/mol)				
bond	basis set	BOVB	VBCISD ^a	CCSD(T)	exptl	
F-F	6-31G*	36.2	32.3	32.8		
	cc-pVTZ	37.9	36.1	34.8	38.3	
Cl-Cl	6-31G*	40.0	41.6	40.5		
	cc-pVTZ	50.0	56.1	52.1	58.0	
Br–Br	6-31G*	41.3	44.1	41.2		
	cc-pVTZ	44.0	50.0	48.0	45.9	
F-Cl	6-31G*	47.9	49.3	50.2		
	cc-pVTZ	53.6	58.8	55.0	60.2	
H-H	6-31G**	105.4	105.4	105.9	109.6	
Li-Li	6-31G*	20.9	21.2	21.1	24.4	
H_3C-H	6-31G**	105.7	113.6	109.9	112.3	
H_3C-CH_3	6-31G*	94.7	90.0	95.6	96.7	
HO-OH	6-31G*	50.8	49.8	48.1	53.9	
H_2N-NH_2	6-31G*	68.5	70.5	66.5	75.4 ± 3	
H ₃ Si-H	6-31G**	93.6	90.2	91.8	97.6 ± 3	
H ₃ Si-F	6-31G*	140.4^{b}	151.1	142.6	160 ± 7	
H ₃ Si-Cl	6-31G*	102.1	101.2	98.1	113.7 ± 4	

Table 1. Bond Dissociation Energies Calculated with Valence Bond Methods¹⁸⁰

^{*a*} With Davidson correction.^{116 *b*} Two-structure calculations ($H_3Si^-F^+$ is omitted).

Hydrogen Abstraction Reactions

$$X \bullet + HX' -> XH + X' \bullet (X = X' = CH_3, SiH_3, GeH_3, SnH_3, PbH_3)$$

VB structures (3 electrons/3 orbitals system)

(X = X' = CH3, SiH3, GeH3, SnH3, PbH3)

Table 4. 6-31G^{*} Barriers for the Hydrogen Eaxhange Reactions, X[•] + X'H -> XH + X'• (X = CH₃, SiH₃, GeH₃, SnH₃, PbH₃) (kcal/mol)

Molecule	HF	CCSD	VBSCF	BOVB	VBCIS	VBCISD	VBCI(D,S)	VBCIPT
CH ₃	35.1	26.5	33.0	23.1	26.7(266)	25.8(4156)	28.8(2788)	25.5(765)
SiH ₃	25.2	19.3	25.5	19.1	19.2(266)	19.7(4156)	19.4(2788)	19.0(794)
GeH ₃	22.0	16.6	25.5	18.0	18.9(266)	18.1(4156)	17.9(2788)	17.0(791)
SnH ₃	18.5	13.5	20.5	14.9	15.5(266)	15.3(4156)	15.1(2788)	14.1(565)
PbH ₃	15.2	13.0	17.3	12.3	12.7(266)	12.5(4156)	12.3(2788)	11.5(573)
CH ₃ ^a							19.7(17.3)[17.7]	

The seven σ valence electrons are set into CI window, where three are active, and four are inactive.

This barrier was calculated with the mixed basis set and no valence orbitals are frozen. The result 19.7 is obtained with the set of 8 fundamental VB structures (Scheme 3). In parentheses is CCSD(T) barrier. In the square brackets is the result obtained by adding the VB structures that can be generated by admitting all the s-electrons (seven) into the active space. There are additional 32 structures and their effect was evaluated without orbital optimization.

(aug-cc-pVDZ for C, cc-pVDZ for the exchanged H atom and 6-31G for H atoms)

Summary 1

- VBCI method covers dynamic correlation with a minimal number of effective structures.
- The VBCIS results are in good agreement with those of BOVB.
- The VBCISD results match CCSD results.

2. Valence Bond Second Order Perturbation Theory (VBPT2) As one of post-VBSCF methods, VBCI incorporates dynamic correlation without further SCF procedure. However, though the VBCI space is much smaller than those

of MO-based methods. VBCI method is computational demanding.

Can we have a VB method that is accurate and cheap?

