Juan E. Peralta Department of Physics Central Michigan University

What is self-interaction in DFT?

• Standard density functionals have the form:

$$E^{DFT}[n] = T_s + E_{ext}[n] + E_{Coul}[n] + E_{xc}[n_{\uparrow}, n_{\downarrow}]$$

known unknown

• For a **one-electron** density n_i , the exact (unknown) functional should satisfy

$$E_{Coul}[n_i] = -E_{xc}[n_i, 0]$$

so that $E_{coul} + E_{xc}$ cancel out **exactly** and there is no "self-interaction"

• Approximate density functionals do not satisfy this

What is self-interaction in DFT?

- This produces a residual, unphysical self-interaction of the electrons
- In other words, electrons "see" themselves, while they should not

Accuracy improves, more exact

 While modern functionals can be very accurate for describing many properties in many cases, self-interaction errors (SIE) still cause problems...and it is embarrassing

Self-interaction error leads to:

- Incorrect asymptotic behavior
- Unphysical delocalization of charge
- Many other problems

Etc. **Rung 4:** Explicit occupied orbital dependent (hybrids, et **Rung 3:** Meta-Generalized Gradient Approximation **Rung 2:** Generalized Gradient Approximation (GGA)

conditions are satisfied

Rung 1: Local Density Approximation (LDA)

How can we remove the SIE?

Perdew-Zunger self-interaction correction (PZ-SIC)

- Orbital-by-orbital removal of self-interaction
- $E^{DFT-SIC} = E^{DFT} + \sum_{i=1}^{N} U^{SIC}[n_i]$ $U^{SIC}[n_i] = -E_{Coul}[n_i] E_{xc}[n_i]$
- SIC equations:

$$\{H_{o\sigma} + V_{i\sigma}^{SIC}\}\phi_{i\sigma} = H_{i\sigma}\phi_{i\sigma} = \sum_{j=1}^{N_{occ}} \lambda_{ji}^{\sigma}\phi_{j\sigma} \qquad (n_i = |\phi_i|^2)$$

Localization equations (traditional PZ-SIC) - conditions for minimum energy

$$\left\langle \phi_{i\sigma} \middle| V_{i\sigma}^{SIC} - V_{j\sigma}^{SIC} \middle| \phi_{j\sigma} \right\rangle = \lambda_{ji}^{\sigma} - \lambda_{ij}^{\sigma} = 0$$

• Orbital density dependent

Perdew, Zunger, PRB 23, 5048 (1981)

Why isn't PZ-SIC more widely used?

- Particular choice of local orbitals minimizes energy
- Computationally challenging:
 - Determine occupied space plus a unitary transformation to localize orbitals
 - Energy is not invariant under rotation of orbitals
 - M(M-1)/2 conditions (on top of DFT)
 - Multiple evaluations of $U^{SIC}[n_i]$
- It adds an extra burden that scales as M²

Pederson *et al.*, JCP 86, 2688 (1985) Vydrov & Scuseria, JCP 121, 8187 (2004) Lethola & Jónsson, JCTC 10, 5324 (2014)

What do we know about SIC so far?

(since 1981)

- SIC-DFT **improves** thermochemistry of molecules **only** for LDA
- SIC correction disrupts the physical constraints built into GGAs, meta-GGAs, and hybrids
- For many properties little is known
- It is computationally expensive
- DFU+U and hybrid functionals are perhaps the best reference of what to expect for explicitly self-interaction free DFT
- General consensus was 'it is not worth the trouble'

Paradox of SIC: How can anything so right be so wrong? Perdew et al. Adv. in Atomic, Mol, Opt. Phys. 64 (2015)

What do we know about SIC so far?

Calculated formation enthalpies (kcal/mol) for G2 test set

TABLE II. Deviations from experiment of standard enthalpies of formation $(\Delta_f H_{298}^\circ)$ for the G2-1 test set computed with self-interaction-corrected and self-interaction-uncorrected functionals using the 6-311 + G(3df,2p) basis set. The geometries and zero-point energies were obtained at the B3LYP/6-31G(2df,p) level using a frequency scale factor of 0.9854. All values are in kcal/mol.

