Combined use of DFT based Reactivity Indices and the Noncovalent Interactions Index in the Study of Intermolecular Interactions

<u>F. De Profi</u> Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB) Pleinlaan 2 1050 Brussels, Belgium.

Vrije Universiteit Brussel

Outline

1. Introduction: Chemical Concepts from DFT

2. Divalent Compounds of Sn (Stannylenes): σ - and π -complexation

3. Halogen bonding: Hard and Soft Acids and Bases Perspective

4. Metallophilic Interactions in Dimers of N-Heterocyclic Carbene Copper, Silver and Gold Halides

5. Conclusions

1. Introduction: Chemical Concepts from DFT

Chemical reactivity: Effects of attacking molecule B on molecule A

1. Introduction: Chemical Concepts from DFT

Chemical reactivity: Effects of attacking molecule B on molecule A

Change of number of electrons and external potential of A

» Perturbations on the isolated molecule A: Modeling through Taylor series

- Initial stages of the chemical reaction (onset)
- Weak interactions

» Derivatives (response functions): interesting chemical quantities

$$= \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A} \Delta N_A + \frac{1}{2} \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A} (\Delta N_A)^2 + \dots$$

$$+\int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

$$+\frac{1}{2}\int\int\left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r})\delta v_A(\mathbf{r}')}\right]_{N_A}\Delta v_A(\mathbf{r})\Delta v_A(\mathbf{r}')d\mathbf{r}d\mathbf{r}'+\dots$$

$$= \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A} \Delta N_A + \frac{1}{2} \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A} (\Delta N_A)^2 + \dots$$

Electronic chemical potential $\mu_A = -$ electronegativity

$$+\int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

$$+\frac{1}{2}\int\int\left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r})\delta v_A(\mathbf{r}')}\right]_{N_A}\Delta v_A(\mathbf{r})\Delta v_A(\mathbf{r}')d\mathbf{r}d\mathbf{r}'+\dots$$

$$= \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A} \Delta N_A + \frac{1}{2} \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A} (\Delta N_A)^2 + \dots$$

$$+\int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

$$+\frac{1}{2}\int\int\left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r})\delta v_A(\mathbf{r}')}\right]_{N_A}\Delta v_A(\mathbf{r})\Delta v_A(\mathbf{r}')d\mathbf{r}d\mathbf{r}'+\dots$$

$$E_{A}[N_{A}^{0} + \Delta N_{A}, v_{A}^{0}(\mathbf{r}) + \Delta v_{A}(\mathbf{r})] - E_{A}[N_{A}^{0}, v_{A}^{0}(\mathbf{r})]$$

$$= \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A} \Delta N_A + \frac{1}{2} \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A} (\Delta N_A)^2 + \dots$$

chemical hardness η_A
$$+ \int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

$$1 \int \int \int \left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} dv_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

$$+\frac{1}{2}\int\int\left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r})\delta v_A(\mathbf{r}')}\right]_{N_A}\Delta v_A(\mathbf{r})\Delta v_A(\mathbf{r}')d\mathbf{r}d\mathbf{r}'+\dots$$

$$= \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A} \Delta N_A + \frac{1}{2} \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A} (\Delta N_A)^2 + \dots$$

$$+\int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

$$+\frac{1}{2}\int\int\left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r})\delta v_A(\mathbf{r}')}\right]_{N_A}\Delta v_A(\mathbf{r})\Delta v_A(\mathbf{r}')d\mathbf{r}d\mathbf{r}'+\dots$$

$$= \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A} \Delta N_A + \frac{1}{2} \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A} (\Delta N_A)^2 + \dots$$
$$+ \int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r}$$

$$+\int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})} \right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A} \right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

electron density $\rho_A(\mathbf{r})$
 $+ \frac{1}{2} \int \int \left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r}) \delta v_A(\mathbf{r}')} \right]_{N_A} \Delta v_A(\mathbf{r}) \Delta v_A(\mathbf{r}') d\mathbf{r} d\mathbf{r}' + \dots$

$$= \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A} \Delta N_A + \frac{1}{2} \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A} (\Delta N_A)^2 + \dots$$

$$+\int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

$$+\frac{1}{2}\int\int\left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r})\delta v_A(\mathbf{r}')}\right]_{N_A}\Delta v_A(\mathbf{r})\Delta v_A(\mathbf{r}')d\mathbf{r}d\mathbf{r}'+\dots$$

$$= \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A} \Delta N_A + \frac{1}{2} \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A} (\Delta N_A)^2 + \dots$$

$$+\int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

Fukui function $\mathbf{f}_A^{\pm}(\mathbf{r})$: electrophilic/nucleophilic reactivity
 $+\frac{1}{2}\int \int \left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r}) \delta v_A(\mathbf{r}')}\right]_{N_A} \Delta v_A(\mathbf{r}) \Delta v_A(\mathbf{r}') d\mathbf{r} d\mathbf{r}' + \dots$

$$= \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A} \Delta N_A + \frac{1}{2} \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A} (\Delta N_A)^2 + \dots$$

