

HORTON & ChemTools

Farnaz Heidar-Zadeh, Paul Ayers, Toon Verstraelen, Esteban Vohringer, Carlos Cardenas,...

So theory guys have got it made in rooms free of pollution. Instead of problems with the reflux, they have only solutions... In other words, experimentalists will likely die of cancer From working hard, yet fruitlessly, till theory gives the answer. Thomas A. Holme

\$\$ NSERC, Compute Canada; Canada Research Chairs; Marie Curie Actions (EU); FWO; Fondecyt

HORTON & ChemTools

HORTON quantum chemistry package

<u>H</u>elpful <u>Open-source</u> <u>R</u>esearch <u>TO</u>ol for <u>N</u>-electron systems

- Free & open-source electronic structure code with a strictly modular design.
- Motivated by the <u>difficulty to add new features</u> to the existing quantum chemistry programs.
- Written primarily in Python 3, with C++/Fortran only where necessary for computational performance.
- Computationally efficient enough to be helpful, without compromising <u>code-readability</u> and <u>user-friendliness</u>.
- Well-tested, well-documented, and follows modern "best practices" for software engineering.
- Helpful for prototyping, developing, and exploring new methods!
- <u>quantumelephant.org</u>

GAIN CHEMICAL INSIGHT FROM COMPUTATIONS

GAIN CHEMICAL INSIGHT FROM COMPUTATIONS

- Free & open-source Python package for interpreting the results of quantum chemistry calculations!
- ♦ Readable, well-documented, well-tested & user-friendly.
- \diamond ChemTools can be used as:
 - Python Library
 - Python Scripts (command line)
- ♦ Release Date: June 2019, Visit: <u>chemtools.org</u>

♦ Examples and installation instructions (click on "material")

https://wiki.lct.jussieu.fr/workshop/index.php/ChemTools Workshop 2019 6

Command-Line Functionality

\$ chemtools -h

usage: chemtools [-h] [-v] <Commands> ...

ChemTools command-line tools

positional arguments:

<commands></commands>	<functions></functions>
mot	Molecular Orbital Theory (MOT).
esp	Electrostatic Potential (ESP).
nci	Non-Covalent Interactions (NCI).
elf	Electron Localization Function (ELF).
lol	Localized Orbital Locator (LOL).
gcdft	Global Conceptual DFT.
lcdft	Local Conceptual DFT.
ccdft	Condensed Conceptual DFT.

optional arguments: -h, --help show this help message and exit -v, --version show program's version number and exit

Molecular Orbital Theory (MOT) Descriptors and Analysis

- Orbital Energies; Visualize Orbitals
- Draw MO diagram with AO contributions/energies.
- Mulliken, Lowdin, Ruedenberg, Knizia population/bonding analysis.
- Localized Orbitals
- Oxidation states

\$ chemtools mot -h

Visualize Molecular Orbitals (MO) using VMD package.

The generated files inc output.vmd output_mo{index}.cube	lude: The VMD script. The MO cube file.		
If VMD is setup on your \$ vmd -e output.vmd	system, you can visualize MO with the command below:		
Note: The output.vmd sc in VMD software (ript requires output_mo{index}.cube to plot MO they files should be all in the same directory).		
positional arguments: fname	wave-function file. Supported formats: fchk, mkl, molden.input, wfn.		
optional arguments:			
-h,help	show this help message and exit		
output OUTPUT	name of generated cube file and vmd script. If None,		
	the output name in derivedfrom fname. [default=None]		
info	<pre>print basic information on molecule and wave-function. [default=False]</pre>		
spin {a,b}	type of occupied spin orbitals to visualize. [default=a]		
index INDEX	<pre>index of spin orbital to visualize represented by comma separated integers.If None, files for generating all occupied molecular orbitals are generated. [default=None]</pre>		
cube N	specify the cubic grid used for visualizing MO. This can be either a cube file with .cube extension, or a user-defined cubic grid specified by spacing and extension parameters separated by a comma. For example, 0.2,5.0 which specifies 0.2 a.u. distance between grid points, and 5.0 a.u. extension of cubic grid on each side of the molecule. This cube is used for evaluating MO and visualizing it using VMD program. [default=0.2,5.0]		
isosurface ISOSURFACE			
	iso-surface value of MO to visualize. [default=0.05]		

