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INTRODUCTION

The new quantum mechanics of Heisenberg and Schrödinger have pro-
vided chemistry with two general theories of bonding: valence bond (VB)
theory and molecular orbital (MO) theory. The two were developed at about
the same time, but quickly diverged into rival schools that have competed,
sometimes fervently, in charting the mental map and epistemology of chemis-
try. Until the mid-1950s, VB theory dominated chemistry; then, MO theory
took over while VB theory fell into disrepute and was soon almost completely
abandoned. From the 1980s onward, VB theory made a strong comeback and
has ever since been enjoying a renaissance both in qualitative applications of
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the theory and the development of new methods for computational implemen-
tation.1

One of the great merits of VB theory is its visually intuitive wave func-
tion, expressed as a linear combination of chemically meaningful structures. It
is this feature that made VB theory so popular in the 1930s–1950s, and, iro-
nically, it is the same feature that accounts for its temporary demise (and ulti-
mate resurgence). The comeback of this theory is, therefore, an important
development. A review of VB theory that highlights its insight into chemical
problems and discusses some of its state-of-the-art methodologies is timely.

This chapter is aimed at the nonexpert and designed as a tutorial for
faculty and students who would like to teach and use VB theory, but possess
only a basic knowledge of quantum chemistry. As such, an important focus of
the chapter will be the qualitative wisdom of the theory and the way it applies
to problems of bonding and reactivity. This part will draw on material dis-
cussed in previous works by the authors. Another focus of the chapter will
be on the main methods available today for ab initio VB calculations. How-
ever, much important work of a technical nature will, by necessity, be left out.
Some of this work (but certainly not all) is covered in a recent monograph on
VB theory.1

A STORY OF VALENCE BOND THEORY, ITS
RIVALRY WITH MOLECULAR ORBITAL THEORY,
ITS DEMISE, AND EVENTUAL RESURGENCE

Since VB has achieved a reputation in some circles as an obsolete theory,
it is important to give a short historical account of its development including
the rivalry of VB and MO theory, the fall from favor of VB theory, and the
reasons for the dominance of MO theory and the eventual resurgence of VB
theory. Part of the historical review is based on material from the fascinating
historical accounts of Servos2 and Brush.3,4 Other parts are not published his-
torical accounts, but rational analyses of historical events, reflecting our own
opinions and comments made by colleagues.

Roots of VB Theory

The roots of VB theory in chemistry can be traced to the famous paper of
Lewis ‘‘The Atom and The Molecule’’,5 which introduces the notions of elec-
tron-pair bonding and the octet rule.2 Lewis was seeking an understanding of
weak and strong electrolytes in solution, and this interest led him to formulate
the concept of the chemical bond as an intrinsic property of the molecule that
varies between the covalent (shared-pair) and ionic situations. Lewis’ paper
predated the introduction of quantum mechanics by 11 years, and constitutes
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the first formulation of bonding in terms of the covalent–ionic classification. It
is still taught today and provides the foundation for the subsequent construc-
tion and generalization of VB theory. Lewis’ work eventually had its greatest
impact through the work of Langmuir who articulated Lewis’ model and
applied it across the periodic table.6

The overwhelming support of the chemistry community for Lewis’ idea
that electron pairs play a fundamental role in bonding provided an exciting
agenda for research directed at understanding the mechanism by which an
electron pair could constitute a bond. The nature of this mechanism remained,
however, a mystery until 1927 when Heitler and London traveled to Zurich to
work with Schrödinger. In the summer of the same year they published their
seminal paper, Interaction between Neutral Atoms and Homopolar Bind-
ing,7,8 in which they showed that the bonding in H2 can be accounted for
by the wave function drawn in 1, in Scheme 1. This wave function is a super-

position of two covalent situations in which one electron is in the spin up con-
figuration (a spin), while the other is spin down (b spin) [form (a)], and vice
versa in the second form (b). Thus, the bonding in H2 was found to originate in
the quantum mechanical ‘‘resonance’’ between the two situations of spin
arrangement required to form a singlet electron pair. This ‘‘resonance energy’’
accounted for �75% of the total bonding of the molecule, and thereby sug-
gested that the wave function in 1, which is referred to henceforth as the
HL (Heitler–London) wave function, can describe the chemical bonding in a
satisfactory manner. This ‘‘resonance origin’’ of bonding was a remarkable
insight of the new quantum theory, since prior to that time it was not obvious
how two neutral species could bond.

The notion of resonance was based on the work of Heisenberg,9 who
showed that, since electrons are indistinguishable particles then, for a two-
electron system, with two quantum numbers n and m, there exist two wave

Scheme 1
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functions that are linear combinations of the two possibilities of arranging
these electrons, as shown in Eq. [1].

�A ¼ ð1=
ffiffiffi
2

p
Þ½fnð1Þfmð2Þ þ fnð2Þfmð1Þ� ½1a�

�B ¼ ð1=
ffiffiffi
2

p
Þ½fnð1Þfmð2Þ 	 fnð2Þfmð1Þ� ½1b�

As demonstrated by Heisenberg, the mixing of [fnð1Þfmð2Þ] and [fnð2Þfmð1Þ]
led to a new energy term that caused splitting between the two wave functions
�A and �B. He called this term ‘‘resonance’’ using a classical analogy of two
oscillators that by virtue of possessing the same frequency resonate with a
characteristic exchange energy. In the winter of 1928, London extended the
HL wave function and formulated the general principles of covalent or homo-
polar bonding.8,10 In both this and the earlier paper7,10 the authors considered
ionic structures for homopolar bonds, but discarded their mixing as being too
small. In London’s paper,10 the ionic (so-called polar) bond is also considered.
In essence, HL theory was a quantum mechanical version of Lewis’ shared-
pair theory. Even though Heitler and London did their work independently
and perhaps did not know of the Lewis model, the HL wave function
described precisely the shared pair of Lewis. In fact, in his landmark paper,
Pauling points out that the HL8 and London’s later treatments are ‘‘entirely
equivalent to G.N. Lewis’s successful theory of shared electron pair. . .’’.11

The HL wave function formed the basis for the version of VB theory
that became very popular later, but was also the source of some of the failings
that were to later plague VB theory. In 1929, Slater presented his determinant
method.12 In 1931, he generalized the HL model to n-electrons by expressing
the total wave function as a product of n/2 bond wave functions of the HL
type.13 In 1932, Rumer14 showed how to write down all the possible bond
pairing schemes for n-electrons and avoid linear dependencies between the
forms, which are called canonical structures. We shall hereafter refer to the
kind of VB theory that considers only covalent structures as VBHL. Further
refinement of the new bonding theory between 1928 and 1933 were mostly
quantitative,15 focusing on improvement of the exponents of the atomic orbi-
tals by Wang, and on the inclusion of polarization functions and ionic terms
by Rosen and Weinbaum.

The success of the HL model and its relation to Lewis’ model, posed a
wonderful opportunity for the young Pauling and Slater to construct a general
quantum chemical theory for polyatomic molecules. They both published, in
the same year, 1931, several seminal papers in which they each developed the
notion of hybridization, the covalent–ionic superposition, and the resonating
benzene picture.13,16–19 Especially effective were Pauling’s papers that linked
the new theory to the chemical theory of Lewis, and that rested on an encyclo-
pedic command of chemical facts. In the first paper,18 Pauling presented the
electron-pair bond as a superposition of the covalent HL form and the two
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possible ionic forms of the bond, as shown in 2 in Scheme 1, and discussed the
transition from covalent to ionic bonding. He then developed the notion of
hybridization and discussed molecular geometries and bond angles in a variety
of molecules, ranging from organic to transition metal compounds. For the lat-
ter compounds, he also discussed the magnetic moments in terms of the
unpaired spins. In the second paper,19 Pauling addressed bonding in molecules
like diborane, and odd-electron bonds as in the ion molecule Hþ

2 and dioxy-
gen, O2, which Pauling represented as having two three-electron bonds, as
shown in 3 in Scheme 1. These two papers were followed by more papers,
all published during 1931–1933 in the Journal of the American Chemical
Society, and collectively entitled ‘‘The Nature of the Chemical Bond’’. This
series of papers allowed one to describe any bond in any molecule, and culmi-
nated in Pauling’s famous monograph20 in which all structural chemistry of
the time was treated in terms of the covalent–ionic superposition theory, reso-
nance theory, and hybridization theory. The book, published in 1939, was
dedicated to G.N. Lewis, and, in fact, the 1916 paper of Lewis is the only
reference cited in the preface to the first edition. Valence bond theory is, in
Pauling’s view, a quantum chemical version of Lewis’ theory of valence. In
Pauling’s work, the long sought for Allgemeine Chemie (Generalized Chemis-
try) of Ostwald was, thus, finally found.2

Origins of MO Theory and the Roots of VB–MO Rivalry

At the same time that Slater and Pauling were developing their VB
theory,17 Mulliken21–24 and Hund25,26 were working on an alternative approach,
which would eventually be called molecular orbital (MO) theory. The actual
term (MO theory) does not appear until 1932, but the roots of the method can
be traced to earlier papers from 1928,21 in which both Hund and Mulliken
made spectral and quantum number assignments of electrons in molecules,
based on correlation diagrams of separated to united atoms. According to
Brush,3 the first person to write a wave function for a molecular orbital was
Lennard-Jones in 1929, in his treatment of diatomic molecules. In this paper,
Lennard-Jones shows with facility that the O2 molecule is paramagnetic, and
mentions that the VBHL method runs into difficulties with this molecule.27 In
MO theory, the electrons in a molecule occupy delocalized orbitals made from
linear combinations of atomic orbitals (LCAO). Drawing 4, Scheme 1, shows
the molecular orbitals of the H2 molecule; the delocalized sg MO should be
contrasted with the localized HL description in 1.

The work of Hückel in the early 1930s initially received a chilly recep-
tion,28 but eventually Hückel’s work gave MO theory an impetus and devel-
oped into a successful and widely applicable tool. In 1930, Hückel used
Lennard-Jones’ MO ideas on O2, applied it to C				X (X ¼ C, N, O) double
bonds and suggested the concept of s–p separation.29 With this novel treat-
ment, Hückel ascribed the restricted rotation in ethylene to the p-type orbital.
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Equipped with this facility of s–p separability, Hückel solved the electronic
structure of benzene using both VBHL theory and his new Hückel MO
(HMO) approach, the latter giving better ‘‘quantitative’’ results, and hence
being preferred.30 The p-MO picture, 5 in Scheme 2, was quite unique in
the sense that it viewed the molecule as a whole, with a s-frame dressed by
p-electrons that occupy three completely delocalized p-orbitals. The HMO
picture also allowed Hückel to understand the special stability of benzene.

