On Low Energy Excited Spectra of Super and Hyper-deformed Shape Isomers in

 the Preactinide Region of NucleiB. Nerlo-Pomorska, K. Pomorski, J. Bartel*, C. Schmitt*,**

UMCS, Lublin, Poland, * IPHC, Strasbourg, France, ** GANIL, Caen, France

in this region are strongly encouraged.

Summary

Our investigations of the liquid-drop fission barriers heights and their shapes performed in Ref. [2] in a variational calculation have shown that the fission barriers of medium-heavy nuclei are very broad and do not decrease rapidly when going from the saddle to the scission point. This property of the macroscopic energy offers a chance that in this region of nuclei shell effects may produce local minima corresponding to a large nuclear elongation. As first candidates,
we have chosen the chains of Polonium , Radium and Thorium [8] isotopes, and we have chosen the chains of Polonium, Radium and Thorium $[8]$ isotopes, and
we have shown that the microscopic energy corrections can, indeed, produce we have shown that the microscopic energy corrections can, indeed, produce
pronounced minima in the rather flat macroscopic potential-energy surfaces pronounced minima in the rather flat macroscopic potential-energy surfaces
corresponding to $\mathrm{Pt}-\mathrm{Pu}$ isotopes. The electric quadrupole moments for all corresponding to $\mathrm{Pt}-\mathrm{Pu}$ isotopes. The electric quadrupole moments for all
the ground states and isomers were found and they reproduce rather well the the ground states and isomers were found and they reproduce rather well the
data in the ground states. In the case of very flat potential energy valleys the minima are not precise, so the agreement can be worse. The large $B(E 2)$ the minima are not precise, so the agreement can be worse.
transition probability corresponding to an electric quadrupole moment could be a fingerprint for such ultra-deformed isomers. We hope that in the near future this new island of super-, hyper- and ultra-deformed shape isomers will be discovered in the experimental analysis.

Acknowledgements:

This work has been partly supported by the Polish-French COPIN-IN2P3 collaboration agreement under project number 08-131 and by the Polish National Science Centre, grant No. 2013/11/B/ST2/04087.

References

[1] K. Pomorski and J. Dudek, Phys. Rev. C67, 044316 (2003)
[2] F. Ivanyuk, K. Pomorski, Phys. Rev. C 79, 054327 (2009).
[3] K.T.R. Davies and J.R. Nix, Phys. Rev. C14, 1977 (1976)
[4] V.M. Strutinsky, Nucl. Phys. A95, 420 (1967).
[5] S.G. Nilsson et al., Nucl. Phys. A131, 1 (1969).
[6] K. Pomorski, B. Nerlo Pomorska, J. Bartel, C. Schmitt, Acta. Phys. Polon B Supl. 8, 667 (2015).
[7] B. Nerlo Pomorska, K. Pomorski, J. Bartel, C. Schmitt, Phys. Rev. C 95, 034612 (2017).
[8] B. Nerlo Pomorska, K. Pomorski, J. Bartel, C. Schmitt, Acta. Phys. Polon Sup.10, 173 (2017).
[9] B. Nerlo Pomorska, K. Pomorski, J. Bartel, C. Schmitt, Acta. Phys. Polon.B48, 451 (2017).
[10] A.N. Andreyev, et al. , Phys. Rev. Lett. 105, 252502 (2010)
[11] T. Ichikawa, A. Iwamoto, P. Moller, and A.J. Sierk, Phys. Rev. C86, 024610 (2012).
[12] A. N. Andreyev et al. Nature 405, 430 (2000).
[13] B. Nerlo Pomorska, K. Pomorski, J. Bartel, Phys. Rev. C 84044310 (2011). [14] L. Ghys et al., Phys. Rev. C 90, 041301(R) 2013.
[15] K.-H. Schmidt, et al., Nucl. Phys. A665, 221 (2000).

