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Time flies 

 
 
TBW: Seven years ago 

v SRPA:  
-  Range and conditions of validity  
-  (S)RPA vs linear-response theory vs density-functional 

theory  
 
 



Nomenclature: Which RPA? 

v pp-RPA 
n  From A to A±2 system  
n  Pairing interaction 
n  Ladder diagrams   

v ph-RPA 
n  Same number of particles 
n  Phonon excitations 
n  Ring diagrams  

v ph-2p2h-RPA (Second RPA) 
n  Extension of ph-RPA  
n  Related to phonon-phonon coupling  
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•  HF reference state 
•  Spherical systems (J good quantum number)  
•  Everything antisymmetrized  

Vary&Ginocchio(1971) etc 



And for which purpose?  

v Ground-state correlations  
n  Correction to the Hartree-Fock energy via the 

backward amplitudes  
n  Correction real in the absence of phase transitions 

(e.g. superfluidity in pp-RPA)   

v Excited states 
n  pp-RPA: 2-particle transfer, spectroscopy  
n  ph-RPA, ph-2p2h-RPA: Vibrational states, sound 

waves 
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Sum rules and conservation laws  

v External potential field V probes system with ground-
state density ρ0(r) 

n  Classical interpretation: relation between the average 
energy transferred and the impulse given to each 
nucleon  

n  Plane-wave field è f-sum rule [book: Pines&Nozières,1966]  

v Sound modes in nuclei: >50% of EWSR è “Giant 
resonances” [book: Harakeh&van der Woude, 2000]  
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Overview 

v RPA for sound waves   
n  Nuclear sound 
n  ph-RPA as linear-response theory 

v Second RPA – The past 7 years... and beyond 
n  SRPA and Thouless’ theorem  
n  Implications for first-order RPA  
n  Remarks on density-functional theory 

v Summary 
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Unofficial overview 

v The purist 
n  Thy shall not use SRPA based on the Hartree-Fock 

reference state. It suffers from inconsistencies and 
instabilities.  

v The practitioner  
n  If you are interested in [giant resonances / collective 

phonons, plasmons, ... / excitations exhausting most of 
the EWSR] it’s fine, it will even give you some fine 
structure and energy corrections   

v The contrarian  
n  Then why would I use RPA at all?  
n  When should I use what? I’m confused. 
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INTRODUCTION 
Nuclear sound 
Derivation and properties of (S)RPA  



Nuclear Giant Resonances 
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[“Giant resonances” book by Harakeh and van der Woude] 

IVGDR 



Nuclear Giant Resonances 
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[“Giant resonances” book by Harakeh and van der Woude] 

occupied (hole) states: 



The simplified picture The reality 

Normal modes of vibration 

Major part of the EWSR 

SRPA explored to explain attenuation 
(~30yrs ago) 



Equations-of-motion method 



Standard RPA 

For some in-medium 
Hamiltonian H 

•  Equivalent to small-amplitude Time-Dependent Hartree-Fock  
•  Linear Response Theory  



Second RPA 

Drożdż,Nishizaki,Speth,Wambach;Yannouleas; and others, early ‘90s 

For some in-medium Hamilto
nian H 



Second RPA 

linear response with collision 
term  

Drożdż,Nishizaki,Speth,Wambach;Yannouleas; and others, early ‘90s 



EoM for the one- and two-body density matrix 

n  One-body density matrix  
n  Hamiltonian 
 
n  Equation of motion  

n  Two-body density matrix 

n  Non-trivial part g 
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n  Then EoM takes the form  
n  With  
n  And a collision term  

J.Wambach, Rep.Prog.Phys.51(1988)989 



Small-amplitude limit: SRPA 

n  Expand around equilibrium values:  

n  Assume harmonic dependence:  

n  Linearization of the EoM yields:  

n  Linear response with collision term:  
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J.Wambach, Rep.Prog.Phys.51(1988)989 



Formal properties of RPA...   

 
v Solutions appear in adjoint pairs  
v If the stability condition is satisfied,  

solutions are real 
v The EWSR is preserved   (                                ) 

v ... and therefore spurious transitions have zero energy 
(restoration of symmetries) 
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[D.J.Rowe, Rev.Mod.Phys.40(1968)153] 
[D.J.Thouless, Nucl.Phys.22(1961)78] 
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[D.J.Rowe, Rev.Mod.Phys.40(1968)153] 
[D.J.Thouless, Nucl.Phys.22(1961)78] 
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... same for SRPA 

C.Yannouleas, PRC35(1987)1159 



... same for SRPA 

C.Yannouleas, PRC35(1987)1159 

|HF) NOT the vacuum of 2p2h states è ? 



 my ~2010 results 
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•  Softened realistic Hamiltonian (UCOM) 
•  No arbitrary truncations 
•  Explored: Energetic shift; EWSR; ph fragmentation; etc. 



VALIDITY OF SRPA 
What is at issue?  
  



Spurious states and instabilities in SRPA 

spurious admixtures 

Instability of low- 
energy states  



Formal properties: like RPA? 

We found:  
•  instances of imaginary 3-, 2+ 
•  spurious state at finite energy  

C.Yannouleas, PRC35(1987)1159 



Formal properties: like RPA? 

