$a b$ initio VB/MM \& Interpretation

Performance of classical VB Calculations

Avital Shurki

Institute for Drug Research, The Lise-Meitner Minerva Center for Computational Quantum Chemistry
The Hebrew University of Jerusalem

Method Development - ab initio VB/MM

$$
H_{V B / M M}=H(V B)+H(M M)+H(V B / M M)
$$

Electrostatic:

* Mechanical Embedding
- Electrostatic Embedding
- Environment polarization

Electrostatic
HOW?

* Bonding - link atom scheme
+ VdW - classically
* Electrostatic:

Mechanical embedding each
VB structure
\rightarrow Wavefunction polarization (electrostatic embedding)
$\Psi_{R} \quad C \mid \cdot R \quad: \mathrm{COO}^{-}$

$$
\delta-
$$

Less

$$
\Psi_{\mathrm{P}} \quad \mathrm{Cl}: \quad \mathrm{R} \cdot \mathrm{OCO}
$$

More

Mechanical Embedding with each VB structure separately should include most of the wavefunction polarization.

$a b$ initio VB/MM

$$
H_{V B / M M}=H(V B)+H(M M)+H(V B / M M)
$$

Hii is the diabatic state energy:

$$
H_{i i}=H_{i i}(V B)+H_{i i}^{\text {int }}+\left[\begin{array}{l}
H(M M) \\
H_{i i}^{\text {int }} \text { is calculated classically }
\end{array}\right.
$$

How to calculate Hij?
Assumption: Both overlap $S_{i j}$ and reduced resonance integral, $\beta_{i j}$, are invariant to the environment.

$$
\beta_{i j}^{g a s}=\beta_{i j}^{e n v} \quad S_{i j}^{\text {gas }}=S_{i j}^{e n v}
$$

$$
\begin{aligned}
& \beta_{i j}=H_{i j}-\frac{1}{2}\left(H_{i i}+H_{i j}\right) S_{i j} \\
& H_{i j}=H_{i j}^{0}(V B)+\frac{1}{2}\left(H_{i i}^{\mathrm{int}}+H_{i j}^{\mathrm{int}}\right) S_{i j}
\end{aligned}
$$

Solve new matrix, Get new wavefuncetion

This formula will serve also in the general case

$a b$ initio VB/MM

New matrix is solved:

$$
\begin{array}{ll}
H_{11}^{0}+H_{11}^{\mathrm{int}} & H_{12}^{0}+\frac{1}{2}\left(H_{11}^{\mathrm{int}}+H_{22}^{\mathrm{int}}\right) S_{12} \\
H_{21}^{0}+\frac{1}{2}\left(H_{11}^{\mathrm{int}}+H_{22}^{\mathrm{int}}\right) S_{21} & H_{22}^{0}+H_{22}^{\mathrm{int}}
\end{array}
$$

New wavefunction, and energy are obtained:

$$
E_{\text {total }}=E+H^{O}(M M)
$$

Relax the environment accordingly and repeat
Finally, for the reaction profile:
use potential of mean force (PMF) combined with FEP/US

Anti-catalytic effect of known mutants

	Calculated $\Delta \Delta g_{w t \rightarrow \text { mut }}^{\ddagger \ddagger \mathrm{FEP})}$	Calculated $\Delta \Delta g_{w \rightarrow m u t}^{\ddagger(\mathrm{LRA})}$	Observed $\Delta \Delta g_{w \rightarrow \text { rimut }}^{\ddagger(\text { (obs })}$
wt	0.0	0.0	0.0
W125F	2.4	4.7	≤ 2.3
W175Y	5.4	4.7	≤ 3.0
W175F	0.9	3.2	<3.0
F172W	0.4	1.6	1.4

$\varepsilon=4$
LRA - Agreement of LRA with experimental trends suggest that electrostatics has a major role in catalysis.

The advantage of LRA is its additivity

Hot Spots Identification

Contribution of particular residues to differential solvation

VB Interpretation

- Trp 175 is catalytic due to better solvation in the TS

total catalysis $=-4.1 \mathrm{kcal} / \mathrm{mol}$
"catalytic"

Contribution of particular VB structure.
Total solvation is approximated as sum of weighted VB solvations.

$$
\Delta G_{R S, s o l} \approx W_{\Phi c o v R}{ }^{\star} \Delta G_{R S, \text { sol }, \Phi c o v R}+W_{\Phi c o v P}{ }^{*} G_{R S, \text { sol }, \Phi c o v P}+\ldots
$$

VB Interpretation

- The main contribution to this effect comes from the higher TS stabilization of both $\Phi_{\text {ion }}$ and $\Phi_{\text {cov }}$

total catalysis $=-4.1 \mathrm{kcal} / \mathrm{mol}$
"catalytic"
Asp $_{124}-\mathrm{COO}^{:^{-}} \quad \mathrm{CH}_{3} \bullet \mathrm{Cl}$

$$
\phi_{\text {cov }}^{\mathrm{R}}=0.5
$$

$$
\phi_{\mathrm{cov}}^{\mathrm{P}}=-1.3
$$

Trp175 is indeed known to stabilize the leaving chloride

Performance of VB calculations

$$
\begin{aligned}
& \text { Hydrogen Transfer Reactions } \\
& \mathrm{OH}+\mathrm{CH}_{4} \rightleftharpoons \begin{array}{l}
\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}+\mathrm{OH} \rightleftharpoons \\
\mathrm{O}+\mathrm{H}_{2} \\
\mathrm{H}+\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}_{2}+\mathrm{HS}
\end{array}
\end{aligned}
$$

Truhlar's HTBH6 set of diverse reactions for benchmark calculations of barrier heights for hydrogen transfer reactions

Maybe create a benchmark for strongly correlated systems that includes e.g. molecules people in this workshop have been testing - or something else...?