	Functional	ME	MAE	Max (+)	Max (-)
DFT	SVWN5	-36.0	36.1	0.5 (Li ₂)	-86.1 (CO ₂)
	PBE	-6.6	8.1	10.7 (Si ₂ H ₆)	-28.9 (CO ₂)
	PBE0	1.4	2.9	9.8 (SiO)	-5.9 (BeH)
	BLYP	-2.8	4.8	10.7 (Si ₂ H ₆)	-15.4 (O ₂)
	B3LYP	-0.4	2.2	7.6 (SO ₂)	-8.0 (BeH)
	VSXC	-0.4	2.3	8.0 (N ₂ H ₄)	-7.5 (O ₂)
	TPSS	-3.6	4.5	5.6 (SiO)	-18.1 (Si ₂ H ₆)
212	PZ-SVWN5	-21.5	22.8	8.4 (SiO)	-89.2 (C ₂ H ₆)
310	PZ-PBE	10.0	12.5	63.6 (CO ₂)	-11.5 (PH ₂)
	PZ-PBE0	13.6	14.9	63.5 (CO ₂)	-7.7 (PH ₂)
	PZ-BLYP	18.6	21.0	99.7 (CO ₂)	-13.9 (PH ₂)
	PZ-B3LYP	15.7	18.7	86.0 (CO ₂)	-13.6 (Si ₂ H ₆)
	PZ-VSXC	13.6	16.5	69.4 (CO ₂)	-24.7 (Si ₂ H ₆)
	PZ-TPSS	15.0	19.5	83.9 (CO ₂)	-27.9 (Si ₂ H ₆)

- Results for LDA improved but any other functional worsens
- No significant improvement over standard DFT

Vydrov & Scuseria, J. Chem. Phys. 121, 8187 (2004)

For a given set of ψ_{α} orthonormal orbitals:

- Fermi-Löwdin orbitals: $F_i(\mathbf{r}) = \frac{\sum_{\alpha} \psi_{\alpha}^* (\mathbf{a}_i) \psi_{\alpha}(\mathbf{r})}{\sqrt{n(\mathbf{a}_i)}} \qquad n(\mathbf{a}_i) = \sum_{\alpha} |\psi_{\alpha}(\mathbf{a}_i)|^2$
- These Fermi orbitals $F_i(\mathbf{r})$ are normalized but not orthonormal
- Orthogonalization: Löwdin
- One localized orbital for each descriptor a_i (FOD)
- Replaces the unitary transformation from MOs \rightarrow LOs by $\{a_i\}$
- Still need to minimize the energy with respect to occupied space and a_i
- FLOSIC: Fermi-Löwdin Self-Interaction Correction

Pederson, Ruzsinszky, Perdew, J. Chem. Phys. 140, 121103 (2014)

- Effectively removes SIE
- Computationally more expensive than DFT, but scales better than previous SIC methods

DFT	Traditional PZ	FLOSIC
$E(\mathbb{P})$	$E(\mathbb{P},\mathbb{U})$	$E(\mathbb{P}, a)$
	+N(N-1)/2	+3N

• Fermi orbital descriptors contain chemical information

- One localized orbital per descriptor a_i
- FLOs are orthonormal
- In many cases initial FODs are easy to predict

Structure of the code (under development)

Atomic gradients also available: JCC 40, 820 (2019)

Highlights: Atomic Energies

- Total FLOSIC energy above PZ-SIC
- Most of the difference in ΔE comes from the 1s
- 1s contributions to AE cancel out

Physical properties identical

Whithanage et al., JCTC 14, 4122 (2018)

Highlights: The SIE11 Test Set

SIE4x4 and SIE11 test sets (from Grimme)

- Improved errors when SIC is important
- Less statistical dispersion than DFT

Sharkas et al., JPCA 122, 9307 (2018)

Highlights: Orbital Energies

Atomic orbital energies for 2s2p and 3s3p shells

- FLO-SIC orbital energies improved for core and valence levels
- Better approximations of removal energies
- Differential localization of *s*,*p*,*d* orbitals

Jackson et al., J. Phys. Conf. Ser. (in press, 2019)

Highlights: Magnetic Exchange Couplings

"Toy" system (4 e) that allows us to compare with very accurate wave function calculations

d (Å)	1.250	1.625	2.000
LSDA	-12493	-1494	-159
FLO-SIC	-5503	-632	-61
PBEh	-7041	-766	-74
B3LYP	-8415	-1007	-118
M06-2X	-7755	-958	-112
$\omega B97 XD$	-7174	-643	-46
PZ-SIC *	-5414	-614	-62
Full-CI *	-4860	-544	-50

* From Ruiz et al. JCP 123, 164110 (2005)

Joshi et al., JCP 149, 164101 (2018)

Highlights: Magnetic Exchange Couplings

FLOSIC calculations

- Effective core potentials (10 core electrons)
- Fully optimized FOD and orbitals
- Time consuming calculations

Method	[Cu ₂ Cl ₆] ²⁻	[Fe ₂ OCI ₆] ²⁻
LSDA	-493	-495
FLOSIC-LSDA	-201	-97
PBEh	-31	-377
B3LYP	-56	-443
M06-2X	23	-284
wB97XD	47	-384
Experiment	0 to -40	-112

J couplings in cm⁻¹

• FLOSIC reduces the AF interaction – same as hybrids

Joshi et al., JCP 149, 164101 (2018)

Summary

- SIC improves DFT in many aspects but harms "bonding" thermochemistry
- FLOSIC opens the possibility for practical self-interaction free DFT
- Need to combine efficient SIC algorithms with SIC-friendly DFT realizations