Valence Bond Second Order Perturbation Theory (VBPT2)

$$\left| \Psi \right\rangle = \left| \Psi^{(0)} \right\rangle + \left| \Psi^{(1)} \right\rangle \qquad \left| \Psi^{(0)} \right\rangle = \left| \Psi^{SCF} \right\rangle = \sum_{K} C_{K}^{SCF} \left| \Phi_{K} \right\rangle$$

$$\Psi^{(1)} = \sum_{R \in V_{SD}} C_{R}^{(1)} \left| \Phi_{R} \right\rangle$$

$$\left\langle \Psi^{(0)} \left| \Psi^{(1)} \right\rangle = 0 \qquad \left\langle \Psi^{(0)} \left| \Psi \right\rangle = 1$$

Excited VB structures:

Excited structures are generated from the VBSCF structures by replacing occupied orbitals with virtual orbitals.

Scheme 2 is used for virtual orbitals, which are not localized. Thus, excited structures are not "classical".

The zeroth-order Hamilton:

$$\hat{H}_{0} = \hat{P}_{0}\hat{F}\hat{P}_{0} + \hat{P}_{K}\hat{F}\hat{P}_{K} + \hat{P}_{SD}\hat{F}\hat{P}_{SD} + \cdots$$
$$\hat{F} = \sum_{i}\hat{f}(i)$$
$$\hat{f}(i) = \hat{h}(i) + \sum_{m,n} D_{mn}^{SCF}(\hat{J}_{nm}(i) - \hat{K}_{nm}(i))$$
$$f_{pq} = h_{pq} + \sum_{m,n} D_{mn}^{SCF} \left[\left(pq|mn \right) - \frac{1}{2} \left(pm|qn \right) \right]$$

The first-order wave function:

$$\Psi^{(1)} = \sum_{R \in V_{SD}} C_R^{(1)} \Big| \Phi_R \Big\rangle$$

$$\mathbf{C}^{(1)} = (\mathbf{H}_0^{11} - E^{(0)}\mathbf{M}^{11})^{-1}\mathbf{H}^{10}\mathbf{C}^{(0)}$$

$$(H_0^{11})_{RS} = \left\langle \Phi_R \left| \hat{H}_0 \right| \Phi_S \right\rangle$$

$$(H^{01})_{RR} = \left\langle \Phi_K \left| \hat{H} \right| \Phi_R \right\rangle$$

$$(H^{10})_{RK} = \left\langle \Phi_R \left| \hat{H} \right| \Phi_K \right\rangle$$

$$(M^{11})_{RS} = \left\langle \Phi_R \left| \Phi_S \right\rangle$$

The second-order energy:

$$E^{(2)} = \mathbf{C}^{(0)^{+}} \mathbf{H}^{01} (\mathbf{H}^{11}_{0} - E^{(0)} \mathbf{M}^{11})^{-1} \mathbf{H}^{10} \mathbf{C}^{(0)}$$

The most time-consuming part:

```
(\mathbf{H}_0^{11} - E^{(0)}\mathbf{M}^{11})^{-1}
```

which is block diagonalized, due to the block-orthogonality between different orbital blocks.

If the occupation numbers of inactive or virtual orbitals are different in the two excited structures, the corresponding matrix element is zero.

VBPT2 is much cheaper than VBCI.

Bond Dissociation Energy (Error to FCI)

The VBPT2 results are in very good agreement with CASPT2.

The VBPT2 results are in very good agreement with CASPT2.

Disadvantage of VBPT2

The dimension of excited VB structures increases dramatically, when the number of VB structures in VBSCF is large.

Solution

Internally contraction strategy

$$|\Psi\rangle = |\Psi^{(0)}\rangle + |\Psi^{(1)}\rangle$$
$$\Psi^{(0)}\rangle = |\Psi^{\text{SCF}}\rangle = \sum_{K} C_{K}^{(0)} |\Phi_{K}\rangle$$

The first-order wave function: a linear combination of the internally constracted excitated configurations.

$$\Psi^{(1)} \rangle = \sum_{pqrs} t_{pr}^{qs} |\Psi_{qs}^{pr}\rangle = \sum_{pqrs} t_{pr}^{qs} E_s^{\bullet r} E_q^{\bullet p} |\Psi^{(0)}$$