$$+\int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

$$+\frac{1}{2}\int\int\left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r})\delta v_A(\mathbf{r}')}\right]_{N_A}\Delta v_A(\mathbf{r})\Delta v_A(\mathbf{r}')d\mathbf{r}d\mathbf{r}'+\dots$$

$$= \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A} \Delta N_A + \frac{1}{2} \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A} (\Delta N_A)^2 + \dots$$

$$+\int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

$$+\frac{1}{2} \int \int \left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r}) \delta v_A(\mathbf{r}')} \right]_{N_A} \Delta v_A(\mathbf{r}) \Delta v_A(\mathbf{r}') d\mathbf{r} d\mathbf{r}' + \dots$$

linear response function $\chi_A(\mathbf{r},\mathbf{r}')$

 $E_{A}[N_{A}^{0} + \Delta N_{A}, v_{A}^{0}(\mathbf{r}) + \Delta v_{A}(\mathbf{r})] - E_{A}[N_{A}^{0}, v_{A}^{0}(\mathbf{r})]$

$$= \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A} \Delta N_A + \frac{1}{2} \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A} (\Delta N_A)^2 + \dots$$

$$+\int \left[\frac{\delta E_A}{\delta v_A(\mathbf{r})}\right]_{N_A} \Delta v_A(\mathbf{r}) d\mathbf{r} + \int \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] \Delta N_A \Delta v_A(\mathbf{r}) d\mathbf{r} + \dots$$

$$+\frac{1}{2}\int\int\left[\frac{\delta^2 E_A}{\delta v_A(\mathbf{r})\delta v_A(\mathbf{r}')}\right]_{N_A}\Delta v_A(\mathbf{r})\Delta v_A(\mathbf{r}')d\mathbf{r}d\mathbf{r}'+\dots$$

Perturbational perspective on chemical reactivity

Ayers, P. W.; Anderson, J. S. M. Bartolotti, L. J. Int.J.Quantum Chem. 2005, 101, 520.

» Perturbation series : commonly truncated at second order :

$$E_{A}[N_{A}^{0} + \Delta N_{A}, v_{A}^{0}(\mathbf{r}) + \Delta v_{A}(\mathbf{r})] = E_{A}[N_{A}^{0}, v_{A}^{0}(\mathbf{r})] + \mu_{A}\Delta N_{A} + \eta_{A}(\Delta N_{A})^{2} + \int \rho_{A}((\mathbf{r})\Delta v_{A}(\mathbf{r})d\mathbf{r} + \int f_{A}(\mathbf{r})\Delta N_{A}\Delta v_{A}(\mathbf{r})d\mathbf{r} + \frac{1}{2}\int \int \chi_{A}(\mathbf{r}, \mathbf{r}')\Delta v_{A}(\mathbf{r})\Delta v_{A}(\mathbf{r}')d\mathbf{r}d\mathbf{r}'$$

» However: sometimes also third order properties important:

$$f_A^2(\mathbf{r}) = \left(\frac{\partial f_A(\mathbf{r})}{\partial N_A}\right)_{v_A} = \left(\frac{\delta \eta_A}{\delta v_A(\mathbf{r})}\right)_{N_A}$$

• Dual descriptor

(Morell, C.; Grand, A.; Toro-Labbé, A J. Phys. Chem. A 2005, 109, 205.)

» However: sometimes also third order properties important:

$$f_A^2(\mathbf{r}) = \left(\frac{\partial f_A(\mathbf{r})}{\partial N_A}\right)_{v_A} = \left(\frac{\delta \eta_A}{\delta v_A(\mathbf{r})}\right)_{N_A}$$

• Dual descriptor

(Morell, C.; Grand, A.; Toro-Labbé, A J. Phys. Chem. A 2005, 109, 205.)

- Rationalization of Woodward-Hoffmann rules for pericyclic reactions in DFT context
- De Proft, F.; Ayers, P.W.; Fias, S.; Geerlings, P. J.Chem. Phys. 2006, 125, 214101.
- Ayers, P.W.; C. Morell, C.; De Proft, F.; Geerlings, P. Chem. Eur. J. 2007, 13, 8240.
- De Proft, F.; Chattaraj, P. K.; Ayers, P. W.; Torrent-Sucarrat, M.; Elango, E.; Subramanian, V.; Giri, S.; Geerlings, P. J.Chem. Theor. Comput. **2008**, *4*, 595 (2008)
- Sablon, N.; De Proft, F.; Geerlings P. Croat. Chem. Acta 2009, 82, 157.
- Jaque, P.; Correa, J. V.; De Proft, F.; Toro-Labbé, A.; Geerlings, P. Can. J. Chem. 2010, 88, 858.
- Geerlings, P.; Ayers, P. W.; Toro-Labbé, A; Chattaraj, P. K.; De Proft, F. Acc. Chem. Res. 2012, 55, 683.

