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RPA equations

The RPA ground-state correlation energy can be given by solving an excitation energy

like problem  A B

−B −A

  X

Y

 = ω

 X

Y

 (1)

Direct RPA (RPA) Full RPA (RPAE)

Aia,jb = (εa − εi)δia,jb + 〈ib|aj〉 Aia,jb = (εHF
a − εHF

i )δia,jb + 〈ib||aj〉
Bia,jb = 〈ij|ab〉 Bia,jb = 〈ij||ab〉
ERPA

c = 1
2Tr(ω −A) ERPAE

c = 1
4Tr(ω −A)

ERPA = EEXX
x + ERPA

c ERPAE = EHF
x + ERPAE

c

(2)



H2 binding curve
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N2 binding curve
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H+
2 binding curve

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 1  2  3  4  5

∆E
 k

ca
l/m

ol

R/Angstrom

H2
+ HF

LDA
RPA

Mori-Sánchez, Cohen, Yang arXiv 0903.4403 (2009) (5)



He+
2 binding curve
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Understanding this behavior of RPA

There are successes of RPA that can be seen ranging from the correct description

of the asymptotic limit of closed shell dissociation (e.g. H2 and N2), introduction of

Van-der-Waals in weakly bound complexes. It can also perform reasonably well for

the correlation energy of atoms and molecules at near equilibrium geometries. There

are massive failures of dissocistion seen in odd electron sytems.

Can we understand the behaviour of the RPA correlation energy for the binding

curves (in the infinitely stretched limit) of H2 and H+
2 .

Let us first examine and understand the behaviour of some simple DFT methods.
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The dissociation limit: the fractional occupation perspective

Cohen, Mori-Sánchez, Yang, Science 321 (2008) (8)



Exact conditions for the exchange-correlation functional

Fractional charges: linearity condition

E[N + δ] = (1− δ)E[N ] + δE[N + 1] (2)

Fractional spins: constancy condition

E[Nα, Nβ ] = E[N − 1 + q, N − q] = E[N ] (3)

These two conditions are very important on their own but the true importance is not

revealed until they are extended and unified to give a much more stringent condition:

Fractional charges and spins combined: flat plane condition

E[Nα + qδ,Nβ + (1− q)δ] = (1− δ)E[N ] + δE[N + 1] (4)

PPLB, PRL 49 (1982); Cohen, Mori-Sánchez, Yang, JCP 129(2008); Mori-Sánchez, Cohen, Yang, PRL 102(2009) (9)



Exact energy of the hydrogen atom for fractional occupations
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Hartree-Fock
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BLYP
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Errors of density functional approximations
There are many errors of density functionals that are encapsulated in the flat plane

condition

[0,0] → [0,1] Self-interaction error or delocalization error

[1,0] → [0,1] Static correlation error (multideterminant problems)

[0,0] → [(1
2 , 1

2 )] → [1,1] Strongly correlated systems (gap of Mott insulators)

For example for the band-gap of strongly correlated systems, it is well known that

smooth functionals of the density (e.g. LDA, GGA) will never be capable of giving

a gap. This is also true for smooth functionals of the density matrix (e.g. orbital

functionals, HF, EXX or screened exchange based functionals).

It is not clear whether the inclusion of eigenvalues and unoccupied orbitals to the

functional, such as RPA, can provide discontiuous behavior that would help to

describe strongly correlated systems.