Spin averaged orbital excitation operator

$$E_q^{\bullet p} = a_{q\alpha}^+ a^{p\alpha} + a_{q\beta}^+ a^{p\beta}$$

The expansion coefficients of first-order wave function

 $\mathbf{t} = (\mathbf{H}_0^{11} - E^{(0)}\mathbf{M}^{11})^{-1}\mathbf{V}$

The second-order energy

 $E^{(2)} = \mathbf{V}^{+} (\mathbf{H}_{0}^{11} - E^{(0)} \mathbf{M}^{11})^{-1} \mathbf{V}$ $(H_{0}^{11})_{\alpha\beta} = \left\langle \Psi_{\alpha}^{(1)} \left| \hat{H}_{0} \right| \Psi_{\beta}^{(1)} \right\rangle$ $V_{\alpha} = \left\langle \Psi_{\alpha}^{(1)} \left| \hat{H} \right| \Psi^{(0)} \right\rangle$ $(M^{11})_{\alpha\beta} = \left\langle \Psi_{\alpha}^{(1)} \left| \Psi_{\beta}^{(1)} \right\rangle$

Various types of excitations

$$\begin{aligned} \left| \Psi_{xy}^{ij} \right\rangle &= E_{y}^{\bullet j} E_{x}^{\bullet i} \left| \Psi^{(0)} \right\rangle \\ \left| \Psi_{ta}^{ij} \right\rangle &= E_{a}^{\bullet j} E_{t}^{\bullet i} \left| \Psi^{(0)} \right\rangle \\ \left| \Psi_{ab}^{ij} \right\rangle &= E_{b}^{\bullet j} E_{a}^{\bullet i} \left| \Psi^{(0)} \right\rangle \\ \left| \Psi_{xy}^{ti} \right\rangle &= E_{x}^{\bullet i} E_{x}^{\bullet t} \left| \Psi^{(0)} \right\rangle \\ \left| \Psi_{ab}^{ti} \right\rangle &= E_{b}^{\bullet i} E_{a}^{\bullet t} \left| \Psi^{(0)} \right\rangle \\ \left| \Psi_{ab}^{ti} \right\rangle &= E_{b}^{\bullet i} E_{a}^{\bullet t} \left| \Psi^{(0)} \right\rangle \\ \left| \Psi_{ax}^{tu} \right\rangle &= E_{x}^{\bullet u} E_{a}^{\bullet t} \left| \Psi^{(0)} \right\rangle \end{aligned}$$

Singlet excitation operator

$$\left|\Psi_{ax}^{ti}\right\rangle = E_{x}^{\bullet i} E_{a}^{\bullet t} \left|\Psi^{(0)}\right\rangle$$

Orbitals:

Inactive. *i*, *j*, *k*, *l* (non-orthogonal) Active. *t*, *u*, *v*, *w*, *x*, *y*, *z* (non-orthogonal) Virtual. *a*, *b*, *c* Any. *p*, *q*, *r*, *s* Any occupied. *m*, *n*

$$\left\langle \Psi_{x_{1}y_{1}}^{y} \middle| \hat{H}_{0} \middle| \Psi_{x_{2}y_{2}}^{y} \right\rangle = \left(E_{inact}^{(0)} - \varepsilon_{i} - \varepsilon_{j} \right) \left\langle \Psi_{x_{1}y_{1}}^{y} \middle| \Psi_{x_{1}y_{2}}^{y} \right\rangle$$

$$+ \left\{ \left\{ 4 s_{x_{2}x_{1}} s_{y_{2}y_{1}} - 2 s_{y_{2}x_{1}} s_{x_{2}y_{1}} \right\} \right\} E_{act}^{(0)}$$

$$+ 4 f_{x_{2}x_{1}} s_{y_{2}y_{1}} + 4 f_{y_{2}y_{1}} s_{x_{2}x_{1}} - 2 f_{x_{2}y_{1}} s_{y_{2}x_{1}} - 2 f_{y_{2}x_{1}} s_{x_{2}y_{1}} \right)$$

$$+ \left[\left(f_{x_{1}} s_{x_{2}y_{1}} s_{y_{2}u} + f_{y_{1}} s_{y_{2}x_{1}} s_{x_{2}u} - 2 f_{x_{1}} s_{y_{2}y_{1}} s_{x_{2}u} - 2 f_{y_{2}x_{1}} s_{x_{2}y_{1}} \right)$$

$$+ \left[\left(f_{x_{2}} s_{y_{2}x_{1}} s_{y_{1}u} + f_{y_{2}} s_{x_{2}y_{1}} s_{x_{1}u} - 2 f_{x_{2}} s_{y_{2}y_{1}} s_{x_{1}u} - 2 f_{y_{2}y_{1}} s_{x_{1}u} s_{y_{2}t} \right)$$