\$ chemtools mot -h

\$ chemtools mot h2o.fchk

from chemtools import MOTBasedTool

- # 1. Build MO Theory model
- mo = MOTBasedTool.from_file('h2o.fchk')

2. Generate cube file(s) and script(s) for visualizing all MO

Files generated are h2o_mo{index}.cube & h2o_mo{index}.vmd

To visualize the iso-surface, use command: \$ vmd -e h2o_mo{index}.vmd

mo.generate_scripts('h2o', spin='a', index=None, isosurf=0.0045)

\$ chemtools mot h2o.fchk --info

File: h2o.fchk

Atomic	number and	coordinates:	
8	0.015948	0.017004	0.023858
1	-0.772778	0.561447	1.575012
1	1.298501	1.269512	-0.309113

Information on alpha & beta electrons:

# ELECT	0115	5.000	5.000
HOMO ind	dex :	5	5
LUMO+2	index :	0.100079	0.100079
LUMO+1 e	energy:	0.022530	0.022530
LUMO e	energy:	-0.024957	-0.024957
HOMO e	energy:	-0.323152	-0.323152
HOMO-1 e	energy:	-0.399455	-0.399455
HOMO-2 e	energy:	-0.539610	-0.539610

Density-Based Descriptors

- reduced gradient; Laplacian, <u>arbitrary-order</u> derivatives of electron density and one-electron reduced density-matrix (1DM).
- Information-theoretic descriptors
- Electrostatic potential
- Density-based energy decomposition analysis
- Constrained Quantum Chemistry (and DFT) Analysis

Electrostatic Potential

- Positive values associated with electrophilic molecular regions
- Negative values associated with nucleophilic molecular regions

$$\Phi(\mathbf{r}) = \sum_{A=1}^{N_{\text{atoms}}} \frac{Z_A}{|\mathbf{r} - \mathbf{R}_A|} - \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}'$$

Electrostatic Potential (ESP)

- \$ chemtools esp -h
- \$ chemtools esp scl2.fchk --isosurface=0.002

Electrostatic Potential (ESP)

Python Script & Jupyter Notebooks

(DFT-based) Descriptors for bonding and nonbonding molecular interactions

- ELF: Electron Localization Function
- LOL: Localized Orbital Locator
- DORI: Density Overlap Region Indicator
- Local Kinetic Energy
- Slater Potential, Ehrenfest Force, Stress Tensor
- NCI: Non-Covalent Interaction (reduced density gradient)

In general, these tools consist of a fundamental descriptor, $\xi(\mathbf{r})$, which is then transformed onto a convenient interval for visualization. ChemTools provides access to the (raw) fundamental descriptors and a variety of useful mappings:

$$\begin{aligned} x_a^{(k)}\left(\xi\right) &= \frac{1}{1+a\xi^k} \\ \tilde{x}_a^{(k)}\left(\xi\right) &= 1 - x_a^{(k)}\left(\xi\right) \\ v_a^{(k)}\left(\xi\right) &\equiv \frac{1}{2}\left(1 + \tanh\left(a\left(\xi^{-k} - \xi^k\right)\right)\right) \\ \tilde{v}_a^{(k)}\left(\xi\right) &\equiv \frac{1}{2}\left(1 + \tanh\left(a\left(\xi^k - \xi^{-k}\right)\right)\right) \\ w_a\left(\xi\right) &= \frac{1}{2}\left(1 + \tanh\left(a\xi\right)\right) \end{aligned}$$

18

Electron Localization Function (ELF)

\$ chemtools elf -h

\$ chemtools elf h2o_dimer.fchk

from chemtools import ELF

1. Build ELF model

elf = ELF.from_file('ch2o_q+0.fchk', trans='rational', trans_k=2, trans_a=1)

2. Generate cube file(s) and script for visualizing ELF

Files generated are ch2o_q+0-elf.cube & ch2o_q+0.vmd

To visualize the iso-surface, use command: \$ vmd -e ch2o_q+0.vmd

elf.generate_scripts('ch2o_q+0', isosurf=0.8)

Non-Covalent Interactions (NCI)

\$ chemtools nci -h

\$ chemtools nci formic_acid_dimer.fchk

from chemtools import NCI

```
# 1. Build NCI model
```

```
nci = NCI.from_file('h2o_dimer.fchk')
```

2. Generate plot, cube file(s) and script for visualizing NCI
Files generated are h2o_dimer-dens.cube, h2o_dimer-grad.cube, & h2o_dimer.vmd
To visualize the iso-surface, use command: \$ vmd -e h2o_dimer.vmd

```
nci.generate_plot('h2o_dimer')
nci.generate_scripts('h2o_dimer')
```


Conceptual DFT Descriptors

- global, (non-)local, & condensed descriptors of <u>arbitrary</u> order
- popular & general (user-defined) energy models (symbolically)
- spin-reactivity indicators
- isomorphic ensemble tools (local hardness, hardness kernel, etc.)
- alchemical energies, responses, and potentials.