Also : justification for a series of chemical principles :

- » Electronegativity Equalization Principle (Sanderson)
- » Hard and Soft Acids and Bases (HSAB) Principle (Pearson)
- » Maximum Hardness Principle (Pearson)

Also : justification for a series of chemical principles :

» Electronegativity Equalization Principle (Sanderson)

» Hard and Soft Acids and Bases (HSAB) Principle (Pearson)

» Maximum Hardness Principle (Pearson)

Conceptual Density Functional Theory (R. G. Parr)

(a) Parr, R. G. ; Yang, W. Ann. Rev. Phys. Chem. 1995, 46, 701.

(b) Kohn, W. ; Becke, A. D. ; Parr, R. G. J. Phys. Chem. 1996, 100, 12974.

- (c) Geerlings, P.; De Proft, F.; Langenaeker, W. Adv. Quant. Chem. 1999, 33, 303.
- (d) Chermette, H. J. Comput. Chem. 1999, 20, 129.
- (e) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793.
- (f) Ayers, P. W. ; Anderson, J. S. M. ; Bartolotti, L. J. Int. J. Quantum Chem. 2005, 101, 520.
- (g) Geerlings, P. ; De Proft, F. Phys. Chem. Chem. Phys. 2008, 10, 3028
- (h) Liu, S. B. Acta Phys. Chim. Sin. 2009, 25, 590.
- (i) Gazquez, J. L. J. Mexican Chemical Soc. 2008, 52, 3.

» This talk: use of DFT reactivity concepts and complementary quantities to study intermolecular interactions

» Charge transfer component (orbital interaction):

• Global quantities: chemical potential, chemical hardness

electrophilicity:
$$\omega = \frac{\mu^2}{2\eta}$$

• Local quantities: Fukui function, dual descriptor, local electrophilicity

local softness:
$$s(\mathbf{r}) = Sf(\mathbf{r})$$

Global softness: $S = \frac{1}{\eta}$

(intermolecular comparison)

• Natural Orbitals for Chemical Valence (NOCV)

Natural Orbitals for Chemical Valence (NOCV)

» Constructed by diagonalization of deformation density matrix

» In the NOCV representation, the deformation density $\Delta\rho({\bf r})$ can be expressed as:

$$\Delta \rho(\mathbf{r}) = \sum_{k=1}^{N/2} \nu_k [\Psi_k^2(\mathbf{r}) - \Psi_{-k}^2(\mathbf{r})] = \sum_{k=1}^{N/2} \Delta \rho_k(\mathbf{r})$$

Michalak, A.; Mitoraj, M.; Ziegler, T. J. Phys. Chem. A **2008**, *112*, 1933

Mitoraj, M; Michalak, A.; Ziegler, T. J. Chem. Theor. Comput. 2009, 5, 962.

» Electrostatic component:

• Molecular electrostatic potential (MEP):

$$V(\mathbf{r}) = \sum_{A} \frac{Z_A}{|\mathbf{r} - \mathbf{R}_A|} - \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

Approximation to local hardness

Calculation of these quantities

» Electronic chemical potential (- electronegativity):

$$\mu_A = -\chi_A = \left(\frac{\partial E_A}{\partial N_A}\right)_{v_A}$$

» Chemical hardness:

$$\eta_A = \left(\frac{\partial \mu_A}{\partial N_A}\right)_{v_A} = \left(\frac{\partial^2 E_A}{\partial N_A^2}\right)_{v_A}$$

» Fukui function:

$$f_A(\mathbf{r}) = \left[\frac{\delta \partial E_A}{\delta v_A(\mathbf{r}) \partial N_A}\right] = \left(\frac{\delta \mu_A}{\delta v_A(\mathbf{r})}\right)_{N_A} = \left(\frac{\partial \rho_A(\mathbf{r})}{\partial N_A}\right)_{v_A}$$

» Perdew, Parr, Levy and Balduz : dependence of electronic energy E on the number of electrons N

Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, Jr., J. L. Phys. Rev. Lett. 1982, 49, 1691.

» Plot of E versus N: series of straight line segments, with derivative discontinuities at the integer values of N

» These manifest themselves as integer discontinuities in the exact exchange-correlation potential

» As a result, the exchange-correlation potentials on the electron deficient and electron abundant sides of the integer, denoted $v_{\rm XC}^-$ and $v_{\rm XC}^+$, respectively, will differ by some system-dependent positive constant $\Delta_{\rm XC}$

$$v_{\rm XC}^+ - v_{\rm XC}^- = \Delta_{\rm XC}$$

» Using the fact that the E is linear with respect to N and Janak's theorem, the orbital energies of the N-f and N+f electron system become equal to the exact ground state vertical ionization energy and electron affinity respectively

$$\begin{aligned} \mu^{-} &= \frac{\partial E}{\partial N} \Big|_{N-f} = \epsilon_{N}(N-f) = -I^{0} \\ \mu^{+} &= \frac{\partial E}{\partial N} \Big|_{N+f} = \epsilon_{N+1}(N+f) = -A^{0} \end{aligned}$$
 where $0 < f < 1$