Thus, the molecule was found to have a closed-shell p-component and its
energy was calculated to be lower relative to three isolated p bonds in ethyl-
ene. In the same paper, Hückel treated the ion molecules of C5H5 and
C7H7 as well as the molecules C4H4 (CBD) and C8H8 (COT). This allowed
him to understand why molecules with six p-electrons have special stability,
and why molecules like COT or CBD either do not possess this stability
(COT) or had not yet been synthesized (CBD). Already in this paper and in
a subsequent one,31 Hückel begins to lay the foundations for what will become
later known as the ‘‘Hückel Rule’’, regarding the special stability of
‘‘aromatic’’ molecules with 4n þ 2 p-electrons.3 This rule, its extension to
‘‘antiaromaticity’’, and its articulation by organic chemists in the 1950–
1970s would become a major cause of the acceptance of MO theory and rejec-
tion of VB theory.4

The description of benzene in terms of a superposition (resonance) of
two Kekulé structures appeared for the first time in the work of Slater, as a
case belonging to a class of species in which each atom possesses more neigh-
bors than electrons it can share.16 Two years later, Pauling and Wheland32

applied the VBHL theory to benzene. They developed a less cumbersome com-
putational approach, compared with Hückel’s previous VBHL treatment,

Scheme 2
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using the five canonical structures, in 6 in Scheme 2, and approximated the
matrix elements between the structures by retaining only close neighbor reso-
nance interactions. Their approach allowed them to extend the treatment to
naphthalene and to a great variety of other species. Thus, in the VBHL
approach, benzene is described as a ‘‘resonance hybrid’’ of the two Kekulé
structures and the three Dewar structures; the latter had already appeared
before in Ingold’s idea of mesomerism. In his book, published for the first
time in 1944, Wheland explains the resonance hybrid with the biological ana-
logy of mule ¼ donkey þ horse.33 The pictorial representation of the wave
function, the link to Kekulé’s oscillation hypothesis, and the connection to
Ingold’s mesomerism, all of which were known to chemists, made the
VBHL representation very popular among practicing chemists.

With these two seemingly different treatments of benzene, the chemical
community was faced with two alternative descriptions of one of its molecular
icons. Thus began the VB–MO rivalry that continues to the twenty-first
century. The VB–MO rivalry involved many prominent chemists (to mention
but a few names, Mulliken, Hückel, J. Mayer, Robinson, Lapworth, Ingold,
Sidgwick, Lucas, Bartlett, Dewar, Longuet-Higgins, Coulson, Roberts, Win-
stein, Brown, etc.). A detailed and interesting account of the nature of this riv-
alry and the major players can be found in the treatment of Brush.3,4

Interestingly, as early as the 1930s, Slater17 and van Vleck and Sherman34 sta-
ted that since the two methods ultimately converge, it is senseless to quibble
about the issue of which one is better. Unfortunately, however, this rational
attitude does not seem to have made much of an impression.

The ‘‘Dance’’ of Two Theories: One Is Up,
the Other Is Down

By the end of World War II, Pauling’s resonance theory had become
widely accepted while most practicing chemists ignored HMO and MO theo-
ries. The reasons for this are analyzed by Brush.3 Mulliken suggested that
the success of VB theory was due to Pauling’s skill as a propagandist. Accord-
ing to Hager (a Pauling biographer) VB theory won out in the 1930s because
of Pauling’s communication skills. However, the most important reason for its
dominance is the direct lineage of VB-resonance theory to the structural con-
cepts of chemistry dating from the days of Kekulé. Pauling himself emphasized
that his VB theory is a natural evolution of chemical experience, and that it
emerges directly from the concept of the chemical bond. This has made VB-
resonance theory appear intuitive and ‘‘chemically correct’’. Another great
promoter of VB-resonance theory was Ingold who saw in it a quantum chemi-
cal version of his own ‘‘mesomerism’’ concept (according to Brush, the terms
resonance and mesomerism entered chemical vocabulary at the same time, due
to Ingold’s assimilation of VB-resonance theory; see Brush,3 p. 57). Another
very important reason for the early acceptance of VB theory is the facile
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qualitative application of this theory to all known structural chemistry of the
time (in Pauling’s book20) and to a variety of problems in organic chemistry (in
Wheland’s book33). The combination of an easily applicable general theory
and its good fit to experiment, created a rare credibility nexus. By contrast,
MO theory seemed diametrically opposed to everything chemists had thought
was true about the nature of the chemical bond. Even Mulliken admitted that
MO theory departs from ‘‘chemical ideology’’ (see Brush,3 p. 51). And to com-
plete this sad state of affairs, in this early period MO theory offered no visual
representation to compete with the resonance hybrid representation of
VB-resonance theory. For all these reasons, by the end of World War II,
VB-resonance theory dominated the epistemology of chemists.

By the mid-1950s, the tide had started a slow turn in favor of MO
theory, a shift that gained momentum through the mid-1960s. What caused
the shift is a combination of factors, of which the following two may be deci-
sive. First, there were the many successes of MO theory: the experimental ver-
ification of Hückel’s rules;28 the construction of intuitive MO theories and
their wide applicability for rationalization of structures (e.g., Walsh diagrams)
and spectra [electronic and electron spin resonance (ESR)]; the highly success-
ful predictive application of MO theory in chemical reactivity; the instant
rationalization of the bonding in newly discovered exotic molecules like ferro-
cene,35 for which the VB theory description was cumbersome; and the devel-
opment of widely applicable MO-based computational techniques (e.g.,
extended Hückel and semiempirical programs). The second reason, on the
other side, is that VB theory, in chemistry, suffered a detrimental conceptual
arrest that crippled the predictive ability of the theory and started to lead to an
accumulation of ‘‘failures’’. Unlike its fresh exciting beginning, in its frozen
form of the 1950–1960s, VB theory ceased to guide experimental chemists
to new experiments. This lack of utility ultimately led to the complete victory
of MO theory. However, the MO victory over VB theory was restricted to
resonance theory and other simplified versions of VB theory, not VB theory
itself. In fact, by this time, the true VB theory was hardly being practiced any-
more in the mainstream chemical community.

One of the major registered ‘‘failures’’ of VB theory is associated with
the dioxygen molecule, O2. Application of the Pauling–Lewis recipe of hybri-
dization and bond pairing to rationalize and predict the electronic structure of
molecules fails to predict the paramagneticity of O2. By contrast, MO theory
reveals this paramagneticity instantaneously.27 Even though VB theory does
not really fail with O2, and Pauling himself preferred, without reasoning
why, to describe it in terms of three-electron bonds (3 in Scheme 1) in his early
papers19 (see also Wheland’s description on p. 39 of his book33), this ‘‘failure’’
of Pauling’s recipe has tainted VB theory and become a fixture of the common
chemical wisdom (see Brush3 p. 49, footnote 112).

A second example concerns the VB treatments of CBD and COT. The
use of VBHL theory leads to an incorrect prediction that the resonance energy
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of CBD should be as large as or even larger than that of benzene. The facts
(that CBD had not yet been made and that COT exhibited no special stability)
favored HMO theory. Another impressive success of HMO theory was the
prediction that due to the degenerate set of singly occupied MOs, square
CBD should distort to a rectangular structure, which provided a theoretical
explanation for the ubiquitous phenomena of Jahn-Teller and pseudo-Jahn-
Teller effects, amply observed by the community of spectroscopists. Wheland
analyzed the CBD problem early on, and his analysis pointed out that inclu-
sion of ionic structures would probably change the VB predictions and make
them identical to MO.33,36,37 Craig showed that VBHL theory in fact correctly
assigns the ground state of CBD, by contrast to HMO theory.38,39 Despite this
mixed bag of predictions on properties of CBD, by VBHL or HMO, and
despite the fact that modern VB theory has subsequently demonstrated unique
and novel insight into the problems of benzene, CBD and their isoelectronic
species, the early stamp of the CBD story as a failure of VB theory still persists.

The increasing interest of chemists in large molecules as of the late 1940s
started making VB theory impractical, compared with the emerging semiem-
pirical MO methods that allowed the treatment of larger and larger molecules.
A great advantage of semiempirical MO calculations was the ability to calcu-
late bond lengths and angles rather than assume them as in VB theory.4 Skillful
communicators like Longuet–Higgins, Coulson, and Dewar were among the
leading MO proponents, and they handled MO theory in a visualizable man-
ner, which had been sorely missing before. In 1951, Coulson addressed the
Royal Society Meeting and expressed his opinion that despite the great success
of VB theory, it had no good theoretical basis; it was just a semiempirical
method, he said, of little use for more accurate calculations.40 In 1949,
Dewar’s monograph, Electronic Theory of Organic Chemistry,41 summarized
the faults of resonance theory, as being cumbersome, inaccurate, and too
loose: ‘‘it can be played happily by almost anyone without any knowledge
of the underlying principles involved’’. In 1952, Coulson published his book
Valence,42 which did for MO theory, at least in part, what Pauling’s book20

had done much earlier for VB theory. In 1960, Mulliken won the Nobel Prize
and Platt wrote, ‘‘MO is now used far more widely, and simplified versions of
it are being taught to college freshmen and even to high school students’’.43

Indeed, many communities took to MO theory due to its proven portability
and successful predictions.

A decisive defeat was dealt to VB theory when organic chemists were
finally able to synthesize transient molecules and establish the stability pat-
terns of C8H2	

8 , C5H	;þ
5 , C3Hþ;	

3 and C7Hþ;	
7 during the 1950–1960s.3,4,28

The results, which followed Hückel’s rules, convinced most of the organic che-
mists that MO theory was right, while VBHL and resonance theories were
wrong. From 1960–1978, C4H4 was made, and its structure and properties
as determined by MO theory challenged initial experimental determination
of a square structure.3,4 The syntheses of nonbenzenoid aromatic compounds
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like azulene, tropone, and so on, further established Hückel’s rules, and high-
lighted the failure of resonance theory.28 This era in organic chemistry marked
a decisive down-fall of VB theory.