$$+ \left(f_{y_{2}x_{1}} s_{y_{1}u} s_{x_{2}t} + f_{x_{2}y_{1}} s_{x_{1}u} s_{y_{2}t} - 2 f_{x_{2}x_{1}} s_{y_{1}u} s_{y_{2}t} - 2 f_{y_{2}y_{1}} s_{x_{1}u} s_{x_{2}t} \right] \right] D^{tu}$$

$$+ \left[f_{u} \left(s_{y_{2}x_{1}} s_{x_{2}v} s_{y_{1}w} + s_{x_{2}y_{1}} s_{y_{2}v} s_{x_{1}w} - 2 s_{y_{2}y_{1}} s_{x_{2}v} s_{x_{1}w} s_{y_{2}v} s_{y_{1}w} \right)$$

$$+ \left(f_{u} s_{x_{2}y_{1}} s_{y_{2}v} s_{y_{1}w} + s_{x_{2}y_{1}} s_{y_{2}v} s_{x_{1}w} + f_{x_{2}y_{2}y_{2}v} s_{x_{1}w} + f_{y_{2}y_{2}v} s_{x_{1}w} s_{y_{2}v} s_{x_{1}w} + f_{y_{2}y_{2}v} s_{x_{1}w} s_{y_{2}v} s_{y_{1}w} s_{y_{2}v} s_{y_{2}v} s_{x_{1}w} + f_{y_{2}y_{2}y_{2}v} s_{x_{1}w} s_{y_{2}v} s_{x_{1}w} s_{y_{2}v} s_{y_{1}w} s_{y_{1}w} \right] \right] D^{tw}$$

$$+ \left[f_{u} \left(s_{y_{2}x_{1}} s_{x_{2}v} s_{y_{1}w} + f_{y_{2}y_{1}} s_{y_{2}v} s_{x_{1}v} s_{y_{2}v} + f_{y_{2}y_{2}v} s_{x_{1}w} s_{y_{2}v} \right] \right] D^{tw}$$

$$+ \left[\left(f_{x_{2}} s_{y_{2}y_{1}} s_{x_{1}u} + f_{y_{2}y_{1}} s_{y_{2}v} - 2 s_{y_{2}x_{1}} s_{y_{2}v} - 2 f_{x_{2}x_{1}} s_{y_{2}v} s_{y_{1}w} s_{y_{2}v} \right] \right] D^{tw}$$

$$+ \left[\left(f_{y_{2}y_{1}} s_{x_{1}u} s_{y_{2}v} + f_{x_{1}} s_{y_{2}y_{1}} s_{y_{2}v} - 2 f_{y_{2}x_{1}} s_{y_{2}v} s_{y_{1}w} s_{y_{2}v} \right] \right] D^{tw}$$

$$+ \left[\left(f_{x_{2}} s_{y_{2}y_{1}} s_{x_{1}u} s_{x_{2}v} + f_{x_{1}} s_{y_{2}y_{1}} s_{y_{2}v} s_{x_{1}v} s_{y_{2}v} s_{x_{1}v} s_{y_{2}v}$$

The expressions for matrix elements are complicated.

In implementation, the following techniques are applied

- 1. Second Quantization Technique for nonorthogonal orbitals;
- 2. Tensor Analysis;
- 3. Automatic Formula/Code Generator.

Method	$r_e(a_0)$	$\omega_e(\text{cm}^{-1})$	D_e (kcal/mol)
FCI	1.405	4421	108.56
CASSCF ^a	1.427	4255	95.48
CASPT2N ^a	1.410	4407	105.40
VBSCF	1.429	4193	95.04
VBPT2	1.408	4376	106.30
icVBPT2	1.407	4379	106.09
VBCISD	1.405	4421	108.56
	VITA	C AN	//

Example 1. The Spectroscopic Constants of H₂

a. J. Phys. Chem., 1990, 94, 5483., where ANO(4s3p2d) basis set was used and orbitals $1\sigma_g$ and $1\sigma_u$ are taken as active orbitals.

Method	$r_e(a_0)$	$\omega_e (\mathrm{cm}^{-1})$	D_e (kcal/mol)
FCI ^a	2.123	2341	201.75
$VBSCF(17)^b$	2.109	2388	186.49
VBPT2(17) ^b	2.115	2373	194.21
icVBPT2(17) ^b	2.115	2367	195.25
VBSCF(175) ^c	2.114	2364	188.88
VBPT2(175) ^c	2.120	2344	197.72
icVBPT2(175) ^c	2.120	2345	197.65
VBCISD(17) ^b	2.121	2330	199.52
CASSCF ^d	2.119	2337	192.18
CASPT2N ^d	2.122	2342	198.82

Example 2. The Spectroscopic Constants of N₂

a. J. Chem. Phys. 86, 5595 (1987).

b. 17 fundamental VB structures are used.

c. 175 fundamental VB structures are used, but the orbitals are optimized using 17 VB structures.

d. J. Chem. Phys. 96, 1218 (1992).