» Using the fact that the E is linear with respect to N and Janak's theorem, the orbital energies of the N-f and N+f electron system become equal to the exact ground state vertical ionization energy and electron affinity respectively

$$\begin{split} \mu^{-} &= \frac{\partial E}{\partial N} \Big|_{N-f} = \epsilon_{N}(N-f) = -I^{0} \\ \mu^{+} &= \frac{\partial E}{\partial N} \Big|_{N+f} = \epsilon_{N+1}(N+f) = -A^{0} \end{split} \text{ where } 0 < f < 1 \end{split}$$

» In practical applications, one uses the average of both quantities as the estimate of the chemical potential of the system

$$\mu^0 = \frac{\mu^- + \mu^+}{2} = -\frac{I^0 + A^0}{2}$$

» Using the fact that the E is linear with respect to N and Janak's theorem, the orbital energies of the N-f and N+f electron system become equal to the exact ground state vertical ionization energy and electron affinity respectively

$$\begin{split} \mu^{-} &= \frac{\partial E}{\partial N} \Big|_{N-f} = \epsilon_{N}(N-f) = -I^{0} \\ \mu^{+} &= \frac{\partial E}{\partial N} \Big|_{N+f} = \epsilon_{N+1}(N+f) = -A^{0} \end{split} \text{ where } 0 < f < 1 \end{split}$$

» In practical applications, one uses the average of both quantities as the estimate of the chemical potential of the system

$$\mu^0 = \frac{\mu^- + \mu^+}{2} = -\frac{I^0 + A^0}{2}$$

» Since $\,\mu=-\chi\,$, this approximation reduces to the Mulliken definition for the electronegativity

» Within the ensemble approach, the hardness would be zero for non-integer N and undefined for integer values of the electron number

» One obtains values for this concept for integer N using a finite difference approximation of the chemical potentials μ^+ and μ^- , i.e.

$$\eta^0 \equiv \frac{1}{2}(\mu^+ - \mu^-) = \frac{1}{2}(-A^0 + I^0) = \frac{I^0 - A^0}{2}$$

» Within the ensemble approach, the hardness would be zero for non-integer N and undefined for integer values of the electron number

» One obtains values for this concept for integer N using a finite difference approximation of the chemical potentials μ^+ and μ^- , i.e.

$$\eta^0 \equiv \frac{1}{2}(\mu^+ - \mu^-) = \frac{1}{2}(-A^0 + I^0) = \frac{I^0 - A^0}{2}$$

» this is the original Parr and Pearson definition of the absolute hardness

» Within the ensemble approach, the hardness would be zero for non-integer N and undefined for integer values of the electron number

» One obtains values for this concept for integer N using a finite difference approximation of the chemical potentials μ^+ and μ^- , i.e.

$$\eta^0 \equiv \frac{1}{2}(\mu^+ - \mu^-) = \frac{1}{2}(-A^0 + I^0) = \frac{I^0 - A^0}{2}$$

» this is the original Parr and Pearson definition of the absolute hardness

» these estimates can also be obtained by assuming a quadratic relationship between E and N, for which arguments can be given (Ayers et al.)

» Alternative, often used approximations :

$$\mu^0 \approx \frac{\epsilon_{\rm HOMO} + \epsilon_{\rm LUMO}}{2}$$

$$\eta^0 \approx \frac{\epsilon_{\rm LUMO} - \epsilon_{\rm HOMO}}{2}$$

- originates from Koopmans' theorem
- use of Kohn-Sham HOMO and LUMO orbital energies

 $Q = \rho(\mathbf{r})$

» PPLB also showed that the electron density entering the definition of the energy functional for a non-integer number of electrons is also an ensemble sum

$$\rho_{N+f} = (1 - f)\rho_N + f\rho_{N+1}$$

again with 0 < f < 1

» The Fukui functions can thus be computed as

$$f_A^+(\mathbf{r}) = \rho_{A,N+1}(\mathbf{r}) - \rho_{A,N}(\mathbf{r})$$
 nucleophilic attack

 $f_A^-(\mathbf{r}) = \rho_{A,N}(\mathbf{r}) - \rho_{A,N-1}(\mathbf{r})$ electrophilic attack

» Recently: analytic evaluation

Yang, W.; Cohen, A. J.; De Proft, F.; Geerlings, P. J. Chem. Phys. 2012, 136, 144110.

Fukui function :

» Nucleophilic attack :
$$f_A^+(\mathbf{r}) = \left(\frac{\partial \rho_A(\mathbf{r})}{\partial N}\right)_v^+ = \rho_{A,N+1}(\mathbf{r}) - \rho_{A,N}(\mathbf{r})$$

Condensed Fukui function (on atom k):

$$f_{A,k}^+ = N_{A,N+1,k} - N_{A,N,k}$$

Frontier MO approximation (no orbital relaxation)

$$f_A^+(\mathbf{r}) \cong \left| \phi_{LUMO,A}(\mathbf{r}) \right|^2$$

» Electrophilic attack :

:
$$f_A^-(\mathbf{r}) = \left(\frac{\partial \rho_A(\mathbf{r})}{\partial N}\right)_v^- = \rho_{A,N}(\mathbf{r}) - \rho_{A,N-1}(\mathbf{r})$$