In 1960, the 3rd edition of Pauling’s book was published,20 and although
it was still spellbinding for chemists, it contained errors and omissions. For
example, in the discussion of electron deficient boranes, Pauling describes
the molecule B12H12 instead of B12H2	

12 (Pauling,20 p. 378); another example
is a very cumbersome description of ferrocene and analogous compounds (on
pp. 385–392), for which MO theory presented simple and appealing descrip-
tions. These and other problems in the book, as well as the neglect of then-
known species like C5H	;þ

5 , C3Hþ;	
3 , and C7Hþ;	

7 , reflected the situation
that, unlike MO theory, VB theory did not have a useful Aufbau principle
that could predict reliably the dependence of molecular stability on the num-
ber of electrons. As we have already pointed out, the conceptual development
of VB theory had been arrested since the 1950s, in part due to the insistence of
Pauling himself that resonance theory was sufficient to deal with most pro-
blems (see, e.g., p. 283 in Brush4). Sadly, the creator himself contributed to
the downfall of his own brainchild.

In 1952, Fukui published his Frontier MO theory,44 which went initially
unnoticed. In 1965, Woodward and Hoffmann published their principle of
conservation of orbital symmetry, and applied it to all pericyclic chemical
reactions. The immense success of these rules45 renewed interest in Fukui’s
approach and together formed a new MO-based framework of thought for
chemical reactivity (called, e.g., ‘‘giant steps forward in chemical theory’’ in
Morrison and Boyd, pp. 934, 939, 1201, and 1203). This success of MO
theory dealt a severe blow to VB theory. In this area too, despite the early cal-
culations of the Diels–Alder and 2 þ 2 cycloaddition reactions by Evans,46 VB
theory missed making an impact, in part at least because of its blind adherence
to simple resonance theory.28 All the subsequent VB derivations of the rules
(e.g., by Oosterhoff in Ref. 90) were ‘‘after the fact’’ and failed to reestablish
the status of VB theory.

The development of photoelectron spectroscopy (PES) and its applica-
tion to molecules in the 1970s, in the hands of Heilbronner, showed that spec-
tra could be easily interpreted if one assumes that electrons occupy delocalized
molecular orbitals.47,48 This further strengthened the case for MO theory.
Moreover, this served to lessen the case for VB theory, because it describes
electron pairs that occupy localized bond orbitals. A frequent example of
this ‘‘failure’’ of VB theory is the PES of methane, which shows two different
ionization peaks. These peaks correspond to the a1 and t2 MOs, but not to
the four C		H bond orbitals in Pauling’s hybridization theory (see a recent
paper on a similar issue49). With these and similar types of arguments VB
theory has eventually fallen into a state of disrepute and become known, at
least when the authors were students, either as a ‘‘wrong theory’’ or even a
‘‘dead theory’’.
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The late 1960s and early 1970s mark the era of mainframe computing.
By contrast to VB theory, which is difficult to implement computationally (due
to the non-orthogonality of orbitals), MO theory could be easily implemented
(even GVB was implemented through an MO-based formalism—see later). In
the early 1970s, Pople and co-workers developed the GAUSSIAN70 package
that uses ‘‘ab initio MO theory’’ with no approximations other than the choice
of basis set. Sometime later density functional theory made a spectacular entry
into chemistry. Suddenly, it became possible to calculate real molecules, and to
probe their properties with increasing accuracy. This new and user-friendly
tool created a subdiscipline of ‘‘computational chemists’’ who explore the
molecular world with the GAUSSIAN series and many other packages that
sprouted alongside the dominant one. Calculations continuously reveal
‘‘more failures’’ of Pauling’s VB theory, for example, the unimportance of
3d orbitals in bonding of main group elements, namely, the ‘‘verification’’
of three-center bonding. Leading textbooks hardly include VB theory any-
more, and when they do, they misrepresent the theory.50,51 Advanced quan-
tum chemistry courses teach MO theory regularly, but books that teach VB
theory are virtually nonexistent. The development of user friendly ab initio
MO-based software and the lack of similar VB software seem to have put
the last nail in the coffin of VB theory and substantiated MO theory as the
only legitimate chemical theory of bonding.

Nevertheless, despite this seemingly final judgment and the obituaries
showered on VB theory in textbooks and in public opinion, the theory has
never really died. Due to its close affinity to chemistry and utmost clarity, it
has remained an integral part of the thought process of many chemists, even
among proponents of MO theory (see comment by Hoffmann on p. 284 in
Brush4). Within the chemical dynamics community, moreover, the usage of
the theory has never been eliminated, and it exists in several computational
methods such as LEPS (London–Eyring–Polanyi–Sato), BEBO (bond energy
bond order), DIM (diatomics in molecules), and so on, which were (and still
are) used for the generation of potential energy surfaces. Moreover, around
the 1970s, but especially from the 1980s and onward, VB theory began to
rise from its ashes, to dispel many myths about its ‘‘failures’’ and to offer a
sound and attractive alternative to MO theory. Before we describe some of
these developments, it is important to go over some of the major ‘‘failures’’
of VB theory and inspect them a bit more closely.

Are the Failures of VB Theory Real Ones?

All the so-called failures of VB theory are due to misuse and failures of
very simplified versions of the theory. Simple resonance theory enumerates
structures without proper consideration of their interaction matrix elements
(or overlaps). It will fail whenever the matrix element is important as in the
case of aromatic versus antiaromatic molecules, and so on.52 The hybridization

A Story of Valence Bond Theory 11



bond-pairing theory assumes that the most important energetic effect for a
molecule is the bonding, and hence one should hybridize the atoms and
make the maximum number of bonds—henceforth ‘‘perfect pairing’’. The per-
fect-pairing approach will fail whenever other factors (see below) become
equal to or more important than bond pairing.53,54 The VBHL theory is based
on covalent structures only, which become insufficient and require inclusion of
ionic structures explicitly or implicitly (through delocalization tails of the
atomic orbitals, as in the GVB method described later). In certain cases, like
that of antiaromatic molecules, this deficiency of VBHL makes incorrect pre-
dictions.55 Next, we consider four iconic ‘‘failures’’, and show that some of
them tainted VB in unexplained ways.

1. The O2 ‘‘Failure’’: It is doubtful that this so-called failure can be attributed
to Pauling himself, because in his landmark paper,18 he was very careful to
state that the molecule does not possess a ‘‘normal’’ state, but rather
one with two three-electron bonds (3 in Scheme 1). Also see Wheland on
page 39 of his book.33 We also located a 1934 Nature paper by Heitler and
Pöschl56 who treated the O2 molecule with VB principles and concluded
that ‘‘the 3�	

g term . . . [gives] the fundamental state of the molecule’’. It is
not clear to us how the myth of this ‘‘failure’’ grew, spread so widely, and
was accepted so unanimously. Curiously, while Wheland acknowledged
the prediction of MO theory by a proper citation of Lennard-Jones’
paper,27 Pauling did not, at least not in his landmark papers,18,19 nor in his
book.20 In these works, the Lennard-Jones paper is either not cited,19,20 or
is mentioned only as a source of the state symbols18 that Pauling used to
characterize the states of CO, CN, and so on. One wonders about the role
of animosity between the MO and VB camps in propagating the notion of
the ‘‘failures’’ of VB to predict the ground state of O2. Sadly, scientific
history is determined also by human weaknesses. As we have repeatedly
stated, it is true that a naive application of hybridization and the perfect
pairing approach (simple Lewis pairing) without consideration of the
important effect of four-electron repulsion would fail and predict a 1�g

ground state. As we shall see later, in the case of O2, perfect pairing in the
1�g state leads to four-electron repulsion, which more than cancels the
p-bond. To avoid the repulsion, we can form two three-electron p-bonds,
and by keeping the two odd electrons in a high-spin situation, the ground
state becomes 3�	

g that is further lowered by exchange energy due to the
two triplet electrons.53

2. The C4H4 ‘‘Failure’’: This is a failure of the VBHL approach that does not
involve ionic structures. Their inclusion in an all-electron VB theory, either
explicitly,55,57 or implicitly through delocalization tails of the atomic
orbitals,58 correctly predicts the geometry and resonance energy. In fact,
even VBHL theory makes a correct assignment of the ground state of cyclo
butadiene (CBD), as the 1B1g state. By contrast, monodeterminantal MO
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theory makes an incorrect assignment of the ground state as the triplet 3A2g

state.38,39 Moreover, HMO theory succeeded for the wrong reason. Since
the Hückel MO determinant for the singlet state corresponds to a single
Kekulé structure, CBD exhibits zero resonance energy in HMO.36

3. The C5Hþ
5 ‘‘Failure’’: This is a failure of simple resonance theory, not of VB

theory. Taking into account the sign of the matrix element (overlap)
between the five VB structures shows that singlet C5Hþ

5 is Jahn–Teller
unstable, and the ground state is, in fact, the triplet state. This is generally
the case for all the antiaromatic ionic species having 4n electrons over
4n þ 1 or 4n þ 3 centers.52

4. The ‘‘Failure’’ associated with the PES of methane (CH4): Starting from a
naive application of the VB picture of CH4, it follows that since methane
has four equivalent localized bond orbitals (LBOs), the molecule should
exhibit only one ionization peak in PES. However, since the PES of
methane shows two peaks, VB theory ‘‘fails’’! This argument is false for
two reasons. First, as has been known since the 1930s, LBOs for methane
or any molecule, can be obtained by a unitary transformation of
the delocalized MOs.59 Thus, both MO and VB descriptions of methane
can be cast in terms of LBOs. Second, if one starts from the LBO picture of
methane, the electron can come out of any one of the LBOs. A physically
correct representation of the CHþ

4 cation would be a linear combination of
the four forms that ascribe electron ejection to each of the four bonds. One
can achieve the correct physical description, either by combining the LBOs
back to canonical MOs,48 or by taking a linear combination of the four VB
configurations that correspond to one bond ionization.60,61 As shall be seen
later, correct linear combinations are 2A1 and 2T2, the latter being a triply
degenerate VB state.

