

Intermolecular Interactions: RPA *et al.*

Alexandre Tkatchenko Theory Department, Fritz-Haber-Institut der MPG

January 28 2010, Paris

Acknowledgments

Xinguo Ren Patrick Rinke

Andrea Sanfilippo

Matthias Scheffler

Acknowledgments

Xinguo Ren Patrick Rinke

Andrea Sanfilippo

Matthias Scheffler

V. Blum et al. Comp. Phys. Comm. (2009).

Mission: Intermolecular Interactions

Benzene dimer

Podeszwa, Bukowski, Szalewicz, J. Phys. Chem. A (2006)

Mission: Intermolecular Interactions

Benzene dimer

Podeszwa, Bukowski, Szalewicz, J. Phys. Chem. A (2006)

Nitrogen – benzene Intermolecular Interactions: Interplay of *Repulsion*, *Electrostatics*, and *Dispersion*

Intermolecular Interactions: Interplay of *Repulsion*, *Electrostatics*, and *Dispersion*

Podeszwa, Bukowski, Szalewicz, J. Phys. Chem. A (2006)

Electronic structure methods

Jacob's ladder

e.g, RPA hybrid meta-GGA GGA LDA

• LDA / GGA / meta-GGA / hybrid

Very successful, but have several deficiencies:

- Self-interaction error
- No long-range dispersion interaction
- and more ...
- Attractive features of RPA
 - Exact exchange greatly reduces selfinteraction
 - Dispersion interaction included
 - Electronic screening taken into account

Exact exchange-correlation energy from ACFDT:

$$\mathbf{E}_{\mathrm{XC}} = -\frac{1}{2} \int_{0}^{1} \mathrm{d}\lambda \int \mathrm{d}\mathbf{r} \int \mathrm{d}\mathbf{r}' \mathbf{v}(\mathbf{r} - \mathbf{r}') \left[\frac{1}{\pi} \int_{0}^{\infty} \mathrm{d}\omega X_{\lambda}(\mathrm{i}\omega) + \mathbf{n}(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}') \right]$$

Exact exchange-correlation energy from ACFDT:

$$\mathbf{E}_{\mathrm{XC}} = -\frac{1}{2} \int_{0}^{1} \mathrm{d}\lambda \int \mathrm{d}\mathbf{r} \int \mathrm{d}\mathbf{r}' \mathbf{v}(\mathbf{r} - \mathbf{r}') \left[\frac{1}{\pi} \int_{0}^{\infty} \mathrm{d}\omega X_{\lambda}(\mathbf{i}\omega) + \mathbf{n}(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}') \right]$$

In practice, RPA calculation performed as post LDA/GGA correction:

$$\mathbf{E}_{\mathbf{RPA}} \!=\! \mathbf{E}_{\mathbf{LDA}/\mathbf{GGA}} \!-\! \mathbf{E}_{\mathbf{LDA}/\mathbf{GGA}}^{\mathbf{XC}} \!+\! \mathbf{E}_{\mathbf{EXX}} \!+\! \mathbf{E}_{\mathbf{RPA}}^{\mathbf{c}}$$

Exact exchange-correlation energy from ACFDT:

$$E_{\rm XC} = -\frac{1}{2} \int_{0}^{1} d\lambda \int d\mathbf{r} \int d\mathbf{r}' \mathbf{v} (\mathbf{r} - \mathbf{r}') \left[\frac{1}{\pi} \int_{0}^{\infty} d\omega \chi_{\lambda}(i\omega) + n(\mathbf{r}) \delta(\mathbf{r} - \mathbf{r}') \right]$$

In practice, RPA calculation performed as post LDA/GGA correction:

$$\mathbf{E}_{\mathbf{RPA}} = \mathbf{E}_{\mathbf{LDA}/\mathbf{GGA}} - \mathbf{E}_{\mathbf{LDA}/\mathbf{GGA}}^{\mathbf{XC}} + \mathbf{E}_{\mathbf{EXX}} + \mathbf{E}_{\mathbf{RPA}}^{\mathbf{c}}$$