We therefore extend RPA to fractional occupations and investigate its perfomance

for the energy of the Hydrogen atom with 0 to 2 electrons.
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Extension of DFT methods to fractional occupations
For methods where the energy can be expressed in terms of the one particle denisty

matrix, (e.g. Kohn-Sham denisty functional or Hartree-Fock theory), E[ρ1]

ρN+δ
1 = (1− δ)ρN

1 + δρN+1
1 (5)

where

ρN+δ
1 =

∑
i

niφi(r)φi(r′) ni =


1, occupied

δ, frontier

0, virtual

(6)

The fractional energy is given by

Efractional = E[ρN+δ
1 ] (7)

note this can be (and is for approximate functionals) very different from

Eensemble = (1− δ)E[ρN
1 ] + δE[ρN+1

1 ] (8)

(14)



Extension of Green’s function methods to fractional occupa-
tions

For methods where the energy can be expressed in terms of the one particle Green’s

function (e.g. Hartree-Fock theory, MP2 or RPA), E[G0]

GN+δ
0 (i, j;E) = (1− δ)GN

0 (i, j;E) + δGN+1
0 (i, j;E) (9)

GN+δ
0 (i, j;E) = δij

{
(1− ni)

E − εi + iη
− ni

E − εi − iη

}
(10)

ΠN+δ
0 (i, j, k, l;E) = δikδjl

{
(1− ni)nj

E − (εi − εj) + iη
− ni(1− nj)

E + (εj − εi)− iη

}
(11)

This leads to a very simple change to the Green’s function in terms of the occupation

numbers, that each occupied orbital is transformed φ2
i → niφ

2
i and each unoccupied

orbital is transformed φ2
a → (1− na)φ2

a

e.g. Casida, Phys. Rev. B 59 (1999) (15)



MP2 energy expression including fractional occupations

EMP2
c =

1
4

all∑
ij

all∑
ab

ninj
〈ij||ab〉2

εHF
i + εHF

j − εHF
a − εHF

b

(1− na)(1− nb) (12)

Interestingly we can now take the derivative of this expression with respect to

occupation numbers, np, to give MP2 single particle energies (compare with second-

order propogator theory)

∂EMP2

∂np
= 〈φp| −

1
2
∇2 + vext|φp〉+

∑
i

2ni (〈ip|ip〉 − 〈ip|pi〉) +

1
2

∑
jab

nj(1− na)(1− nb)
〈pj||ab〉2

εp + εj − εa − εb
−

∑
ijb

ninj(1− nb)
〈ij||pb〉2

εi + εj − εp − εb



Cohen, Mori-Sánchez, Yang JCTC, 5 (2009) (16)



RPA equations for fractional occupations A B

−B −A

  X

Y

 = ω

 X

Y

 (13)

Aia,jb = (εa − εi)δia,jb + 〈ib|aj〉
√

ninj(1− na)(1− nb)

Bia,jb = 〈ij|ab〉
√

ninj(1− na)(1− nb)
(14)

In this case the A and B matrices are of size (nocc + nfrac)(nvirt + nfrac). Note

that this is very different to the expressions from the ensemble of the energy (or the

propogator Π0)

Aia,jb = (εa − εi)δia,jb + 〈ib|aj〉(ni − na)(nj − nb)

Bia,jb = 〈ij|ab〉(ni − na)(nj − nb)
(15)

Note only Eq. (14) corresponds to the RPA dissociation limits of molecules.

(17)



RPA
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RPAE
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RPA range-separated
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H2 compared with the fractional spin H atom
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H+
2 compared with the fractionally charged H atom
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Hydrogen atom: a challenge for electronic structure methods
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The band gap problem in DFT: [0,0] → [1,0] → [1,1]
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The gap of a Mott insulator [0,0] → [(1
2 ,

1
2)] → [1,1]

-16

-14

-12

-10

-8

-6

-4

-2

 0

 0  0.5  1  1.5  2

T
ot

al
 E

ne
rg

y/
 e

V

Number of electrons

HF
BLYP
RPA

RPAE
Exact

(25)



Conclusions

The flat plane condition for the energy is a very stringent test for electronic

structure methods

Can a method work for both the stretching of H2 and H+
2 (and their gaps)?

RPA methods do not simply overcome these dissociation problems also seen in

simpler DFT energy expressions, despite the increase in complexity.

The derivatives ∂ERPA

∂ni
can also be evaluated

Discontinuous energy expressions are needed to treat even a system as simple as

the Hydrogen atom.

(26)


