Density Functional Theory and Nonlinear Optical Properties

Josep M. Luis

1-5 July 2019, Quito, Current Topics in Theoretical Chemistry Workshop

Institute of Computational Chemistry and Catalysis and Department of Chemistry

University of Girona

TheoChemProp

- Interaction of the matter with very high intensity light.
 - Laser light.

P. N. Butcher and D. Cotter, in The Elements of Nonlinear Optics, Cambridge University Press, 1990 2

Nonlinear optical properties

• Taylor series expansion of the molecular dipole moment

$$\mu_{a}(\omega_{\sigma}) = \mu_{a}^{(o)} \delta_{\omega_{\sigma},0} + \alpha_{ab}(-\omega_{\sigma};\omega_{1}) F_{b}(\omega_{1})$$

$$+\frac{1}{2!}K^{(2)}\beta_{abc}(-\omega_{\sigma};\omega_{1},\omega_{2})F_{b}(\omega_{1})F_{c}(\omega_{2})$$

$$+\frac{1}{3!}K^{(3)}\gamma_{abcd}(-\omega_{\sigma};\omega_{1},\omega_{2},\omega_{3})F_{b}(\omega_{1})F_{c}(\omega_{2})F_{d}(\omega_{3})+\dots$$

D. P. Shelton, J. E. Rice, Chem. Rev. **1994**, 94, 3.

Nonlinear optical properties

• Within the Born–Oppenheimer approximation:

- Electronic contribution
- The vibrational contribution

Elsa Garmire, Optics express, **21**, 30532, 2013.

ultrafast all-optical switch

Adsorption of lysozyme on GNPs from second harmonic light scattering

K. Mishra, P. K. Das, Phys. Chem. Chem. Phys., 2019, 21, 7675.

Materials for Nonlinear optics

- A Niobium Oxyiodate Sulfate with a Strong SHG Response.
 - Rational Multi-Component Design guide by DFT calculations.

H.-X. Tang, et al., Angew. Chem. Int. Ed. 2019, 58, 3824.

- Can **DFA** be trusted for the calculation of **NLOPs**?
 - Conventional GGA XC functionals \rightarrow unsuitable for NLOP.
 - Increasing PA chain length \rightarrow **Catastrophic** overestimation.
 - C potential \rightarrow small role in the error.
 - **Short-sightedness** of the X potential.
 - \rightarrow Wrong electric field induced charge polarization.

S. J. A. van Gisbergen *et al.* Phys. Rev. Lett. **1999**, 83, 694.
B. Champagne *et* al., J. Phys. Chem. A **2000**, 104, 4755-4763

- DFAs with Hartree-Fock exchange.
 - Hybrid functionals \rightarrow Catastrophic NLOP overestimation.
 - NH₂(CH=CH)_nNO₂

B. Champagne et al., J. Phys. Chem. A 2000, 104, 4755-4763

- DFAs with Hartree-Fock exchange.
 - Hybrid functionals \rightarrow Catastrophic NLOP overestimation.

- Long-range corrected DFAs (LC-DFAs).
 - Large amount of long range Hartree-Fock exchange.
 - Improvement in NLOP calculations.
 - Not good enough accuracy.

• DFAs for NLOP?

A. Savin, in Recent Developments and Applications of Modern Density Functional Theory,
Ed. J. M. Seminario (Elsevier, Amsterdam, 1996), p. 327.
H. Iikura, T. Tsuneda, T. Yanai and K. Hirao, J. Chem. Phys. 2001, 115, 3540.

• Goals:

Evaluation of performance of DFAs to compute NLOPs.

- H-bond dimers.
- Electronic and vibrational contributions.

Design of **new LC-DFAs** to compute **NLOPs**.

- CCSD(T)/aug-cc-pVQZ.
- HCN···HCN, HCN···HNC, HCN···HF, HCN···HCl, HNC···HCN, OC···HF, N₂···HF, FCN···HCCH, FCN···HCCF
- BLYP, B3LYP, CAM-B3LYP, LC-BLYP, wB97X, M06, M06-2X, MN15, PBE0 and HSE06.