Exact-exchange using LDA/GGA orbitals:

$$E_{EXX} = -\frac{1}{2} \sum_{\sigma} \sum_{i,j}^{occ} \int d\mathbf{r} \int d\mathbf{r}' \frac{\psi_{i\sigma}^{*}(\mathbf{r})\psi_{j\sigma}(\mathbf{r})\psi_{j\sigma}^{*}(\mathbf{r}')\psi_{i\sigma}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

Exact exchange-correlation energy from ACFDT:

$$\mathbf{E}_{\mathrm{XC}} = -\frac{1}{2} \int_{0}^{1} \mathrm{d}\lambda \int \mathrm{d}\mathbf{r} \int \mathrm{d}\mathbf{r}' \mathbf{v}(\mathbf{r} - \mathbf{r}') \left[\frac{1}{\pi} \int_{0}^{\infty} \mathrm{d}\omega X_{\lambda}(\mathrm{i}\omega) + \mathbf{n}(\mathbf{r}) \delta(\mathbf{r} - \mathbf{r}') \right]$$

In practice, RPA calculation performed as post LDA/GGA correction:

$$\mathbf{E}_{\text{RPA}} = \mathbf{E}_{\text{LDA/GGA}} - \mathbf{E}_{\text{LDA/GGA}}^{\text{XC}} + \mathbf{E}_{\text{EXX}} + \mathbf{E}_{\text{RPA}}^{\text{c}}$$

Exact-exchange using LDA/GGA orbitals:

$$\mathbf{E}_{\mathrm{EXX}} = -\frac{1}{2} \sum_{\sigma} \sum_{i,j}^{\mathrm{occ}} \int d\mathbf{r} \int d\mathbf{r}' \frac{\psi_{i\sigma}^{*}(\mathbf{r}) \psi_{j\sigma}(\mathbf{r}) \psi_{j\sigma}^{*}(\mathbf{r}') \psi_{i\sigma}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|}$$

RPA correlation energy within ACFDT:

$$\mathbf{E}_{\mathrm{RPA}}^{\mathrm{c}} = \frac{1}{2\pi} \int_{0}^{\infty} \mathrm{d}\,\omega \,\mathrm{Tr} \big[\ln\left(1 - \chi_{0}(\mathrm{i}\,\omega)\,\mathrm{v}\right) + \chi_{0}(\mathrm{i}\,\omega)\,\mathrm{v} \big]$$

RPA: Exchange and correlation

- In principle, both exchange and correlation have to be calculated self-consistently, but this is too computationally expensive.
- Exchange:
 - Different input orbitals can lead to different results
 - Self-consistency could matter and feasible
- Correlation:
 - Self-consistency could be important, but so far not feasible (for real systems)

RPA: Exchange and correlation

- In principle, both exchange and correlation have to be calculated self-consistently, but this is too computationally expensive.
- Exchange:
 - Different input orbitals can lead to different results
 - Self-consistency could matter and feasible
- Correlation:
 - Self-consistency could be important, but so far not feasible (for real systems)

What is usually done: Compute DFT wavefunction. Then calculate EX and RPA correlation *in one shot.*

MP2+ΔvdW: Tkatchenko, DiStasio Jr., Head-Gordon, Scheffler, JCP (2009).

N₂@graphite: Comparison with experimental desorption enthalpy

Experimental N₂ H_{des} (extrap. to zero coverage) : $100 - 108 \text{ meV}^{(1)}$

 $MP2+\Delta v dW (HF+cRPA): 105 \text{ meV} - 8 \text{ meV ZPE} + 10 \text{ meV} (graphite) : 107 \text{ meV}$

PBE+vdW:143 meV - 8 meV ZPE+ 10 meV (graphite): 145 meV

MP2+∆vdW, HF+cRPA and PBE+vdW predict the binding distance as 3.3 Å

⁽¹⁾ Grillet et al. J. Phys. (Paris) Colloq. (1977); Bojan, Steele, Langmuir (1987); Piper et al. J. Chem. Soc Faraday Trans. (1983).