Condensed Fukui function (on atom k):

$$\boldsymbol{f}_{\!\boldsymbol{A},\boldsymbol{k}}^- = \boldsymbol{N}_{\!\boldsymbol{A},N,\boldsymbol{k}} - \boldsymbol{N}_{\!\boldsymbol{A},N-1,\boldsymbol{k}}$$

Frontier MO approximation (no orbital relaxation)

$$f_A^-(\mathbf{r}) \cong \left|\phi_{HOMO,A}(\mathbf{r})\right|^2$$

Local softness: $s^-(\mathbf{r}) = Sf^-(\mathbf{r})$

$$s^+(\mathbf{r}) = Sf^+(\mathbf{r})$$

Local electrophilicity: $\omega(\mathbf{r}) = \omega f^+(\mathbf{r})$
Non-covalent interaction index

» Plots of reduced density gradient *s* vs. electron density

$$s = \frac{1}{(2(3\pi^2)^{1/3})} \frac{|\nabla\rho|}{\rho^{4/3}}$$

» Weakly bound complex: signal in low gradient-low density region

» Distinguishing interaction types: eigenvalues of electron density Hessian (Laplacian):

$$abla^2
ho = \lambda_1 + \lambda_2 + \lambda_3 \qquad (\lambda_1 \le \lambda_2 \le \lambda_3)$$

» Sign of λ_2 : bonded ($\lambda_2 < 0$) vs. nonbonded interactions ($\lambda_2 > 0$)

Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-Garcia, J.; Cohen, A.; Yang, W. J. Am. Chem. Soc. **2010**, 132, 6498.

Complexation energies

» BSSE corrected MP2 interaction energies

» DFT interaction energies (+ empirical dispersion correction)

» Ziegler-Rauk type energy decomposition: $\Delta E = \Delta E_{\text{prep}} + \Delta E_{\text{int}}$

with:
$$\Delta E_{\text{int}} = \Delta E_{\text{Pauli}} + \Delta E_{\text{elec}} + \Delta E_{\text{oi}} + \Delta E_{\text{disp}}$$

2. Divalent compounds of Sn (stannylenes): σ - and π -complexation

» Singlet stannylenes: complexation by σ - or π - donors

- » Strength of the σ -vs. (possible ?) π -complexations
- » Correlation with molecular properties: electrophilicity of M

Reactivity indices (1)

» Global electrophilicities ω and nucleophilicities $\omega^{-}(kcalmol^{-1})$

molecule	ω	ω^{-}	molecule	ω	ω^{-}
GeI ₂	46.5	4.9			
GeBr ₂	44.9	4.6	SnBr ₂	45.2	4.7
GeCl ₂	43.6	4.4	SnCl ₂	44.4	4.5
GeF ₂	41.1	3.8	SnF_2	42.0	4.1
GeH ₂	39.3	5.3	SnH_2	37.9	5.8
$Ge(CH_3)_2$	29.0	7.2	$Sn(CH_3)_2$	30.0	7.2
$Ge(OCH_3)_2$	27.6	6.9	$Sn(OCH_3)_2$	29.7	6.8

- Most electrophilic: halogenated compounds
- Sequence: (I) > Br > Cl > F

Reactivity indices (2)

» Local electrophilicities on the metal center k: $\omega_k{}^{\scriptscriptstyle -}$

molecule	atom k	$\omega_{\rm k}^+$	molecule	atom k	$\omega_{ m k}^+$
GeI ₂	Ge	30.0			
	Ι	8.3			
GeBr ₂	Ge	32.0	SnBr ₂	Sn	35.6
	Br	6.5		Br	4.8
GeCl ₂	Ge	34.0	SnCl ₂	Sn	37.3
	Cl	4.8		Cl	3.6
GeF ₂	Ge	37.7	SnF_2	Sn	39.7
	F	1.7		F	1.1
GeH ₂	Ge	41.0	SnH_2	Sn	39.9
	Н	-0.8		Н	-1.0
$Ge(CH_3)_2$	Ge	24.0	$Sn(CH_3)_2$	Sn	26.1
	С	-0.9		С	-0.9
	H^*	1.1		H^*	1.0
$Ge(OCH_3)_2$	Ge	22.8	$Sn(OCH_3)_2$	Sn	25.7
	0	0.9		0	0.4
	С	-0.2		С	-0.2
	H*	0.6		H*	0.6

» Halogenated compounds still most electrophilic but F > Cl > Br (> I)

Complexation energies (1)

» Some selected complexation energies of most electrophilic species SnF₂

σ-complexations (kcal mol⁻¹):

Complexation energies (2)

π -complexations: (kcal mol⁻¹) $\Delta E_{\text{complexation}}$ Lewis base Nitrobenzene $\cdot NO_2$ -0.8 Pyridine -2.8Benzene -4.4CH₃ Toluene -4.8-OCH₃ Anisole -5.0Pyrrole -7.4

Geometries

» π -complex geometries:

Broeckaert, L.; Geerlings, P.; Růžička, A.; Willem, R.; De Proft, F. Organometallics **2012**, *31*, 1605.