We conclude that those who reject VB theory cannot continue to invoke
‘‘failures’’, because a properly executed VB theory does not fail, just as a prop-
erly done MO-based calculation does not ‘‘fail’’. This notion of VB ‘‘failure’’
that is traced back to the VB–MO rivalry in the early days of quantum chem-
istry should now be considered obsolete, unwarranted, and counterproductive.
A modern chemist should know that there are two ways of describing electro-
nic structure, and that these two are not contrasting theories, but rather two
representations of the same reality. Their capabilities and insights into chemi-
cal problems are complementary and the exclusion of either one of them
undermines the intellectual heritage of chemistry. Indeed, theoretical chemists
in the dynamics community continued to use VB theory and maintained an
uninterrupted chain of VB usage from London, through Eyring, Polanyi, to
Wyatt, Truhlar, and others in the present day. Physicists, too, continued to
use VB theory, and one of the main proponents is the Nobel Laureate P.W.
Anderson, who developed a resonating VB theory of superconductivity.
And, in terms of the focus of this chapter, in mainstream chemistry too, VB
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theory is beginning to enjoy a slow but steady renaissance in the form of mod-
ern VB theory.

Modern VB Theory: VB Theory Is Coming of Age

The renaissance of VB theory is marked by a surge in the following two-
pronged activity: (a) creation of general qualitative models based on VB
theory, and (b) development of new methods and software that enable appli-
cations to moderate-sized molecules. Below we briefly mention some of these
developments without pretence of creating an exhaustive list.

A few general qualitative models based on VB theory started to appear in
the late 1970s and early 1980s. Among these models we count also semiempi-
rical approaches based, for example, on Heisenberg and Hubbard Hamilto-
nians,62–70 as well as Hückel VB methods,52,71–73 which can handle well
ground and excited states of molecules. Methods that map MO-based wave
functions to VB wave functions offer a good deal of interpretive insight.
Among these mapping procedures we note the half-determinant method
of Hiberty and Leforestier,74 and the CASVB methods of Thorsteinsson
et al.75,76 and Hirao and co-worker.77,78 General qualitative VB models for
chemical bonding were proposed in the early 1980s and the late 1990s by
Epiotis et al.79,80 A general model for the origins of barriers in chemical reac-
tions was proposed in 1981 by Shaik, in a manner that incorporates the role of
orbital symmetry.52,81 Subsequently, in collaboration with Pross82,83 and Hib-
erty,84 the model has been generalized for a variety of reaction mechanisms,85

and used to shed new light on the problems of aromaticity and antiaromaticity
in isoelectronic series.57 Following Linnett’s reformulation of three-electron
bonding in the 1960s,86 Harcourt87,88 developed a VB model that describes
electron-rich bonding in terms of increased valence structures, and showed
its occurrence in bonds of main group elements and transition metals.

Valence bond ideas have also contributed to the revival of theories
for photochemical reactivity. Early VB calculations by Oosterhoff and co-
workers89,90 revealed a possible general mechanism for the course of photo-
chemical reactions. Michl and co-workers91,92 articulated this VB-based
mechanism and highlighted the importance of ‘‘funnels’’ as the potential
energy features that mediate the excited-state species back into the ground
state. Recent work by Robb and co-workers93–96 showed that these ‘‘funnels’’
are conical intersections that can be predicted by simple VB arguments, and
computed at a high level of sophistication. Similar applications of VB theory
to deduce the structure of conical intersections in photoreactions were done by
Shaik and Reddy97 and recently generalized by Zilberg and Haas.98

Valence bond theory enables a very straightforward account of environ-
mental effects, such as those imparted by solvents and/or protein pockets. A
major contribution to the field was made by Warshel who created an empirical
VB (EVB) method. By incorporating van der Waals and London interactions
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using a molecular mechanics (MM) method, Warshel created the QM(VB)–
MM method for the study of enzymatic reaction mechanisms.99–101 His pio-
neering work inaugurated the now emerging QM–MM methodologies for
studying enzymatic processes. Hynes and co-workers,102–104 showed how to
couple solvent models to VB and create a simple and powerful model for
understanding and predicting chemical processes in solution. Shaik105,106

showed how solvent effects can be incorporated in an effective manner in
the reactivity factors that are based on VB diagrams.

All in all, VB theory is seen to offer a widely applicable framework for
thinking about and predicting chemical trends. Some of these qualitative mod-
els and their predictions are discussed in the Application sections.

In the 1970s, a stream of nonempirical VB methods began to appear and
were followed by many applications of accurate calculations. All these meth-
ods divide the orbitals in a molecule into inactive and active subspaces, treat-
ing the former as a closed-shell and the latter by a VB formalism. The
programs optimize the orbitals, and the coefficients of the VB structures, but
they differ in the manners by which the VB orbitals are defined. Goddard
et al.107–110 developed the generalized VB (GVB) method, which uses semilocalized
atomic orbitals (having small delocalization tails), employed originally by
Coulson and Fisher for the H2 molecule.111 The GVB method is incorporated
now in GAUSSIAN and in most other MO-based software. Somewhat later,
Gerratt, Raimondi, and Cooper developed their VB method known as the
spin coupled (SC) theory and its follow up by configuration interaction using
the SCVB method,112–114 which is now incorporated in the MOLPRO soft-
ware. The GVB and SC theories do not employ covalent and ionic structures
explicitly, but instead use semilocalized atomic orbitals that effectively incor-
porate all the ionic structures, and thereby enable one to express the electronic
structures in compact forms based on formally covalent pairing schemes.
Balint-Kurti and Karplus115 developed a multistructure VB method that uti-
lizes covalent and ionic structures with localized atomic orbitals (AOs). In a
later development by van Lenthe and Balint-Kurti116,117 and by Verbeek
and van Lenthe,118,119 the multistructure method is referred to as a VB self-
consistent field (VBSCF) method. In a subsequent development, van Lenthe,
Verbeek, and co-workers120,121 generated the multipurpose VB program called
TURTLE, which has recently been interfaced with the MO-based program
GAMESS-UK. Matsen,122,123 McWeeny,124 and Zhang and co-workers125,126

developed their spin-free VB approaches based on symmetric group methods.
Subsequently, Wu et al.127,128 extended the spin-free approach, and produced
a general purpose VB program called the XIAMEN-99 package. Soon after, Li
and McWeeny129 announced their VB2000 software, which is also a general
purpose program, including a variety of methods. Another package incorpor-
ating multiconfigurational VB (MCVB) methods, called CRUNCH and based
on the symmetric group methods of Young, was written by Gallup et al.130,131

During the early 1990s, Hiberty et al.132–137 developed the breathing orbital
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VB (BOVB) method, which also utilizes covalent and ionic structures, but in
addition allows them to have their own unique set of orbitals. This method is
now incorporated into the programs TURTLE and XIAMEN-99. Very
recently, Wu et al.138 developed a VBCI method that is akin to BOVB, but
which can be applied to larger systems. The recent biorthogonal VB method
(bio-VB) of McDouall139 has the potential to carry out VB calculations on sys-
tems with up to 60 electrons outside the closed shell. And finally, Truhlar and
co-workers140 developed the VB-based multiconfiguration molecular
mechanics method (MCMM) to treat dynamical aspects of chemical reactions,
while Landis and co-workers141 introduced the VAL–BOND method that pre-
dicts the structures of transition metal complexes using Pauling’s ideas of orbi-
tal hybridization. In the section dedicated to VB methods, we mention the
main software and methods that we used, and outline their features, capabil-
ities, and limitations.

This plethora of acronyms for VB software starts to resemble that which
accompanied the ascent of MO theory. While this may sound like good news,
certainly it is also a call for systematization much like what Pople and co-
workers enforced on computational MO terminology. Nonetheless, at the
moment the important point is that the advent of many good VB programs
has caused a surge of applications of VB theory to problems ranging from
bonding in main group elements to transition metals, conjugated systems, aro-
matic and antiaromatic species, and even excited states and full pathways of
chemical reactions, with moderate to very good accuracies. For example, a
recent calculation of the barrier for the identity hydrogen exchange reaction,
H þ H		H0 ! H		H þ H0, by Song et al.142 shows that it is possible to calcu-
late the reaction barrier accurately with just eight classical VB structures!
Valence bond theory is coming of age.

BASIC VB THEORY

Writing and Representing VB Wave Functions

VB Wave Functions with Localized Atomic Orbitals
We illustrate the theory by using, as an example, the two-electron/two-

center (2e/2c) bond. A VB determinant is an antisymmetrized wave function
that may or may not also be a proper spin eigenfunction. For example, jabj
in Eq. [2] is a determinant that describes two spin-orbitals a and b having
one electron each; the bar over the b orbital indicates a b spin, while its
absence indicates an a spin:

jabj ¼ 1ffiffiffi
2

p fað1Þbð2Þ½að1Þbð2Þ� 	 að2Þbð1Þ½að2Þbð1Þ�g ½2�
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The parenthetical numbers 1 and 2 are the electron indices. By itself this
determinant is not a proper spin-eigenfunction. However, by mixing with jabj
two spin-eigenfunctions will result, one having a singlet coupling as shown in
Eq. [3], the other possessing a triplet coupling in (Eq. [4]); in both cases the
normalization constants are omitted for the time being.

�HL ¼ jabj 	 jabj ½3�

�T ¼ jabj þ jabj ½4�

If a and b are the respective AOs of two hydrogen atoms, �HL in Eq. [3] is just
the historical wave function used in 1927 by Heitler and London7 to treat the
bonding in the H2 molecule, hence the subscript descriptor HL. This wave
function displays a purely covalent bond in which the two hydrogen atoms
remain neutral and exchange their spins (the singlet pairing is represented,
henceforth by the two dots connected by a line as shown in 7 in Scheme 3).

The state �T in Eq. [4] represents a repulsive triplet interaction (see 8
in Scheme 3) between two hydrogen atoms having parallel spins. The other
VB determinants that one can construct in this simple two-electron/two-center
2e/2c case are jaaj and jbbj, corresponding to the ionic structures 9 and 10,
respectively. Both ionic structures are spin-eigenfunctions and represent singlet
situations. Note that the rules that govern spin multiplicities and the genera-
tion of spin-eigenfunctions from combinations of determinants are the same in
VB and MO theories. In a simple two-electron case, it is easy to distinguish
triplet from singlet eigenfunctions by factoring the spatial function out from
the spin function: the singlet spin eigenfunction is antisymmetric with respect
to electron exchange, while the triplet is symmetric. Of course, the spatial
parts behave in precisely the opposite manner. For example, the singlet
is að1Þbð2Þ 	 bð1Það2Þ, while the triplet is að1Þbð2Þ þ bð1Það2Þ in Eqs. [3]
and [4].