R. Zalesny, M. Medved, S. Sitkiewicz, E. Matito, Josep M. Luis, J. Chem. Theory Comput 2019, 15, 3570.

R. Zalesny, M. Medved, S. Sitkiewicz, E. Matito, Josep M. Luis, J. Chem. Theory Comput. 2019, 15, 3570.

R. Zalesny, M. Medved, S. Sitkiewicz, E. Matito, Josep M. Luis, J. Chem. Theory Comput. 2019, 15, 3570.

R. Zalesny, M. Medved, S. Sitkiewicz, E. Matito, Josep M. Luis, J. Chem. Theory Comput. 2019, 15, 3570.

R. Zalesny, M. Medved, S. Sitkiewicz, E. Matito, Josep M. Luis, J. Chem. Theory Comput. 2019, 15, 3570.

R. Zalesny, M. Medved, S. Sitkiewicz, E. Matito, Josep M. Luis, J. Chem. Theory Comput. 2019, 15, 3570.

 Origin of the error → High order energy derivatives respect to the nuclear coordinates.

R. Zalesny, M. Medved, S. Sitkiewicz, E. Matito, Josep M. Luis, J. Chem. Theory Comput. 2019, 15, 3570.

NLOPs and optimally tuned RS-DFTs

- Range-separated functionals (e.g. LC-BLYP) → Best DFA for NLO.
 - Short-range DFT exchange + Long-range HF exchange.

$$\frac{1}{r_{12}} = \frac{1 - \left[\alpha + \beta \cdot erf(\mu \cdot r_{12})\right]}{r_{12}} + \frac{\left[\alpha + \beta \cdot erf(\mu \cdot r_{12})\right]}{r_{12}}$$

$$\bullet \text{ LC-BLYP } (\mu = 0.47) \qquad 1.0 \qquad 0.8 \qquad 0.6 \qquad 0.4 \qquad 0.2 \qquad 0.0 \qquad 0.0 \qquad 1.0 \qquad 2.0 \qquad 3.0 \qquad 4.0 \qquad 5.0 \qquad 6.0 \qquad 0.0 \qquad 1.0 \qquad 2.0 \qquad 3.0 \qquad 4.0 \qquad 5.0 \qquad 6.0 \qquad 0.0 \qquad 0$$

A. Savin, in Recent Developments and Applications of Modern Density Functional Theory, Ed. J. M. Seminario (Elsevier, Amsterdam, 1996), p. 327.
 H. likura, T. Tsuneda, T. Yanai and K. Hirao, J. Chem. Phys. 2001, 115, 3540.

NLOPs and optimally tuned RS-DFTs

• OT RS-DFTs \rightarrow Tune μ for each chemical system

$$J^{2}(\mu) = \sum_{i=N,N+1} \left[IP_{i}(\mu) + \varepsilon_{i}^{H}(\mu) \right]$$

Table 1. CT Excitation Energies (eV) for Aryl– Tetracyanoethylene Complexes, after Stein et al.¹⁵

aryl	B3LYP	BNL	IP-tuned BNL	expt
benzene	2.1	4.4	3.8	3.6
toluene	1.8	4.0	3.4	3.4
o-xylene	1.5	3.7	3.0	3.2
naphthalene	0.9	3.3	2.7	2.6

R. Baer, E. Livshits, U. Salzner, Theory. Annu. Rev. Phys. Chem. **2010**, 61, 85. T. Stein, L. Kronik, R. Baer, J. Am. Chem. Soc. **2009**, 131, 2818.

NLOPs and optimally tuned RS-DFTs

S. Nenon, B. Champagne, M. I. Spassova, Phys. Chem. Chem. Phys. **2014**, 16, 7083. M. B. Oviedo, N. V. Ilawe, B. M. Wong, J. Chem. Theory Comput. **2016**, 12, 3593.

60 Chemical systems.

New NLOP-tailored optimally tuned RS-DFTs

- 60 Chemical systems.
 - 33 Small-medium molecules.
 - 27 Oligomers with high NLOP.
- Reference: CCSD(T) NLOPs.
- Starting point: LC-BLYP.
- Optimize µ for each system
 - \rightarrow Reproduce CCSD(T) NLOPs with tuned LC-BLYP.
- Set of optimal $\mu \rightarrow$ Molecular indicator
 - Prediction of optimal μ to compute the NLOP for each system.

27

Pau Besalú, Sebastian Sitkiewicz, Pedro Salvador, Eduard Matito, Josep M. Luis, in preparation.

28

New optimally tuned RS-DFTs

Indicator: log(γ^{LC-BLYP}/N²)

New optimally tuned RS-DFTs

• Indicator: $log(\alpha^{LC-BLYP}/N)$.

NLOP-tailored OLC-BLYP.