We found:  
•  instances of imaginary 3-, 2+ 
•  spurious state at finite energy  

C.Yannouleas, PRC35(1987)1159 

It is not! 
P.P., PRC90(2014)024305 



Thouless’ theorem and the stability condition 

v  Thouless’ theorem still holds: if all eigenvalues are real, the EWSR satisfies  

v  For H commuting with O, this means that the total EWSR must vanish.  

v  Q: Then how come there is spurious strength at finite energy?  

v  A: Positive-energy solutions with negative norm may exist:  
n  (Their negative-energy counterparts will cave postitive norm)  
n  Pairs of « antinormal » solutions: Nν Eν < 0   

v  Their contribution to the energy-weighted sum is negative  

v  As a result, a spurious state can contribute a finite but negative amount to the 
total spurious EWSR, such that the total spurious EWSR still vanishes -> 
Thouless’ theorem indeed holds  (demonstrated numerically)  

PP, PRC90,024305 
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Spurious strength in SRPA 

Use of intrinsic (corrected) operators  
remove spurious admixtures efficiently 

PP, PRC90,024305 



Numerical demonstration of Thouless’ theorem 
PP, PRC90,024305 

2+ of 48Ca:  

Numerical validation of Thouless’ theorem 



Spurious states and instabilities in SRPA 

spurious admixtures 

Instability of low- 
energy states  

Nonetheless: physical spectrum  
not much contaminated 



Spurious states and instabilities in SRPA 

spurious admixtures 

Instability of low- 
energy states  yet to do:  

self-consistent 
second-order  

formalism  

Nonetheless: physical spectrum  
not much contaminated 

Ø  Correlated ground state [P.Tohyama, P.Schuck; N.Pillet et al.] 
Ø  Subtraction method [Tselayev,...]  



SOME THINGS I DON’T 
UNDERSTAND YET 
The importance of the reference state 
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Validity of HF-RPA 

v HF reference state ensures consistency and good 
properties  
n  |HF) = vacuum of ph states è stability of RPA for 

physical states  
n  RPA = small-amplitude TDHF 

v Quality of quasi-boson approximation 
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PP, R.Roth, N.Paar, PRC75, 014310 

Red:HF-RPA 
Blue: “renormalized” 



HF-RPA, CC-RPA, IM-RPA 
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R.Trippel, PhD Thesis, TUD, 2016 



HF-SRPA vs IM-SRPA (no instabilities?) 
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R.Trippel, PhD Thesis, TUD, 2016 



CONCEPTUAL ISSUES 
RPA or SRPA?  
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Unofficial overview 

v The purist 
n  Thy shall not use SRPA based on the Hartree-Fock 

reference state. It suffers from inconsistencies and 
instabilities.  

v The practitioner  
n  If you are interested in [giant resonances / collective 

phonons, plasmons, ... / excitations exhausting most of 
the EWSR] it’s fine, it will even give you some fine 
structure and energy corrections   

v The contrarian  
n  Then why would I use RPA at all?  
n  When should I use what? I’m confused. 
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EDF basics 

v Interested in one-particle observables only  
n  Single-particle density encodes implicitly all relevant 

information.  
n  Then: E[ρ]; HF, RPA; (SRPA superfluous?)  

n  If I determine E[ρ] indirectly (from fits to data), I do not need to 
solve the A-particle Schrödinger equation! 

n  Density fluctuations: E[ρ0+δρ] ≈ E[ρ0] + δρ E’[ρ0]: linear response 

v Interested explicitly in two-particle observables  
n  E.g., 2-phonon states; width of GRs, collisions  
n  Two-particle density relevant 
n  Then: E[ρ,g]; correlated ground state, SRPA  
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Roughly two approaches 

v Given interaction + many-body method 
n  Variational reference state + Equations of Motion 
n  To lowest order, HF+RPA 
n  Systematic inclusion of correlations / mp-mh until 

convergence 

v Energy-density functionals + linear-response theory  

 
n  The order of truncation depends on the application 
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•  “Wave-function approach” [JT] 
•  Known Hamiltonian 

•  Kohn-Sham EFT [JT] 
•  E[ρ,...] known; Hamiltonian not necessarily known 
•  “black box” [AG] 



Energy density functional for KIDS 

v KIDS = Korea: IBS - Daegu - Sungkyunkwan 
v ( ή : Kyungpook - IBS - Daegu - Sungkyunkwan )  

•  Homogeneous matter -> Ansatz: kF powers  
•  Nuclear EDF by reverse engineering 
•  Success in dilute and dense matter and nuclear ground states  
Ø Poster by Hana Gil! 
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RPA: 
•  Kohn-Sham EFT 
•  E[ρ] known somehow  
•  Hamiltonian not necessarily known 
•  “black box” 
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RPA: 
•  Kohn-Sham EFT 
•  E[ρ] known somehow  
•  Hamiltonian not necessarily known 
•  “black box” 

SRPA, etc:  
•  “Wave-function approach” 
•  Known, perturbative Hamiltonian 
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RPA: 
•  Kohn-Sham EFT 
•  E[ρ] known somehow  
•  Hamiltonian not necessarily known 
•  “black box” 

SRPA, etc:  
•  “Wave-function approach” 
•  Known, perturbative Hamiltonian In the middle:  

Good E[ρ] and RPA; interested in fragmentation: subtraction method?  



... 
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