While the H2 bond was considered as purely covalent in Heitler and Lon-
don’s paper7 (Eq. [3] and Structure 7 in Scheme 3), the exact description of H2

or any homopolar bond (�VB-full in Eq. [5]) involves a small contribution from
the ionic structures 9 and 10, which mix by configuration interaction (CI)
in the VB framework. Typically, and depending on the atoms that are bonded,
the weight of the purely covalent structure is �75%, while the ionic structures

Scheme 3
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share the remaining 25%. By symmetry, the wave function maintains an aver-
age neutrality of the two bonded atoms (Eq. [5]).

�VB-full ¼ lðjabj 	 jabjÞ þ mðjaaj þ jbbjÞ l > m ½5a�
Ha		Hb � 75%ðHa�		�HbÞ þ 25%ðH	

a Hþ
a þ Hþ

b H	
b Þ ½5b�

For convenience, and to avoid confusion, we shall symbolize a purely covalent
bond between A and B centers as A�		�B, while the notation A		B will be
employed for a composite bond wave function like the one displayed in Eq.
[5b]. In other words, A		B refers to the ‘‘real’’ bond while A�		�B designates
its covalent component (see 2 in Scheme 1).

VB Wave Functions with Semilocalized AOs
One inconvenience of using the expression �VB-full (Eq. [5]) is its relative

complexity compared to the simpler HL function (Eq. [3]). Coulson and
Fischer111 proposed an elegant way of combining the simplicity of �HL

with the accuracy of �VB-full. In the Coulson–Fischer (CF) wave function,
�CF, the two-electron bond is described as a formally covalent singlet coupling
between two orbitals ja and jb, which are optimized with freedom to deloca-
lize over the two centers. This is exemplified below for H2 (dropping once
again the normalization factors):

�CF ¼ jjajbj 	 jjajbj ½6a�
ja ¼ a þ eb ½6b�
jb ¼ b þ ea ½6c�

Here a and b are purely localized AOs, while ja and jb are delocalized AOs.
In fact, experience shows that the Coulson–Fischer orbitals ja and jb, which
result from the energy minimization, are generally not very delocalized (e < 1).
As such they can be viewed as ‘‘distorted’’ orbitals that remain atomic-like in
nature. However minor this may look, the slight delocalization renders the
Coulson–Fischer wave function equivalent to the VB-full (Eq. [5]) wave func-
tion with the three classical structures. A straightforward expansion of the
Coulson–Fischer wave function leads to a linear combination of classical
structures in Eq. [7].

�CF ¼ ð1 þ e2Þðjabj 	 jabjÞ þ 2eðjaaj þ jbbjÞ ½7�

Thus, the Coulson–Fischer representation keeps the simplicity of the covalent
picture while treating the covalent–ionic balance by embedding the effect of the
ionic terms in a variational way through the delocalization tails. The Coulson–
Fischer idea was later generalized to polyatomic molecules and gave rise to the
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generalized valence bond (GVB) and spin-coupled (SC) methods, which were
mentioned in the introductory part and will be discussed later.

VB Wave Functions with Fragment Orbitals
Valence bond determinants may involve fragment orbitals (FOs) instead

of localized or semilocalized AOs. These fragment orbitals may be delocalized
(e.g., like some MOs of the constituent fragments of a molecule). The latter
option is an economical way of representing a wave function that is a linear
combination of several determinants based on AOs, just as MO determinants
are linear combinations of VB determinants (see below). Suppose, for exam-
ple, that one wanted to treat the recombination of the CH�

3 and H� radicals
in a VB manner. First, let (j1 	 j5) be the MOs of the CH�

3 fragment (j5 being
singly occupied), and b the AO of the incoming hydrogen. The covalent VB
function that describes the active C		H bond in our study just couples the
j5 and b orbitals in a singlet way, as expressed in Eq. [8]:

�ðH3C�		�HÞ ¼ jj1j1j2j2j3j3j4j4 j5b j 	 j1j1j2j2 j3 j3j4j4 j5bj j ½8�

Here, j1 	 j4 are fully delocalized on the CH3 fragment. Even the j5 orbital is
not a pure AO, but may involve some tails on the hydrogens of the fragment. It
is clear that this option is conceptually simpler than treating all the C		H
bonds in a VB way, including the ones that remain unchanged in the reaction.

Writing VB Wave Functions Beyond the 2e/2c Case
Rules for writing VB wave functions in the polyelectronic case are just

intuitive extensions of the rules for the 2e/2c case discussed above. First, let

us consider butadiene, structure 11 in Scheme 4, and restrict the description
to the p system.

Denoting the p AOs of the C1–C4 carbons by a, b, c, and d, respectively,
the fully covalent VB wave function for the p system of butadiene displays two
singlet couplings: one between a and b, and one between c and d. It follows
that the wave function can be expressed in the form of Eq. [9], as a product of
the bond wave functions.

�ð11Þ ¼ jðab 	 abÞ ðcd 	 cdÞj ½9�

Scheme 4
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Upon expansion of the product, one gets a sum of four determinants as in
Eq. [10].

�ð11Þ ¼ jabcdj 	 jabcdj 	 jabcdj þ jabcdj ½10�

The product of bond wave functions in Eq. [9], involves so-called perfect pair-
ing, whereby we take the Lewis structure of the molecule, represent each bond
by a HL bond, and finally express the full wave function as a product of all
these pair-bond wave functions. As a rule, such a perfect-pairing polyelectro-
nic VB wave function having n bond pairs will be described by 2n determi-
nants, displaying all the possible 2 � 2 spin permutations between the
orbitals that are singlet coupled.

The above rule can readily be extended to larger polyelectronic systems,
like the p system of benzene 12, or to molecules bearing lone pairs like forma-
mide, 13. In this latter case, using n, c, and o, respectively, to refer to the p
AOs of nitrogen, carbon, and oxygen, the VB wave function describing the
neutral covalent structure is given by Eq. [11]:

�ð13Þ ¼ jnncoj 	 jnn coj ½11�

In any one of the above cases, improvement of the wave function can be
achieved by using Coulson–Fischer orbitals that take into account ionic con-
tributions to the bonds. Note that the number of determinants grows exponen-
tially with the number of covalent bonds (recall, this number is 2n, n being the
number of bonds). Hence, 8 determinants are required to describe a Kekulé
structure of benzene, and the fully covalent and perfectly paired wave function
for methane is made of 16 determinants. This shows the benefit of using FOs
rather than pure AOs as much as possible, as has been done above (Eq. [8]).
Using FOs to construct VB wave functions is also appropriate when one wants
to fully exploit the symmetry properties of the molecule. For example, we can
describe all the bonds in methane by constructing group orbitals of the four
Hs. Subsequently, we can distribute the eight bonding electrons of the mole-
cule into these FOs as well as into the 2s and 2p AOs of carbon. Then we can
pair up the electrons using orbital symmetry-matched FOs, as shown by the
lines connecting these orbital pairs in Figure 1. The corresponding wave func-
tion can be written as follows:

�ðCH4Þ ¼ jð2sjs 	 js2sÞð2pxjx 	 jx2pxÞð2pyjy 	 jy 2pyÞð2pzjz 	 jz 2pzÞj
½12�

In this representation, each bond is a delocalized covalent two-electron bond,
written as a HL-type bond. The VB method that deals with fragment orbitals
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(FO–VB) is particularly useful in high-symmetry cases such as ferrocene and
other organometallic complexes.

Pictorial Representation of VB Wave Functions by Bond Diagrams
Since we argue that a bond need not necessarily involve only two AOs on

two centers, we must provide an appropriate pictorial representation of such a
bond. A possibility is the bond diagram in Figure 2, which shows two spin-
paired electrons in general orbitals j1 and j2, with a line connecting these
orbitals. This bond diagram represents the wave function in Eq. [13]

�bond ¼ jj1j2j 	 jj1j2j ½13�

where the orbitals can take any shape; it can involve two centers with localized
AOs, or two Coulson–Fischer orbitals with delocalization tails, or FOs that
span multiple centers.

Figure 1 A VB representation of methane using delocalized FOs. Each line that connects
the orbitals is a bond pair. The total wave function is given in Eq. 12.

Figure 2 A bond diagram representation of two spin-paired electrons in orbitals f1 and
f2. The bond pair is indicated by a line connecting the orbitals.
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The Relationship between MO and VB Wave Functions

We now consider the difference between the MO and VB descriptions of
an electronic system, at the simplest level of both theories. As we shall see, in
the cases of one-electron, three-electron, and four-electron interactions
between two centers, there is no real difference between the two theories,
except for a matter of language. However, the two theories do differ in their
description of the two-electron bond. Let us consider, once again, the example
of H2, with its two AOs a and b, and examine first the VB description, drop-
ping normalization factors for simplicity.

As has been stated already, at equilibrium distance the bonding is not
100% covalent, and requires an ionic component to be accurately described.
On the other hand, at long distances the HL wave function is the correct state,
as the ionic components necessarily drop to zero and each hydrogen carries
one electron away through the homolytic bond breaking. The HL wave func-
tion dissociates correctly, but is quantitatively inaccurate at bonding distances.
Therefore, the way to improve the HL description is straightforward: simply
mixing �HL with the ionic determinants and optimizing the coefficients varia-
tionally, by CI. One then gets the wave function �VB-full, in Eq. [5a] above,
which contains a major covalent component and a minor ionic one.