Natural Orbitals for Chemical Valence (NOCV)

Broeckaert, L.; Frenking, G.; De Proft, F., in preparation

Energy contributions (kcal mol⁻¹**)**

Lewis base	ΔE	Pauli	$\Delta V_{\rm el}$	stat	ΔF	E _{oi}	$\Delta E_{\rm int}$	ΔE
THF	49	9.8	-42.3	(64)	-24.1	(36)	-16.5	-15.2
Anisole	22	2.1	-15.6	(55)	-13.1	(45)	-6.6	-6.2
eraction		Lew	vis base	$\% \sigma$	$\% \pi$	% rest		
		TH	=	69	23	8		
		Anis	sole	0	74	26		
	Lewis base THF Anisole eraction ons:	Lewis base ΔE THF 49 Anisole 22 eraction ons:	Lewis base ΔE_{Pauli} THF 49.8 Anisole 22.1 eraction ons: THI Anisole 21.1 eraction Anisole Anisole Eraction	Lewis base ΔE_{Pauli} ΔV_{el} THF49.8-42.3Anisole22.1-15.6eraction ons:Lewis baseTHFAnisole	Lewis base ΔE_{Pauli} ΔV_{elstat} THF49.8-42.3 (64)Anisole22.1-15.6 (55)eraction ons:Lewis base% σ THF69Anisole0	Lewis base ΔE_{Pauli} ΔV_{elstat} ΔE_{Pauli} THF49.8-42.3 (64)-24.1Anisole22.1-15.6 (55)-13.1eraction ons:Lewis base $\% \sigma$ $\% \pi$ THF6923Anisole074	Lewis base ΔE_{Pauli} ΔV_{elstat} ΔE_{oi} THF 49.8 -42.3 (64) -24.1 (36) Anisole 22.1 -15.6 (55) -13.1 (45) Peraction ons: Lewis base $\% \sigma$ $\% \pi$ $\%$ rest THF 69 23 8 Anisole 0 74 26	Lewis base ΔE_{Pauli} ΔV_{elstat} ΔE_{oi} ΔE_{int} THF 49.8 -42.3 (64) -24.1 (36) -16.5 Anisole 22.1 -15.6 (55) -13.1 (45) -6.6 Peraction ons: Image: Compare the second sec

Broeckaert, L.; Frenking, G.; De Proft, F., in preparation

Experimental evidence for π **-complexation:** NMR chemical shifts

» Stannylene: Sn{N[Si(CH₃)₃]₂}₂ (Lappert)

» Measurement & computation of ¹¹⁹Sn chemical shifts in different solvents

Geometries of 1/1 Sn{N[Si(CH₃)₃]₂}-solvent(donor) complexes

Sn{N[Si(CH₃)₃]₂}-cyclohexane

 $Sn{N[Si(CH_3)_3]_2}-benzene$

 $Sn{N[Si(CH_3)_3]_2}-toluene$

 $Sn{N[Si(CH_3)_3]_2}-THF$

 $Sn{N[Si(CH_3)_3]_2}-pyridine$

	$\delta^{119} {\sf Sn/ppm}$			
Solvent (donor)	A	В	Exptl	
$cyclohexane-d_{12}$	677	794	779	
benzene- d_6	641	740	767	
toluene- d_8	645	758	770	
THF - d_8	397	440	602	
pyridine- d_5	130	96	145	

A: calculated ¹¹⁹Sn NMR chemical shifts (in ppm) of optimized 1/1 stannylene-donor complexes

B: calculated ¹¹⁹Sn NMR chemical shifts (in ppm) of the optimized 1/1 stannylene-donor complexes in a COSMO solvent model with the corresponding dielectric constant of the donor (solvent) molecule

Broeckaert, L.; Turek, J.; Olejník, R.; Růžička, A.; Biesemans, M.; Geerlings, P.; Willem, R.; De Proft, F. Organometallics **2013**, *32*, 2121.

A: calculated ¹¹⁹Sn NMR chemical shifts (in ppm) of optimized 1/1 stannylene-donor complexes

B: calculated ¹¹⁹Sn NMR chemical shifts (in ppm) of the optimized 1/1 stannylene-donor complexes in a COSMO solvent model with the corresponding dielectric constant of the donor (solvent) molecule

Broeckaert, L.; Turek, J.; Olejník, R.; Růžička, A.; Biesemans, M.; Geerlings, P.; Willem, R.; De Proft, F. Organometallics **2013**, *32*, 2121.

A: calculated ¹¹⁹Sn NMR chemical shifts (in ppm) of optimized 1/1 stannylene-donor complexes

B: calculated ¹¹⁹Sn NMR chemical shifts (in ppm) of the optimized 1/1 stannylene-donor complexes in a COSMO solvent model with the corresponding dielectric constant of the donor (solvent) molecule

Broeckaert, L.; Turek, J.; Olejník, R.; Růžička, A.; Biesemans, M.; Geerlings, P.; Willem, R.; De Proft, F. Organometallics **2013**, *32*, 2121.