	CAM-B3LYP	LC-BLYP	NLOP OT LC-BLYP
Max Absolute Error	7.7 × 10 ⁶	2.4×10^{6}	1.3×10^{6}
Mean Absolute Error	2.7 × 10 ⁵	7.4×10^{4}	3.8×10^{4}
Max Absolute Relative Error	108.7 %	115.6 %	42.4 %
Mean Absolute Relative Error	22.9 %	20.4 %	8.4%

- Electronic and vibrational NLOPs of Hydrogen-bonded complexes.
 - CAM-B3LYP \rightarrow Errors below 20%.
 - LC-BLYP and MN15 \rightarrow Errors below 30%.
 - wB97x, M06 and M06-2x \rightarrow Dramatic failure for γ^{NR} .
 - Large errors in high-order energy derivatives respect to nuclear coordinates.
- NLOP-tailored OT LC-BLYP.
 - Optimal tuned μ parameter $\leftrightarrow \log(\alpha^{\text{LC-BLYP}}/\text{N})$.
 - More accurate γ than LC-BLYP and CAM-B3LYP.

Acknowledgments

PhD. Students

Steven Roldan Sergio Fernandez Sebastian Sitkiewicz Pau Besalú Marc Montilla Liza Petrusevich

Petrusevich

GOBIERNO DE ESPAÑA

DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

MINISTERIO

PGC2018-098212-B-C22

2017SGR39

Agència de Gestió d'Ajuts Universitaris i de Recerca

Collaborators **Robert Zalesny Miquel Torrent-Sucarrat** Marc Garcia-Borràs Heribert Reis Miquel Solà Zhi-Ru Li **Miquel Costas** Xavi Ribas Julio Lloret **Eduard Matito** Pedro Salvador David Lauvergnat **Miroslav Medved Bernard Kirtman**

Density Functional Theory and Nonlinear Optical Properties

Josep M. Luis

1-5 July 2019, Quito, Current Topics in Theoretical Chemistry Workshop

Institute of Computational Chemistry and Catalysis and Department of Chemistry

University of Girona

TheoChemProp

- Can **DFT** be trusted for the calculation of **NLOPs**?
 - Conventional pure XC functionals \rightarrow unsuitable for NLOP.
 - Increasing PA chain length \rightarrow **Catastrophic** overestimation.
 - Short-sightedness of the X potential → Wrong electric field induced charge polarization.

$$\begin{aligned} v_{xc}(\mathbf{r}) &= \int d\mathbf{r}_1 \frac{\rho(\mathbf{r}_1)[\bar{g}(\mathbf{r},\mathbf{r}_1)-1]}{|\mathbf{r}-\mathbf{r}_1|} + \frac{1}{2} \int dr_1 \frac{\rho(\mathbf{r})\rho(\mathbf{r}_1)}{|\mathbf{r}-\mathbf{r}_1|} \frac{\delta \bar{g}(\mathbf{r},\mathbf{r}_1)}{\delta \rho(\mathbf{r})} \\ &= v_{xc}^{hole}(\mathbf{r}) + v^{resp}(\mathbf{r}) \end{aligned}$$

S. J. A. van Gisbergen *et al.* Phys. Rev. Lett. **1999**, 83, 694.
B. Champagne *et* al., J. Phys. Chem. A **2000**, 104, 4755-4763

Introduction: Nonlinear optical properties

• Four wave mixing (FWM) processes.

P. N. Butcher and D. Cotter, in The Elements of Nonlinear Optics, Cambridge University Press, 1990 36

Introduction: Nonlinear optical properties

- Four wave mixing (FWM) processes
 - FWM process with extreme-ultraviolet radiation.

$$\gamma_{abcd} (-\omega_{FWM}; \omega_{EUV1}, -\omega_{EUV2}, \omega_3)$$

- Coherent extreme-ultraviolet pulses
- FWM would enable the investigation of charge-transfer dynamics

Introduction: NLOP Decomposition Analysis

NLOP -> derivatives of the energy

$$\alpha_{ij} = -\left(\frac{\partial^2 E(F)}{\partial F_i \partial F_j}\right) \qquad \beta_{ijk} = -\left(\frac{\partial^3 E(F)}{\partial F_i \partial F_j \partial F_k}\right) \qquad \gamma_{ijkl} = -\left(\frac{\partial^4 E(F)}{\partial F_i \partial F_j \partial F_k \partial F_l}\right)$$

- Differential operator is linear.
 - Derivative of the sum -> sum of derivatives.

D(f+g)=(Df)+(Dg)