Let us now turn to the MO description. Bringing together two hydrogen
atoms leads to the formation of two MOs, s and s� (bonding and antibond-
ing, respectively); see Eq. [14].

s ¼ a þ b s� ¼ a 	 b ½14�

At the simple MO level, the ground state of H2 is described by �MO, in which
the bonding s MO is doubly occupied. Expansion (see Appendix for details)
of this MO determinant into its AO determinant constituents leads to Eq. [15]:

�MO ¼ jssj ¼ ðjabj 	 jabjÞ þ ðjaaj þ jbbjÞ ½15�

It is apparent from Eq. [15] that the first half of the expansion is just the
Heitler–London function �HL (Eq. [3]), while the remaining part is ionic. It
follows that the MO description of the two-electron bond will always be
half-covalent, half-ionic, irrespective of the bonding distance. Qualitatively,
it is already clear that in the MO wave function, the ionic weight is excessive
at bonding distances, and becomes an absurdity at long distances, where the
weight of the ionic structures should drop to zero in accord with homolytic
cleavage. The simple MO description does not dissociate correctly and this
is the reason why it is inappropriate for the description of stretched bonds
as, for example, those found in transition states. The remedy for this poor
description is CI, specifically the mixing of the ground configuration, s2,
with the diexcited one, s�2. The reason this mixing resizes the covalent versus
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ionic weights is the following: If one expands the diexcited configuration, �D,
into its VB constituents (for expansion technique, see Appendix A.1), one finds
the same covalent and ionic components as in Eq. [15], but coupled with a
negative sign as in Eq. [16]:

�D ¼ js�s�j ¼ 	ðjabj 	 jabjÞ þ ðjaaj þ jbbjÞ ½16�

It follows that mixing the two configurations �MO and �D with different
coefficients as in Eq. [17] will lead to a wave function �MO–CI in which the
covalent and ionic components have

�MO--CI ¼ c1jssj 	 c2js�s�j c1; c2 > 0 ½17�

unequal weights, as shown by an expansion of �MO–CI into AO determinants
in Eq. [18]:

�MO--CI ¼ ðc1 þ c2Þðjabj 	 jabjÞ þ ðc1 	 c2Þðjaaj þ jbbjÞ ½18a�
c1 þ c2 ¼ l c1 	 c2 ¼ m ½18b�

Since c1 and c2 are variationally optimized, expansion of �MO–CI should lead
to exactly the same VB function as �VB–full in Eq. [5], leading to the equalities
expressed in Eq. [18b] and to the equivalence of �MO–CI and �VB–full. The
equivalence also includes the Coulson–Fischer wave function �CF (Eq. [6])
which, as we have seen, is equivalent to the VB-full description.

�MO 6¼ �HL �MO--CI � �VB--full � �CF ½19�

To summarize, the simple MO treatment describes the bond as being too
ionic, while the simple VB level (Heitler–London) defines it as being purely
covalent. Both theories converge to the right description when CI is intro-
duced. The accurate description of two-electron bonding is half-way between
the simple MO and simple VB levels; elaborated MO and VB levels become
equivalent and converge to the right description, in which the bond is mostly
covalent but has a substantial contribution from ionic structures.

This equivalence clearly indicates that the MO–VB rivalry, discussed
above, is unfortunate and senseless. VB and MO are not two diametrically dif-
ferent theories that exclude each other, but rather two representations of rea-
lity that are mathematically equivalent. The best approach is to use these two
representations jointly and benefit from their complementary insight. In fact,
from the above discussion of how to write a VB wave function, it is apparent
that there is a spectrum of orbital representations that stretches between the
fully local VB representations through semilocalized CF orbitals, to the
use of delocalized fragment orbitals VB (FO–VB), and all the way to the fully
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delocalized MO representation (in the MO–CI language). Based on the pro-
blem at hand, the best representation from this spectrum should be the one
that gives the clearest and most portable insight into the problem.

Formalism Using the Exact Hamiltonian

Let us turn now to the calculation of energetic quantities using exact VB
theory by considering the simple case of the H2 molecule. The exact Hamilto-
nian is of course the same as in MO theory, and is composed in this case of two
core terms and a bielectronic repulsion:

H ¼ hð1Þ þ hð2Þ þ 1=r12 þ 1=R ½20�

where the h operator represents the attraction between one electron and the
nuclei, r12 is the interelectronic distance and R is the distance between the
nuclei and accounts for nuclear repulsion. In the VB framework, some parti-
cular notations are traditionally employed to designate the various energies
and matrix elements:

Q ¼ hjabjjHjjabji ¼ hajhjai þ hbjhjbi þ habj1=r12jabi ½21�
K ¼ hjabjjHjjbaji ¼ habj1=r12jabi þ 2Shajhjbi ½22�

hðjabjÞjðjbajÞi ¼ S2 ½23�

Here Q is the energy of a single determinant jabj, K is the spin exchange
term which will be dealt with later, and S is the overlap integral between the
two AOs a and b.

The energy Q has an interesting property: It is quasiconstant as a function
of the interatomic distance, from infinite distance to the equilibrium bonding
distance Req of H2. It corresponds to the energy of two hydrogen atoms when
brought together without exchanging their spins. Such a pseudo-state (which is
not a spin-eigenfunction) is called the ‘‘quasi-classical state’’ of H2 (�QC in
Fig. 3), because all the terms of its energy have an analogue in classical (not
quantum) physics. Turning now to real states, that is, spin-eigenfunctions, the
energy of the ground state of H2, in the fully covalent approximation of HL, is
readily obtained.

Eð�HLÞ ¼
hðj ab j 	 ja b jÞjH jðj ab j 	 j ab jÞ i
hðj ab j 	 j ab jÞjðj ab j 	 j abjÞi

¼ Q þ K

1 þ S2
½24�

Plotting the E(�HL) curve as a function of the distance now gives qualitatively
correct Morse curve behavior (Fig. 3), with a reasonable bonding energy, even
if a deeper potential well can be obtained by allowing further mixing with the
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ionic terms (�exact in Fig. 3). This shows that, in the covalent approximation,
all the bonding comes from the K terms. Thus, the physical phenomenon
responsible for the bond is the exchange of spins between the two AOs, that
is, the resonance between the two spin arrangements (see 1).

Examination of the K term in Eq. [22] shows that it is made of a repul-
sive exchange integral, which is positive but necessarily small (unlike Coulomb
two-electron integrals), and of a negative term, given by the product of the
overlap S and an integral that is called the ‘‘resonance integral’’, which is itself
proportional to S.

Replacing �HL by �T in Eq. [24] leads to the energy of the triplet state,
Eq. [25].

Eð�TÞ ¼
hðj ab j þ jab jÞjH jðj ab j þ j ab jÞ i
hðj ab j þ j ab jÞjðj ab j þ j abjÞi

¼ Q 	 K

1 	 S2
½25�

Figure 3 Energy curves for H2 as a function of internuclear distance. The curves
displayed, from top to bottom, correspond to the triplet state, �T, the quasi-classical
state, �QC, the HL state, �HL, and the exact (full CI) curve, �exact.
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Recalling that the Q integral is a quasi-constant from Req to infinite distance,
Q remains nearly equal to the energy of the separated fragments and can serve,
at any distance, as a reference for the bond energy. It follows from Eqs. [24]
and [25] that, if we neglect overlap in the denominator, the triplet state (�T in
Fig. 3) is repulsive by the same quantity (	K) as the singlet is bonding (þK).
Thus, at any distance larger than Req, the bonding energy is about one-half of
the singlet–triplet gap. This property will be used later in applications to reac-
tivity.

Qualitative VB Theory

A VB calculation is just a configuration interaction in a space of AO or
FO determinants, which are in general nonorthogonal to each other. It is
therefore essential to derive some basic rules for calculating the overlaps
and Hamiltonian matrix elements between determinants. The fully general
rules have been described in detail elsewhere.52 Examples will be given here
for commonly encountered simple cases.

Overlaps between Determinants
Let us illustrate the procedure with VB determinants of the type � and �0

below,

� ¼ Njaabbj �0 ¼ N0jccddj ½26�

where N and N0 are normalization factors. Each determinant is made of a
diagonal product of spin orbitals followed by a signed sum of all the permuta-
tions of this product, which are obtained by transposing the order of the spin
orbitals. Denoting the diagonal products of � and �0, by �d and �0

d, respec-
tively, the expression for �d reads

�d ¼ að1Þ að2Þ bð3Þ bð4Þ ð1;2; . . . are electron indicesÞ ½27�

and an analogous expression can be written for �0
d.

The overlap between the (unnormalized) determinants j a a b b j and
j c c d d j is given by Eq. [28]:

hðj a a b b j Þðj c c d d j Þi ¼ �d

����X
P

ð	1ÞtPð�0
dÞ

* +
½28�

where the operator P represents a restricted subset of permutations: The ones
made of pairwise transpositions between spin orbitals of the same spin, and t
determines the parity, odd or even, and hence also the sign of a given pairwise

26 VB Theory, Its History, Fundamentals, and Applications



transposition P. Note that the identity permutation is included. In the present
example, there are four possible such permutations in the product �0

d:

X
P

ð	1ÞtPð0dÞ ¼ cð1Þ cð2Þ dð3Þ dð4Þ 	 dð1Þ cð2Þ cð3Þ dð4Þ

	 cð1Þ dð2Þ dð3Þ cð4Þ þ dð1Þ dð2Þ cð3Þ cð4Þ ½29�

One then integrates Eq. [28] electron by electron, leading to Eq. [30] for the
overlap between j a a b b j and j c c d d j:

hðj a a b b j Þjðj c c d d j Þi ¼ S2
acS

2
bd 	 SadSacSbcSbd

	 SacSadSbdSbc þ S2
adS2

bc ½30�

where Sac, for example, is a simple overlap between two orbitals a and c.
Generalization to different types of determinants is trivial.52 As an appli-

cation, let us obtain the overlap of a VB determinant with itself, and calculate
the normalization factor N of the determinant � in Eq. [26]:

hðj a a b b j Þjðj a a b b j Þi ¼ 1 	 2S2
ab þ S4

ab ½31�
� ¼ ð1 	 2S2

ab þ S4
abÞ 	1=2ja a bbj ½32�

Generally, normalization factors for determinants are larger than unity. The
exception is those VB determinants that do not have more than one spin orbi-
tal of each spin variety (e.g., the determinants that compose the HL wave func-
tion). For these latter determinants the normalization factor is unity (i.e.,
N ¼ 1).