Method	$r_{\rm e}(a_0)$	$\omega_{\rm e}({\rm cm}^{-1})$	D _e (kcal/mol)
VBSCF	2.784	552.7	10.05
VBPT2	2.683	905.3	35.72
icVBPT2	2.708	900.0	33.67
VBCISD	2.689	886.8	35.35
L-BOVB	2.700	892.7	33.32
CASSCF ^a	2.755	803.1	19.62
CASPT2 ^a	2.691	899.1	35.19
MRCI ^a	2.680	889.5	32.81
Expt ^b	2.668	917	38.0

Example 3. The Spectroscopic Constants of F₂

- a. The MOLPRO package is used for the CASSCF(2,2), CASPT2 and MRCI calculations. MOLPRO, version 2006.1, a package of ab initio programs, Werner, H.-J, etc.
- b. Chase, M. W. Jr. NIST-JANAF Thermochemical table, 4th ed,; J. Phys. Chem. Ref. Data, Monogr. 1998, 9, pp1-1951.

Example 4. Total energies (a.u.) of H_2O as a function of the symmetric stretching from the equilibrium OH distance R_e

Method	R _e	1.5^*R_e	2.0^*R_e	2.5^*R_e	$3.0^{*}R_{e}$	$8.0^{*}R_{e}$
FCI ^a	-76.2419	-76.0723	-75.9517	-75.9180	-75.9119	-75.9103
$CASSCF(8,6)^a$	0.1640	0.1500	0.1336	0.1263	0.1247	
$CASPT2^{a}$	0.0128	0.0108	0.0081	0.0080	0.0083	
VBSCF ^b	0.1857	0.1626	0.1380	0.1272	0.1250	0.1242
VBPT2(occ) ^c	0.0353	0.0374	0.0381	0.0394	0.0397	0.0397
VBPT2(all) ^d	0.0274	0.0266	0.0268	0.0283	0.0287	0.0287
icVBPT2	0.0201	0.0121	0.0093	0.0097	0.0099	0.0099

a. Olsen, J., Jorgensen, P., Koch, H., Balkova, A. Bartlett, R. J. J. Chem. Phys. 1996, 104, 8007.

- b. 20 structures are used in VB calculations.
- c. Only excitations from occupied orbitals to virtual ones are included.
- d. All excitations are included, involving excitations from inactive orbitals to active ones.

Summary 2

- icVBPT2 provides a cheaper ab initio VB tool to cover dynamical correlation.
- Test calculation shows that both VBPT2 and icVBPT2 results are in good agreement with CASPT2 ones.
- Due to the use of delocalized virtual orbitals, excited structures are not classically physical any more.

3. DFVB: A VB Method with Density Functional Energy Correction

DFT: Single reference based method VBSCF: lack of dynamic correlation

VB + DFT

From KS-DFT to DFVB

KS-DFT

$$E^{\text{KS-DFT}}(\rho) = T_{S}[\rho] + J[\rho] + E_{\text{Ne}}[\rho] + E_{\text{XC}}[\rho]$$
$$E_{\text{XC}} = (T[\rho] - T_{S}[\rho]) + (E_{\text{ee}}[\rho] - J[\rho])$$

DFVB

$$E^{\text{DFVB}}[\rho^{\text{VB}}] \approx E^{\text{VBSCF}} + E_{\text{C}}[\rho^{\text{VB}}]$$

Approximate

Problem: How to handle non-orthogonal VB orbitals in KS-DFT?

Problem: How to handle non-orthogonal VB orbitals in KS-DFT?