<u>Key Idea:</u> Chemical reactivity can be understood by studying how molecules respond to changes in the number of electrons and external potential. <u>https://chemtools.org/sci_doc_conceptual.html</u>

<u>Key Reactivity Indicators</u>: Response functions. Understanding how the energy changes as the number of electrons changes requires an energy model and data about the energy for different numbers of electrons.

Conceptual DFT Descriptors

- global, (non-)local, & condensed descriptors of <u>arbitrary</u> order
- popular & general (user-defined) energy models (symbolically)
- alchemical energies, responses, and potentials.

Global Conceptual DFT

(cyclooctatetraene Jahn-Teller distortion)

Global Conceptual DFT

(Frontier Molecular Orbital Approach)

\$ chemtools gcdft quadratic cyclooctatetraene_planer_q+0.fchk
\$ chemtools gcdft quadratic cyclooctatetraene_boat_q+0.fchk

chemical_hardness	0.155428	chemical_hardness	0.085737
chemical_potential	-0.140308	chemical_potential	-0.152984
ea	0.062594	ea	0.110116
electrofugality	0.281352	electrofugality	0.332341
electron_affinity	0.062594	electron_affinity	0.110116
electronegativity	0.140308	electronegativity	0.152984
electrophilicity	0.063329	electrophilicity	0.136489
eta	0.155428	eta	0.085737
ionization_potential	0.218022	ionization_potential	0.195852
ip	0.218022	ip	0.195852
mu	-0.140308	mu	-0.152984
n0	56.00000	n0	56.000000
n_max	56.902721	n_max	57.784350
nucleofugality	0.000735	nucleofugality	-0.026373
softness	6.433845	softness	11.663633

Global Conceptual DFT

(Finite Difference Approach)

\$ chemtools gcdft quadratic cyclooctatetraene_planer_q*.fchk
\$ chemtools gcdft quadratic cyclooctatetraene_boat_q*.fchk

chemical_hardness	0.294339	chemical_hardness	0.223606
chemical_potential	-0.142420	chemical_potential	-0.154832
ea	-0.004749	ea	0.043029
electrofugality	0.324046	electrofugality	0.320240
electron_affinity	-0.004749	electron_affinity	0.043029
electronegativity	0.142420	electronegativity	0.154832
electrophilicity	0.034456	electrophilicity	0.053605
eta	0.294339	eta	0.223606
ionization_potential	0.289590	ionization_potential	0.266635
ip	0.289590	ip	0.266635
mu	-0.142420	mu	-0.154832
n0	56.000000	n0	56.00000
n_max	56.483864	n_max	56.692431
nucleofugality	0.039205	nucleofugality	0.010576
softness	3.397441	softness	4.472143

Local Conceptual DFT

(Dual Descriptor)

\$ chemtools lcdft quadratic dual dichloropyridine_q+0.fchk
\$ chemtools lcdft quadratic dual dichloropyridine_q*.fchk

Frontier Molecular Orbital Approach

Finite Difference Approach

Electrostatic Potential (ESP)

Python Script & Jupyter Notebooks

Local Conceptual DFT

(Dual Descriptor)

```
from chemtools import LocalConceptualDFT, UniformGrid, print_vmd_script_isosurface
# 1. Make cubic grid for plotting dual descriptor.
     The cubic grid points are spaced by 0.2 a.u. & extending 5.0 a.u. on each side.
#
fname = 'dichloropyridine26 q+0'
cube = UniformGrid.from file(fname + '.fchk', spacing=0.2, extension=5.0)
# 2. Build quadratic energy model for Formaldehyde using FMO approach.
tool = LocalConceptualDFT.from file(fname + '.fchk', model='guadratic', points=cube.points)
# 3. Dump dual descriptor evaluated on cubic grid.
cube.generate_cube(fname + '_dual.cube', tool.dual_descriptor)
# 4. Generate VMD scripts to plot dual-descriptor iso-surface.
     To visualize the iso-surface, use command: $ vmd -e coh2_dual_fmo.vmd
#
print vmd script isosurface(fname + '.vmd', fname + ' dual.cube', isosurf=0.005,
                            scalemin=-0.005, scalemax=0.005, colorscheme=[0, 1], negative=True)
```