An Effective Hamiltonian
Using the exact Hamiltonian for calculating matrix elements between VB

determinants would lead to complicated expressions involving numerous bi-
electronic integrals, owing to the 1/rij terms. Thus, for practical qualitative
or semiquantitative applications, one uses an effective Hamiltonian in which
the 1/rij terms are only implicitly taken into account, in an averaged manner.
One then defines a Hamiltonian made of a sum of independent monoelectronic
Hamiltonians, much like in simple MO theory:

Heff ¼
X

i

hðiÞ ½33�

where the summation runs over the total number of electrons. Here the opera-
tor h has a meaning different from Eq. [20] since it is now an effective
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monoelectronic operator that incorporates part of the electron–electron and
nuclear–nuclear repulsions. Going back to the four–electron example above,
the determinants � and �0 are coupled by the following effective Hamiltonian
matrix element:

h�jHeffj�0i ¼ h�jhð1Þ þ hð2Þ þ hð3Þ þ hð4Þj�0i ½34�

It is apparent that the above matrix element is composed of a sum of four
terms that are calculated independently. The calculation of each of these terms
(e.g., the first one) is quite analogous to the calculation of the overlap in Eq.
[30], except that the first monoelectronic overlap S in each product is replaced
by a monoelectronic Hamiltonian term:

hðj a a b b jÞj hð1Þ jðj c c d d jÞ i ¼ hacSacS
2
bd 	 hadSacSbcSbd

	 hacSadSbdSbc þ hadSadS2
bc ½35a�

hac ¼ hajhjci ½35b�

In Eq. [35b], the monoelectronic integral accounts for the interaction between
two overlapping orbitals. A diagonal term of the type haa is interpreted as the
energy of the orbital a, and will be noted ea in the following equations. By
using Eqs. [34] and [35], it is easy to calculate the energy of the determinant
j a a bb j:

EðjaabbjÞ ¼ N2ð2ea þ 2eb 	 2eaS2
ab 	 2ebS2

ab 	 4habSab þ 4habS3
abÞ ½36�

An interesting application of the above rules is the calculation of the
energy of a spin-alternant determinant such as 14 in Scheme 5 for butadiene.

Such a determinant, in which the spins are arranged so that two neigh-
boring orbitals always display opposite spins is referred to as a ‘‘quasiclassi-
cal’’ (QC) state and is a generalization of the QC state that we already
encountered above for H2. The rigorous formulation of its energy involves
some terms that arise from permutations between orbitals of the same spins,
which are necessarily nonneighbors. Neglecting interactions between non-
nearest neighbors, all these vanish, so that the energy of the QC state is given
by the simple expression below.

Ej a b c d j ¼ ea þ eb þ ec þ ed ½37�

Scheme 5
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Generalizing, the energy of a spin-alternant determinant is always the
sum of the energies of its constituent orbitals. In the QC state, the interaction
between overlapping orbitals is therefore neither stabilizing nor repulsive. This
is a nonbonding state, which can be used for defining a reference state, with
zero energy, in the framework of VB calculations of bonding energies or repul-
sive interactions.

Note that the rules and formulas that are expressed above in the frame-
work of qualitative VB theory are independent of the type of orbitals that are
used in the VB determinants: purely localized AOs, fragment orbitals or
Coulson–Fischer semilocalized orbitals. Depending on the kind of orbitals
that are chosen, the h and S integrals take different values, but the formulas
remain the same.

Some Simple Formulas for Elementary Interactions

In qualitative VB theory, it is customary to take the average value of the
orbital energies as the origin for various quantities. With this convention, and
using some simple algebra,52 the monoelectronic Hamiltonian between two
orbitals becomes bab, the familiar ‘‘reduced resonance integral’’:

bab ¼ hab 	 0:5ðhaa þ hbbÞSab ½38�

It is important to note that these b integrals, used in the VB framework are the
same as those used in simple MO models such as extended Hückel theory.

Based on the new energy scale, the sum of orbital energies is set to zero,
that is: X

i

ei ¼ 0 ½39�

In addition, since the energy of the QC determinant is given by the sum of
orbital energies, its energy then becomes zero:

Eðj a b c d jÞ ¼ 0 ½40�

The Two-Electron Bond
By application of the qualitative VB theory, Eq. [41] expresses the HL-

bond energy of two electrons in atomic orbitals a and b, which belong to
the atomic centers A and B. The binding energy De is defined relative to the
quasiclassical state j ab j or to the energy of the separate atoms, which are
equal within the approximation scheme.

DeðA		BÞ ¼ 2bS=ð1 þ S2Þ ½41�
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Here, b is the reduced resonance integral that we have just defined and S is the
overlap between orbitals a and b. Note that if instead of using purely localized
AOs for a and b, we use semilocalized Coulson–Fischer orbitals, Eq. [41] will
not be the simple HL-bond energy but would represent the bonding energy of
the real A		B bond that includes its optimized covalent and ionic components.
In this case, the origins of the energy would still correspond to the QC deter-
minant with the localized orbitals. Unless otherwise specified, we will always
use qualitative VB theory with this latter convention.

Repulsive Interactions
By using the above definitions, one gets the following expression for the

repulsive energy of the triplet state:

�ETðA "" BÞ ¼ 	2bS=ð1 	 S2Þ ½42�

The triplet repulsion arises due to the Pauli exclusion rule and is often referred
to as a Pauli repulsion.

For a situation where we have four electrons on the two centers, VB
theory predicts a doubling of the Pauli repulsion, and the following expression
is obtained in complete analogy to qualitative MO theory:

�EðA�� ��BÞ ¼ 	4bS=ð1 	 S2Þ ½43�

One can, in fact, simply generalize the rules for Pauli repulsion. Thus, the elec-
tronic repulsion in an interacting system is equal to the quantity:

�Erep ¼ 	2nbS=ð1 	 S2Þ ½44�

n being the number of electron pairs with identical spins.
Now, consider VB structures with three electrons on two centers, (A�� �B)

and (A� ��B). The interaction energy of each one of these structures by itself is
repulsive and following Eq. [42] will be given by the Pauli repulsion term in
Eq. [45]:

�EððA��
�
BÞ and ðA� ��BÞÞ ¼ 	2bS=ð1 	 S2Þ ½45�

Mixing Rules for VB Structures
Whenever a wave function is written as a normalized resonance hybrid

between two VB structures of equivalent energies (e.g, as in Eq. [46], the
energy of the hybrid is given by the normalized averaged self-energies of the
constituent resonance structures and the interaction matrix element, H12,
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between the structures in Eq. [47].

� ¼ N½�1 þ �2�
where N ¼ 1=½2ð1 þ S12Þ�1=2 ½46�

Eð�Þ ¼ 2N2Eav þ 2N2H12

where H12 ¼ h�1jHj�2i and Eav ¼ ½ðE1 þ E2Þ=2� ½47�

Such a mixed state is stabilized relative to the energy of each individual VB
structure, by a quantity that is called the ‘‘resonance energy’’ (RE):

RE ¼ ½H12 	 EavS12�=ð1 þ S12Þ S12 ¼ h�1j�2i ½48�

Equation [48] expresses the RE in the case where the two limiting structures
�1 and �2 have equal or nearly equal energies, which is the most favorable
situation for maximum stabilization. However, if the energies E1 and E2 are
different, then according to the rules of perturbation theory, the stabilization
will still be significant, albeit than in the degenerate case.

A typical situation where the VB wave function is written as a resonance
hybrid is odd-electron bonding (one-electron or three-electron bonds). For
example, a one-electron bond A�B is a situation where only one electron is
shared by two centers A and B (Eq. [49]), while three electrons are distributed
over the two centers in a three-electron bond A;B (Eq. [50]):

A�B ¼ Aþ�
B $ A

� þB ½49�
A;B ¼ A

� ��B $ A��
�
B ½50�

Simple algebra shows that the overlap between the two VB structures is equal
to S (the hajbi orbital overlap)a and that resonance energy follows Eq. [51]:

RE ¼ b=ð1 þ SÞ ¼ DeðAþ �
B $ A

� þBÞ ½51�

Equation [51] also gives the bonding energy of a one-electron bond. Combin-
ing Eqs. [45] and [51], we get the bonding energy of the three-electron bond,
Eq. [52]:

DeðA� ��B $ A��
�
BÞ ¼ 	2bS=ð1 	 S2Þ þ b=ð1 þ SÞ

¼ bð1 	 3SÞ=ð1 	 S2Þ ½52�

a Writing f1 and f2 so that their positive combination is the resonance-stabilized one.
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These equations for odd-electron bonding energies are good for cases where
the forms are degenerate or nearly so. In cases where the two structures are
not identical in energy, one should use the perturbation theoretic expression.52

For more complex situations, general guidelines for derivation of matrix
elements between polyelectronic determinants are given in Appendix A.2.
Alternatively, one could follow the protocol given in the original litera-
ture.52,143

Nonbonding Interactions in VB Theory
Some situations are encountered where one orbital bears an unpaired

electron in the vicinity of a bond, such as 15 in Scheme 6:

Since A�B�		�C displays a singlet coupling between orbitals b and c, Eq. [53]
gives its wave function:

A�B�		�C ¼ Nðja b cj 	 ja b cjÞ ½53�

in which it is apparent that the first determinant involves a triplet repulsion
with respect to the electrons in a and b while the second one is a spin-alternant
determinant. The energy of this state, relative to a situation where A and BC
are separated, is therefore:

EðA�B�		�CÞ 	 EðAÞ 	 EðB�		�CÞ ¼ 	bS=ð1 	 S2Þ ½54�

which means that bringing an unpaired electron into the vicinity of a covalent
bond results in half of the full triplet repulsion. This property will be used
below when we discuss VB correlation diagrams for radical reactions. The

repulsion is the same if we bring two covalent bonds, A�		�B and C�		�D, close
to each other, as in 16 (Scheme 7):

EðA�		�B � � �C�		�DÞ 	 EðA�		�BÞ 	 EðC�		�DÞ ¼ 	bS=ð1 	 S2Þ ½55�

Equation [55] can be used to calculate the total p energy of one canonical
structure of a polyene, for example, structure 17 of butadiene (Scheme 8).

Scheme 6

Scheme 7

32 VB Theory, Its History, Fundamentals, and Applications



Since there are two covalent bonds and one nonbonded repulsion in this VB
structure, its energy is expressed simply as follows:

�ð17Þ ¼ 4bS=ð1 þ S2Þ 	 bS=ð1 	 S2Þ ½56�

As an application, let us compare the energies of two isomers of hexatriene.
The linear s-trans conformation can be described as a resonance between
the canonical structure 18 and ‘‘long bond’’ structures 19–21 (Scheme 9)

where one short bond is replaced by a long bond. On the other hand, the
branched isomer is made only of structures 22–24, since it lacks an analogous
structure to 21.