PEC of H₂ with Different Methods with cc-pVTZ

R_0 of diatomic molecules

Mol	Eve		BLYP			DFVB	
	схр	BJLTP		PVV91	VBSCF	LYP	PW
H ₂	0.741	0.002	0.006	0.008	0.015	0.008	0.010
HF	0.917	0.005	0.016	0.012	-0.003	-0.010	-0.013
HCI	1.275	0.006	0.015	0.012	0.011	-0.001	-0.003
Li ₂	2.673	0.028	0.038	0.054	0.272	0.157	0.197
N ₂	1.098	-0.007	0.005	0.003	-0.003	-0.012	-0.014
O ₂	1.208	-0.004	0.023	0.011	0.035	0.019	0.009
F ₂	1.412	-0.016	0.019	0.000	0.065	0.016	-0.011
Cl ₂	1.988	0.023	0.052	0.019	0.050	0.009	-0.016
CIF	1.628	0.012	0.044	0.022	0.031	-0.005	-0.023
NF	1.317	0.001	0.026	0.010	0.043	0.014	0.003
MAE		0.010	0.024	0.015	0.053	0.025	0.030

Frequency (ω_e) of diatomic molecules (Errors to experimental values)

ΜοΙ	Evn		BLYP	PW91		DFVB	
	Ехр	DJLTP			VDSCF	LYP	PW
H ₂	4401	18	-55	-69	-179	-92	-92
HF	4138	-13	-172	-116	15	122	177
HCI	2991	-20	-113	-69	-13	-4	63
Li ₂	351	-7	-18	-18	-88	-53	-59
N ₂	2359	91	-23	-1	14	73	95
O ₂	1580	56	-91	-31	-76	1	60
F ₂	917	139	51	90	-277	-135	-56
	560	-18	-55	-20	57	-15	15
CIF	786	3	-56	-19	-95	-35	6
NF	1141	16	-59	-8	-86	10	52
MAE		38	69	44	90	54	68

BDE of diatomic molecules (Errors to experimental values)

Mal	Р	D2I VD	BLYP	D\M/04	VBSCE -	DFVB		
IVIOI	D _e	BJLTP		PVV91	VBSCF	LYP	PW	
H ₂	109.5	3.7	0.0	-4.3	-14.6	9.4	6.0	
HF	141.3	-2.6	-1.2	0.5	-30.4	-4.9	-5.0	
HCI	106.4	-0.3	-1.1	1.0	-17.0	5.2	6.1	
Li ₂	24.4	-3.7	-3.9	-4.5	-14.6	1.7	-1.2	
N ₂	228.5	3.1	13.8	16.1	-67.3	-5.8	-10.1	
O ₂	120.3	4.3	17.7	25.4	-45.3	-11.2	-9.3	
F ₂	38.2	2.3	14.4	18.7	-25.7	-6.9	-7.4	
Cl ₂	58.0	-0.2	2.2	10.0	-21.0	-2.5	2.3	
CIF	60.2	2.4	8.9	14.5	-29.0	-8.6	-6.9	
NF	70.4	14.0	23.6	27.5	-32.0	-2.5	-3.3	
Au ₂	53.0	-10.6	-7.2	-3.0	-32.9	-18.6	-18.2	
MAE		4.3	8.5	11.4	30.0	7.0	6.9	

S-T energy gaps of diradical systems (Errors to experimental values)

Expt	Defe	CACDTO				DFVB		
	Reis	CASPIZ	BJLTP	BLTP	VBSCF	LYP	PW	
С	29.1 ^[1]	1.3 ^[5]	0.9	11.3	10.1	5.4	-4.5	-1.3
0	45.4 ^[1]	- 1 .6 ^[1]	0.9	17.0	15.5	4.9	-5.1	-1.7
O ₂	22.7 ^[2]	1.0 ^[6] /0.7 ^[7]	0.9	13.1	12.4	-2.4	-5.7	-5.1
NF	32.7 ^[3]	2.6 ^[3]	0.1	10.8	8.9	5.9	-3.0	-0.8
CH ₂	32.9 ^[1]	1.6 ^[5] /-1.3 ^[1]	-6.0	-25.5	-25.6	6.3	-7.0	-1.6
тмм	18.1 ^[4]	-0.3 ^[3]	2.0	25.7	16.6	3.4	-3.4	-0.4
MAE			1.8	17.2	14.9	4.7	4.8	1.8

[1] D.H. Ess, E.R. Johnson, X. Hu, et al., *J Phys Chem A*(2011) **115**(1), 76

[2] K.P. Huber and G. Herzberg, Constants of Diatomic Molecules, in Molecular Spectra

and Molecular Structure, V.N. Reinhold, Editor. 1979, New York

[3] G.S. Harbison, JAm Chem Soc(2001) 124(3), 366

[4] XZ Li and J. Paldus, J Chem Phys (2008) 129(17), 174101

[5] L.V. Slipchenko and A.I. Krylov, J Chem Phys (2002) 117(10), 4694

[6] J. Pittner, P. Čársky and I. Hubač, Int. J. Quantum Chem(2002) 90(3), 1031

[7] P. Su, L. Song, W. Wu, et al., J. Comput. Chem(2007) 28(1), 185.