A: calculated ¹¹⁹Sn NMR chemical shifts (in ppm) of optimized 1/1 stannylene-donor complexes

B: calculated ¹¹⁹Sn NMR chemical shifts (in ppm) of the optimized 1/1 stannylene-donor complexes in a COSMO solvent model with the corresponding dielectric constant of the donor (solvent) molecule

Broeckaert, L.; Turek, J.; Olejník, R.; Růžička, A.; Biesemans, M.; Geerlings, P.; Willem, R.; De Proft, F. Organometallics **2013**, *32*, 2121.

3. Halogen Bonding: HSAB Perspective

» Interaction between a halogen atom (Lewis acid) and a Lewis Base:

 $A - X \cdots D$

A: Electron withdrawing group (Acceptor)

X: Halogen

D: Lewis base (Donor)

» cf. Hydrogen bonding: $A - H \cdots D$

» Applications in many fields such as e.g. supramolecular chemistry, ...

» Fundamental characteristics: σ -hole electrostatic potential

» Also: charge transfer contribution to interaction energy

» This study: importance of electrostatic (hard) and orbital overlap contributions (soft)

» Analysis of different halogen bonded complexes with varying softness of donor and acceptor atoms:

Interaction energies/kJ mol⁻¹

	ΔE_{DFT}	ΔE_{MP2}	$\Delta H^{o}_{calc}(LNg)$	$\Delta H^{o}_{exp}(LNg)$
CF₃CI·DME	-12.4	-11.2	-5.1	-6.3(3)
CF₃Br·DME	-17.6	-16.1	-11.1	-10.2(1)
CF ₃ I·DME	-24.0	-21.5	-17.6	-15.5(1)
CF₃CI·DMS	-13.7	-11.2	-4.0	n.a.
CF₃Br·DMS	-20.8	-16.5	-9.4	-9.5(5)
CF₃I·DMS	-30.8	-23.0	-15.2	-17.4(1)
CF ₃ CI·TMA	-18.9	-15.2	-7.0	-8.9(2)
CF₃Br·TMA	-30.2	-25.0	-18.6	-18.3(1)
CF₃I·TMA	-44.0	-37.1	-31.9	-28.7(1)
CF₃CI·TMP	-11.8	-8.9		
CF₃Br·TMP	-20.7	-15.0		
CF ₃ I∙TMP	-35.4	-23.3		

 ΔE_{DFT} : PBE(ZORA)/TZ2P//MP2/aug-cc-pVDZ(-PP) + Grimme dispersion correction

ΔE_{MP2}: MP2/aug-cc-pVTZ(-PP)//MP2/aug-cc-pVDZ(-PP)

 ΔH°_{calc} (LNg) ΔE_{MP2} + Monte Carlo Free Energy Perturbation calculations coupled with statistical thermodynamics

Reactivity indices

	A [eV]	I [eV]	S [1/eV]	q(X)	<i>f</i> +(X)	<i>s</i> +(X)
CF ₃ CI	-2.942	13.131	0.062	-0.016	0.956	0.060
CF ₃ Br	-1.822	12.044	0.072	0.020	0.947	0.068
CF ₃ I	-0.603	10.812	0.088	0.038	0.935	0.082
	A [eV]	I [eV]	S [1/eV]	q(A)	<i>f</i> -(A)	<i>s</i> -(A)
DME	-0.669	10.542	0.089	-0.337	0.497	0.044
DMS	-0.862	8.807	0.103	-0.221	0.693	0.072
TMA	-0.640	8.838	0.106	-0.330	0.719	0.076
TMP	-0.642	8.639	0.108	-0.263	1.005	0.108

Decomposition of DFT Interaction energies/kJ mol⁻¹

	ΔE_{Pauli}	ΔV_{elstat}	ΔE_{oi}	ΔE_{disp}	ΔE_{DFT}
CF ₃ CI·DME	14.1	-15.4 (66)	-7.2 (34)	-5.0	-12.4
CF₃Br·DME	24.6	-24.1 (66)	-12.7 (34)	-5.4	-17.6
CF ₃ I·DME	38.0	-35.9 (64)	-20.3 (36)	-5.7	-24.0
CF ₃ CI·DMS	14.9	-13.4 (58)	-9.7 (42)	-5.4	-13.7
CF₃Br·DMS	28.0	-24.2 (56)	-18.7 (44)	-5.8	-20.8
CF₃I·DMS	47.2	-39.1 (54)	-32.9 (46)	-6.0	-30.8
CF ₃ CI·TMA	27.3	-25.9 (65)	-14.1 (35)	-6.2	-18.9
CF₃Br∙TMA	58.6	-51.0 (63)	-29.9 (37)	-7.8	-30.2
CF ₃ I·TMA	102.3	-85.1 (62)	-52.3 (38)	-8.8	-44.0
CF₃CI∙TMP	11.3	-12.8 (64)	-7.1 (36)	-3.2	-11.8
CF ₃ Br∙TMP	27.0	-26.2 (60)	-17.4 (40)	-4.1	-20.7
CF ₃ I∙TMP	59.1	-50.9 (57)	-38.7 (43)	-4.9	-35.4

» Increasing importance of orbital interaction with increasing polarizability (softness) of donor and acceptor atoms

Orbital interaction through orbital σ-hole

» Both functions indicate an 'orbital σ -hole' – strongly directional

Pinter, B.; Nagels, N.; Herrebout, W. A. De Proft, F. Chem. Eur. J. 2013, 19, 519.