Method performance for intermolecular interactions: S22 database

S22: Jurecka, Sponer, Cerny, Hobza, PCCP (2006).

How good RPA is for long-range dispersion ?

Dispersion energy asymptotics

No orbital overlap (large enough **R**):

$$E_{\rm A-B}(R) = -\left(\frac{C_6}{R^6} + \frac{C_8}{R^8} + \frac{C_{10}}{R^{10}} + \dots\right)$$

Dispersion energy asymptotics

No orbital overlap (large enough **R**):

$$E_{\rm A-B}(R) = -\left(\frac{C_6}{R^6} + \frac{C_8}{R^8} + \frac{C_{10}}{R^{10}} + \dots\right)$$

Dispersion energy asymptotics

No orbital overlap (large enough **R**):

$$E_{A-B}(R) = -\left(\frac{C_6}{R^6} + \frac{C_8}{R^8} + \frac{C_{10}}{R^{10}} + \dots\right)$$
$$C_{6AB} = \frac{3}{\pi} \int_0^\infty \alpha_A(i\omega)\alpha_B(i\omega)d\omega$$

Accurate experimental C_6 database for comparison with theory

Differential dipole oscillator strength (DOS)

 $S(k) = \int_{E_0}^{\infty} E^k \left(\frac{df}{dE}\right) dE$

⁽¹⁾ W. J. Meath and co-workers (1977-present)

Accurate experimental C_6 database for comparison with theory

$$S(k) = \int_{E_0}^{\infty} E^k \left(\frac{df}{dE}\right) dE$$

n

Experimental data (DOSD)

$$S(k) = \sum_{i=1}^{n} \epsilon_i^k f_i, \quad k = 0, -1, \dots, -2n+1$$
 Theory (pseudo-DOSD)

$$C_{6AB} = \frac{3}{2} \sum_{i,j} \frac{f_i^A f_j^B}{\epsilon_i^A \epsilon_j^B (\epsilon_i^A + \epsilon_j^B)}$$

Using different sets of exp. S(k) data, C_{6AB} is typically accurate to 1-2%

⁽¹⁾ W. J. Meath and co-workers (1977-present)

Accurate experimental C_6 database for comparison with theory

$$S(k) = \int_{E_0}^{\infty} E^k \left(\frac{df}{dE}\right) dE$$

n

Experimental data (DOSD)

$$S(k) = \sum_{i=1}^{n} \epsilon_i^k f_i, \quad k = 0, -1, \dots, -2n+1 \quad \text{Theory (pseudo-DOSD)}$$

$$C_{6AB} = \frac{3}{2} \sum_{i,j} \frac{f_i^A f_j^B}{\epsilon_i^A \epsilon_j^B (\epsilon_i^A + \epsilon_j^B)}$$

Using different sets of exp. S(k) data, C_{6AB} is typically accurate to 1-2%

Data obtained for atoms, alkanes, alkenes, alkynes, alcohols, H₂, N₂, H₂S, NH₃, SO₂, COS, CO₂, CS₂, SiH₄, CCl₄, etc. (**50 atoms and molecules – 1225 interaction pairs**)

Tkatchenko and Scheffler, PRL (2009).

C₆ coefficients: Performance of different theories

C₆ coefficients: Performance of different theories

Take-home messages

- Intermolecular interactions: Hard nut to crack. Only CCSD(T) and beyond yield consistently accurate results.
- Understanding is emerging about shortcomings of different methods (DFT, MP2, RPA, ...)
- RPA is very promising, but HF exchange has to be used for accurate electrostatics.
- Asymptotic dispersion interaction is underestimated in RPA, but is highly consistent !

Take-home messages

- Intermolecular interactions: Hard nut to crack. Only CCSD(T) and beyond yield consistently accurate results.
- Understanding is emerging about shortcomings of different methods (DFT, MP2, RPA, ...)
- RPA is very promising, but HF exchange has to be used for accurate electrostatics.
- Asymptotic dispersion interaction is underestimated in RPA, but is highly consistent !

Bright future for Us and RPA ! (and some work still left ...)