Summary 3

- DFVB method incorporates VB method to density functional theory.
- Test calculations show that DFVB improves VBSCF results, and overcomes the difficulty of DFT for diradical systems.
- Double-counting problem still exists and need to be corrected.

4. Valence Bond Polarizable Continuum Model (VBPCM) Method

VBPCM Method

Solvation effects play a very important role in molecular energy, structures, and properties.

PCM is an efficient and economical tool for describing solvation problems.

The solvent is usually represented as a homogeneous medium that is characterized by a single dielectric constant.

The QM packages of PCM are widely applied to study solvent effect in ab initio level.

The PCM Model

$$H^{0}\Psi^{0} = E^{0}\Psi^{0}$$
 In Vacuum:

$$(H^{0} + V_{R})\Psi = E\Psi$$
 In Solution:

$$V_{R} = V_{el} + V_{dis} + V_{rep}$$

Minimizing

$$G = \langle \Psi | H^{0} | \Psi \rangle + \langle \Psi | V_{R}^{"} | \Psi \rangle + \frac{1}{2} \langle \Psi | V_{R}^{'} (\Psi) | \Psi \rangle + V_{NN} + G_{nel}$$
$$\mathbf{F}^{\mathbf{S}} \mathbf{C} = \mathbf{S} \mathbf{C} \boldsymbol{\varepsilon}$$

As one of QM method, essentially, PCM can be applied to VB method by the same strategy.

The difference between VB and MO-based methods is the form of wave function.

VBPCM method incorporates PCM into VB method by using VB density for the solvent-solute interaction potential, instead of MO-based density.

J. Phys. Chem. A, 108, 6017-6024 (2004).

VBPCM Calculation

Dissociation of LiF

Vacuum

Water

Figure 1a. VBSCF/6-31G* dissociation energy profiles of LiF in vacuum. Adiabatic potentials are shown in bold curves. 1b. VBPCM//VBSCF/6-31G* dissociation energy profiles of LiF in H_2O .

Figure 3. Weights of VB structures of LiF. VBSCF/6-31G* weights are annotated with bold squares and VBPCM//VBSCF/6-31G* weights with triangles.

Dissociation of CH₃F (polar-covalent bond)

Figure 5. VBSCF/6-31G* and VBPCM//VBSCF/6-31G* weights of VB structures of CH_3F along the C-F dissociation coordinate. The curves in vacuum, CCI_4 , H_2O are annotated with bold squares, triangles and circles respectively.

Summary 4

• VBPCM method enables us to compute the energy profile of the full state as well as of individual VB structures. Thus, it provides qualitative insights into the solvent effects of chemical problems.

 One-electron density plays a role as a bridge between the VB and the PCM methods: More general VBPCM methods can be presented by combining different VB methods and solvent models.

More VB Methods for Solvation Effects

Valence Bond Solvation Model (VBSM)

Su; Wu; Kelly; Cramer; Truhlar, J. Phys. Chem. A, 2008, 112, 12761.

Valence Bond Effect Fragment Potential (VBEFP) Ying; Chang; Su; Wu, J. Phys. Chem., A, 2012, 116, 1846.

VB/EFP/PCM

Su; Ying; Wu, in preparation

Combined VB and MM method (VB/MM)

Shurki; Cromn, J. Phem. Chem. B, 2005, 109, 23638; Sharir-Ivry; Crown; Wu; Shurki, J. Phys. Chem. A, 2008, 112, 2489

Explicit Solvation VB Method

Braida; Hiberty, Int. J. Quant. Chem. 2010, 110, 571.
Acknowledgements

Xiamen Group:

Zhenhua Chen, Peifeng Su, Fuming Ying, Jinshuai Song, Xun Chen, Lingchun Song, Qianer Zhang

Collaborators:

Prof. S. Shaik (Hebrew University, Jerusalem) Prof. P. C. Hiberty (Université de Paris-Sud, Orsay) Prof. Y. Mo (Western Michigan University)

\$ Natural Science Foundation of China

Thank you! YUMVB