Atoms-in-Molecules Partitioning

- Hirshfeld-family of partitioning (Hirshfeld, Hirshfeld-I, Minimal-Basis-Iterative-Stockholder (MBIS), Additive-Variational-Hirshfeld (AVH), etc.
- QTAIM: Quantum Theory of Atoms-in-Molecules
- Quantum Chemical Topology. (Partition with respect to arbitrary scalar/vector field.)
- Orbital-based population analysis (Mulliken/Löwdin/Ruedenberg/Knizia)

$$\rho_{A}^{\text{Hirshfeld}}(\mathbf{r}) = \frac{\rho_{A}^{0}(\mathbf{r})}{\sum_{B=1}^{N_{\text{atoms}}} \rho_{B}^{0}(\mathbf{r})} \rho_{\text{mol}}(\mathbf{r})$$
$$= \arg \min_{\rho_{\text{mol}}(\mathbf{r}) = \sum_{A} \rho_{A}(\mathbf{r})} \sum_{A} \int \rho_{A}(\mathbf{r}) \ln\left(\frac{\rho_{A}(\mathbf{r})}{\rho_{A}^{0}(\mathbf{r})}\right) d\mathbf{r}$$

Condensed Conceptual DFT

(Condensed Dual Descriptor)

\$ chemtools ccdft quadratic dual dichloropyridine_q*.fchk
 --scheme mbis --approach RMF

Atomic contribution of dual_descriptor for scheme=MBIS & approach RMF:

	0	17	-0.128441
	1	17	-0.128449
_	2	7	0.047067
Γ	3	6	0.474485
L	4	6	-0.413597
	5	6	-0.413582
	6	6	0.089405
	7	6	0.089391
	8	1	0.360509
	9	1	0.011791
	10	1	0.011793

Density-Matrix Analysis

- Bonding indicators (SEDI, Multi-center indices)
- Effective Oxidation State (EOS)
- Intracule and Extracule
- Density Matrix, Fukui Matrix, Dual Descriptor Matrix, etc.
- Local Ionization Energy and Local Electron Affinity
- Maximum Probability Domains

<u>Conceptual Density-Matrix Functional Theory</u> extends Conceptual Density Functional Theory to the 1-electron reduced density matrix.

$$\frac{\partial^{k} \delta E}{\partial N^{k} \delta v(\mathbf{r})} = \left(\frac{\partial^{k} \rho(\mathbf{r})}{\partial N^{k}}\right)_{v(\mathbf{r})} \rightarrow \frac{\partial^{k} \delta E}{\partial N^{k} \delta h(\mathbf{r},\mathbf{r}')} = \left(\frac{\partial^{k} \gamma(\mathbf{r},\mathbf{r}')}{\partial N^{k}}\right)_{h(\mathbf{r},\mathbf{r}')}$$
$$\frac{\partial^{k} \delta E}{\partial \mu^{k} \delta v(\mathbf{r})} = \left(\frac{\partial^{k} \rho(\mathbf{r})}{\partial \mu^{k}}\right)_{v(\mathbf{r})} \rightarrow \frac{\partial^{k} \delta E}{\partial \mu^{k} \delta h(\mathbf{r},\mathbf{r}')} = \left(\frac{\partial^{k} \gamma(\mathbf{r},\mathbf{r}')}{\partial \mu^{k}}\right)_{h(\mathbf{r},\mathbf{r}')}$$

The effects of electron correlation of the electron density are often small, but correlation has a qualitative influence the 1DM and its derivatives.