Natural Orbitals for Chemical Valence (NOCV) (1)

» Orbital interaction: n→ σ^*

Natural Orbitals for Chemical Valence (NOCV) (2)

NCI index (1)

NCI index (2)

3. Metallophilic Interactions in Dimers of N-Heterocyclic Carbene Copper, Silver and Gold Halides

» Past two decades: strong new impulses in chemistry of coinage metals (especially gold)

- » Often: N-heterocyclic carbenes used as stabilizing ligands
- » Representative examples:

» Metallophilic contacts

» Metallophilic attraction: predominantly dispersion driven interaction between closed shell monomers, containing gold or other metals

Muniz, J.; Wang, C.; Pyykkö, P. Chem. Eur. J. 2011, 17, 368 and references therein.

» Aurophilic interaction: Au^I...Au^I closed shell interaction

» Many theoretical studies on these interaction have been performed

- » Our approach: theoretical analysis of different NHC-coinage metal complexes
- » Use of various electron density based techniques

» Systems investigated:

Geometries

» MP2/aug-cc-pVDZ(-PP) geometries

- » Head-to-tail arrangement
- » M-M distances: cuprophilic, argentophilic and aurophilic interactions
- » [(NHC)AuCl]₂: good agreement with crystal structure
- » Secondary interaction: Halogen $X \Leftrightarrow$ carbene ring

Dimerization energies (1)

» MP2/aug-cc-pVTZ(-PP)//MP2/aug-cc-pVDZ(-PP); values in kcal mol⁻¹ (influence of solvent: PCM)

Dimer	$\Delta E_{\rm dim}$	$\Delta G_{\rm dim}$	$\Delta G_{\rm dim}^{\rm sol}$
$[(NHC)CuCI]_2$	-19.7	-4.2	+2.5
$[(NHC)AgCI]_2$	-24.8	-8.8	+0.0
$[(NHC)AuCI]_2$	-24.9	-11.1	-4.4

» Argentophilic and aurophilic interactions comparable strengths

» Interaction between Cu-based fragments: weaker

DFT Dimerization energies and components

» ZORA PBE/TZ2P+ (and D3 for dispersion)

Dimer	$\Delta E_{\rm disp}$	$\Delta E_{\mathrm{Pauli}}$	$\Delta V_{\mathrm{elstat}}$	$\Delta E_{\rm oi}$	$\Delta E_{\rm int}$	$\Delta E_{\rm prep}$	ΔE
$[(NHC)CuCI]_2$	-9.4 (22)	+23.4	-24.1 <mark>(56)</mark>	-9.3 (22)	-19.5	+1.0	-18.5
$[(NHC)AgCI]_2$	-10.4 (17)	+39.4	-38.1 <mark>(61)</mark>	-13.5 (22)	-22.6	+1.6	-21.0
$[(NHC)AuCI]_2$	-19.7 (17)	+45.8	-39.7 <mark>(61)</mark>	-13.9 (22)	-18.7	+1.5	-17.2

- » Dominance of electrostatics
- » Dispersion and orbital interaction approximately equal in weight

Electrostatic interaction (hard-hard interactions)

» Importance: counterintuitive at first (metal centers: +1 formal charge)

» Insight from electrostatic potential:

Orbital interaction: NOCV

» Dominant NOCV: weakening of π -backdonation from metal to carbene

» Second NOCV: accumulation of electron density between metal centers

NCI index

Topological Approaches to Intermolecular Interactions, Paris, 26-28 june, 2013.

» Strengthening of metal-metal interactions from Cu to Ag to Au

» Strongest interaction: appears in same regions as hydrogen bonding (competition)

Pinter, B.; Broeckaert, L.; Turek, J.; Růžička, A.; De Proft, F., submitted.

Topological Approaches to Intermolecular Interactions, Paris, 26-28 june, 2013.

» Intermolecular interactions: main group metals, transition metals, halogens

» DFT based reactivity indices: charge-transfer vs. electrostatic contributions

» Combined use of DFT based reactivity indices and other electron density based quantities provide useful insights

Acknowledgements

Lies Broeckaert, Dr. Balazs Pinter Dr. Mercedes Alonso Giner, Prof. Paul Geerlings

> R. Willem, M. Biesemans (High Resolution NMR Centre, VUB)

J, Turek, Prof. A. Růžička (University of Pardubice, Czech Republic)

N. Nagels, Y. Geboes, Prof. W. Herrebout (University of Antwerp, Belgium)

Dr. J. Contreras-Garcia (Université Pierre et Marie Curie, Paris, France)

Fonds Wetenschappelijk Onderzoek Research Foundation – Flanders

Topological Approaches to Intermolecular Interactions, Paris, 26-28 june, 2013.