Density-Matrix Analysis

- Bonding indicators (SEDI, Multi-center indices)
- Effective Oxidation State (EOS)
- Intracule and Extracule
- Fukui Density Matrix, Dual Density Matrix, etc.
- Local Ionization Energy and Local Electron Affinity
- Maximum Probability Domains

The intracule and extracule show the position and extent of electron pairs

$$I_{\sigma\sigma'}(\mathbf{u}) = \iint \rho_2^{\sigma\sigma'}(\mathbf{r}_1, \mathbf{r}_2) \delta(\mathbf{r}_1 - \mathbf{r}_2 - \mathbf{u}) d\mathbf{r}_1 d\mathbf{r}_2$$
$$E_{\sigma\sigma'}(\mathbf{R}) = \iint \rho_2^{\sigma\sigma'}(\mathbf{r}_1, \mathbf{r}_2) \delta(\frac{1}{2}(\mathbf{r}_1 + \mathbf{r}_2) - \mathbf{R}) d\mathbf{r}_1 d\mathbf{r}_2$$

Density-Matrix Analysis

- Bonding indicators (SEDI, Multi-center indices)
- Effective Oxidation State (EOS)
- Intracule and Extracule
- Density Matrix, Fukui Matrix, Dual Descriptor Matrix, etc.
- Local Ionization Energy and Local Electron Affinity
- Maximum Probability Domains

Politzer's Average Local Ionization Energy is the ionization energy, per electron, at a given point in space.

$$ALIE\left(\mathbf{r}\right) = \frac{\int \cdots \int \left(\Psi^{(N)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{N}\right)\right)^{*} \left(\hat{H}^{(N)} - \hat{H}^{(N-1)}\right) \Psi^{(N)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{N}\right) d\mathbf{r}_{2} \dots d\mathbf{r}_{N}}{\int \cdots \int \left(\Psi^{(N)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{N}\right)\right)^{*} \Psi^{(N)}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{N}\right) d\mathbf{r}_{2} \dots d\mathbf{r}_{N}}$$
$$= \frac{\sum_{i=1}^{N_{\text{orbitals}}} n_{i} \varepsilon_{i} \left|\phi_{i}\left(\mathbf{r}\right)\right|^{2}}{\sum_{i=1}^{N_{\text{orbitals}}} n_{i} \left|\phi_{i}\left(\mathbf{r}\right)\right|^{2}}$$
35

Density-Matrix Tools & Local Conceptual DFT

(Fukui Function vs. Local Ionization Potential)

\$ chemtools mot aniline_protonated_q+1.fchk --info

Information on alpha & beta electrons:				
<pre># electrons :</pre>	25.000	25.000		
HOMO index :	25	25		
LUMO+2 index :	-0.183982	-0.183982		
LUMO+1 energy:	-0.191697	-0.191697		
LUMO energy:	-0.196214	-0.196214		
HOMO energy:	-0.425635	-0.425635		
HOMO-1 energy:	-0.429398	-0.429398		
HOMO-2 energy:	-0.517611	-0.517611		

Density-Matrix Tools & Local Conceptual DFT

(Fukui Function vs. Local Ionization Potential)

- \$ chemtools lcdft linear ff_minus aniline_protonated_q+1.fchk
- \$ chemtools lip aniline_protonated_q+1.fchk

Topological Analysis

- Find critical points and basins of scalars
- High-accuracy integration over basins

Take an arbitrary scalar or vector field, locate and classify critical points

$$\nabla p(\mathbf{r}_{\rm cp}) = \mathbf{0}$$

and topological basins, Ω ,

$$\nabla p \left(\mathbf{r} \in \partial \Omega \right) \cdot \mathbf{n}_{\partial \Omega} = 0$$

Properties at the critical points elucidate molecular interactions.

Integration of descriptors over topological basins allows one to compute energetic and other contributions from distinct chemical features.

We are using new algorithms for finding critical points, for topological partitioning, and for high-accuracy integration over topological regions.

Topological Analysis

(Finding critical points of scalar fields)

```
from chemtools import Molecule, UniformGrid, TopologicalTool
mol = Molecule.from_file('c4h4.fchk')
cub = UniformGrid.from_molecule(mol, spacing=0.25, extension=0.1, rotate=False)
top = TopologicalTool.from_molecule(mol, points=cub.points)
```


Topological Analysis

(Finding critical points of scalar fields)

```
from chemtools import Molecule, UniformGrid, TopologicalTool
mol = Molecule.from_file('c4h4.fchk')
cub = UniformGrid.from_molecule(mol, spacing=0.25, extension=0.1, rotate=False)
top = TopologicalTool.from_molecule(mol, points=cub.points)
```