It is apparent that the canonical structures 18 and 22 have the same elec-
tronic energies (three bonds, two nonbonded repulsions), and that structures
19–21, 23, and 24 are also degenerate (two bonds, three nonbonded repul-
sions). Furthermore, if one omits structure 21, the matrix elements between
the remaining long-bond structures and the canonical ones are all the same.
Thus, elimination of structure 21 will make both isomers isoenergetic. If, how-
ever, we take structure 21 into account, it will mix and increase, however,
slightly, the RE of the linear polyene that becomes thermodynamically more
stable than the branched one. This subtle prediction, which is in agreement
with experiment, will be demonstrated again below in the framework of
Heisenberg Hamiltonians.

Scheme 8

Scheme 9
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Comparison with Qualitative MO Theory
Some (but not all) of the elementary interaction energies that are dis-

cussed above also have qualitative MO expressions, which may or may not
match the VB expressions. In qualitative MO theory, the interaction between
two overlapping AOs leads to a pair of bonding and antibonding MOs, the
former being stabilized by the quantity b/(1 þ S) and the latter destabilized
by 	b=ð1 	 S) relative to the nonbonding level. The stabilization–destabilization
of the interacting system relative to the separate fragments is then calculated
by summing up the occupancy-weighted energies of the MOs. A comparison
of the qualitative VB and MO approaches is given in Table 1, where the ener-
getics of the elementary interactions are calculated with both methods. It is
apparent that both qualitative theories give identical expressions for the
odd-electron bonds, the four-electron repulsion, and the triplet repulsion.
This is not surprising if one notes that the MO and VB wave functions for
these four types of interaction are identical. On the other hand, the expressions
for the MO and VB two-electron-bonding energies are different; the difference
is related to the fact, discussed above, that MO and VB wave functions are
themselves different in this case. Therefore, we suggest a rule that may be use-
ful if one is more familiar with MO theory than VB: Whenever the VB and
MO wave functions of an electronic state are equivalent, the VB energy can
be estimated using qualitative MO theory.

INSIGHTS OF QUALITATIVE VB THEORY

This section demonstrates how the simple rules of the above VB
approach can be utilized to treat a variety of problems. Initially, we treat a
series of examples, which were mentioned in the introduction as ‘‘failures’’
of VB theory, and show that properly done VB theory leads to the right result
for the right reason. Subsequently, we proceed with a relatively simple prob-
lem in chemical bonding of one-electron versus two-electron bonds and
demonstrate that VB theory can make surprising predictions that stand the

Table 1 Elementary Interaction Energies in the Qualitative MO and VB Models

Type of Interaction Stabilization (MO Model) Stabilization (VB Model)

1-Electron b=ð1 þ SÞ b=ð1 þ SÞ
2-Electron 2b=ð1 þ SÞ 2bS=ð1 þ S2Þ
3-Electron bð1 	 3SÞ=ð1 	 S2Þ bð1 	 3SÞ=ð1 	 S2Þ
4-Electron 	4bS=ð1 	 S2Þ 	4bS=ð1 	 S2Þ
Triplet repulsion 	2bS=ð1 	 S2Þ 	2bS=ð1 	 S2Þ
3-Electron repulsion 	2bS=ð1 	 S2Þ
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test of experiment. Finally, we show how VB theory can lead to a general
model for chemical reactivity, the VB diagram. Since these subtopics cover a
wide range of chemical problems we cannot obviously treat them in-depth,
and wherever possible we refer the reader to more extensive reviews.

Are the ‘‘Failures’’ of VB Theory Real?

As mentioned in the introduction, VB theory has been accused of a few
‘‘failures’’ that are occasionally used to dismiss the theory, and have caused it
to have an unwarranted reputation. The next few subsections use the simple
VB guidelines drawn above to demonstrate that VB theory is free of these
‘‘failures’’.

Dioxygen
One of the major ‘‘failures’’ that has been associated with VB theory con-

cerns the ground state of the dioxygen molecule, O2. It is true that a naive
application of hybridization followed by perfect pairing (simple Lewis pairing)
would predict a 1�g ground state, that is, the diamagnetic doubly bonded
molecule O				O. This is likely the origin of the notion that VB theory makes
a flawed prediction that contradicts experiment (see, e.g., references [50] and
[51]). However, this conclusion is not valid, since in the early 1970s Goddard
et al.107 performed GVB calculations and demonstrated that VB theory pre-
dicts a triplet 3�	

g ground state. This same outcome was reported in papers
by McWeeny144 and Harcourt.145 In fact, any VB calculation, at whatever
imagined level, would lead to the same result, so the myth of ‘‘failure’’ is defi-
nitely baseless.

Goddard et al.107 and subsequently the present two authors53 also pro-
vided a simple VB explanation for the choice of the ground state. Let us reiter-
ate this explanation based on our qualitative VB theory, outlined above.

Apart from one s bond and one s lone pair on each oxygen atom, the
dioxygen molecule has six p electrons to be distributed in the two p planes, say
px and py. The question is What is the most favorable mode of distribution? Is
it 25 in which three electrons are placed in each p plane, or perhaps is it 26
where two electrons are allocated to one plane and four to the other (Scheme
10)? Obviously, 25 is a diradical structure displaying one three-electron bond

Scheme 10
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in each of p planes, whereas 26 exhibits a singlet p bond, in one plane, and a
four-electron repulsion, in the other. A naive application that neglects the
repulsive three-electron and four-electron interactions would predict that
structure 26 is preferred, leading to the above-mentioned legendary failure
of VB theory, namely, that VB predicts the ground state of O2 to be the singlet
closed-shell structure, O				O. Inspection of the repulsive interactions shows
that they are of the same order of magnitude or even larger than the bonding
interactions, that is, the neglect of these repulsion is unjustified. The right
answer is immediately apparent, if we carry out the VB calculation correctly,
including the repulsion and bonding interactions for structures 25 and 26. The
resulting expressions and the respective energy difference, which are shown in
Eqs. [57–59], demonstrate clearly that the diradical structure 25 is more stable
than the doubly bonded Lewis structures 26.

Eð25Þ ¼ 2bð1 	 3SÞ=ð1 	 S2Þ ½57�
Eð26Þ ¼ 2bS=ð1 þ S2Þ 	 4bS=ð1 	 S2Þ ½58�

Eð26Þ 	 Eð25Þ ¼ 	2bð1 	 SÞ2=ð1 	 S4Þ > 0 ½59�

Thus far we have not considered the set of Slater determinants 250 and
260, which are symmetry-equivalent to 25 and 26 by inversion of the px and py

planes. The interactions between the two sets of determinants yield two pairs
of resonant–antiresonant combinations that constitute the final low-lying states
of dioxygen, as represented in Figure 4. Of course, our effective VB theory
was chosen to disregard the bielectronic terms and, therefore, the theory, as

Figure 4 Formation of the symmetry adapted states of O2 from the biradical (25, 250)
and perfectly-paired (26, 26’) structures.
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such, will not tell us what the lowest spin state in the O2 diradical is. This,
however, is a simple matter, because further considerations can be made by
appealing to Hund’s rule, which is precisely what qualitative MO theory
must do in order to predict the triplet nature of the O2 ground state. Accord-
ingly, the in-phase and out-of-phase combinations of the diradical determi-
nants 25 and 250 lead to triplet (3�	

g ) and singlet (1�g) states, respectively,
the former being the lowest state by virtue of favorable exchange energy.

Similarly, 26 and 260 yield a resonant 1�g combination and an antireso-
nant 1�þ

g one. Thus, it is seen that simple qualitative VB considerations not
only predict the ground state of O2 to be a triplet, but also yield a correct
energy ordering for the remaining low-lying excited states.

The Valence Ionization Spectrum of CH4

As discussed in the introduction, the development of PES showed that
the spectra could be simply interpreted if one assumed that electrons occupy
delocalized molecular orbitals.47,48 By contrast, VB theory, which uses loca-
lized bond orbitals (LBOs), seems completely useless for interpretation of
PES. Moreover, since VB theory describes equivalent electron pairs that occupy
LBOs, the PES results seem to be in disagreement with this theory. An iconic
example of this ‘‘failure’’ of VB theory is the PES of methane that displays two
different ionization peaks. These peaks correspond to the a1 and t2 MOs, but
not to the four equivalent C		H LBOs in Pauling’s hybridization theory.

Let us now examine the problem carefully in terms of LBOs to demon-
strate that VB gives the right result for the right reason. A physically correct
representation of the CHþ

4 cation would be a linear combination of the four
forms such that the wave function does not distinguish the four LBOs that
are related by symmetry. The corresponding VB picture, more specifically an
FO–VB picture, is illustrated in Figure 5, which enumerates the VB structures
and their respective determinants. Each VB structure involves a localized one-
electron bond situation, while the other bonds are described by doubly occu-
pied LBOs. To make life easier, we can use LBOs that derive from a unitary
transformation of the canonical MOs. As such, these LBOs would be orthogo-
nal to each other and one can calculate the Hamiltonian matrix element
between two such VB structures by simply setting all overlaps to zero in the
VB expressions, or by using the equivalent rules of qualitative MO theory.
Thus, to calculate the �1–�2 interaction matrix element, one first puts the
orbitals of both determinants in maximal correspondence, by means of a trans-
position in �2. The resulting two transformed determinants differ by only one
spin orbital, c 6¼ d, so that their matrix element is simply b. Going back to the
original �1 and �2 determinants, it appears that their matrix element is nega-
tively signed (Eq. [60]),

h�1jHeffj�2i ¼ hðj a a b b c c d jÞjHeff jðj d d a a b b c jÞi
¼ 	hðj a a b b c c d jÞjHeff jðj a a b b c d d jÞi ¼ 	b ½60�
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and this can be generalized to any pair of �i–�j VB structure in Figure 5.

h�ijHeff j�ji ¼ 	b ½61�

There remains to diagonalize the Hamiltonian matrix in the space of the four
configurations, �1–�4, to get the four states of CHþ

4 . This can be done by diag-
onalizing a matrix of Hückel type, with the only difference being that the b
matrix elements have a negative sign, as shown below in Scheme 11.

Figure 5 Generation of the 2T2 and 22A1 states of CHþ
4 , by VB mixing of the four

localized structures. The matrix elements between the structures, shown graphically,
leads to the three-below-one splitting of the states, and to the observations of two
ionization potential peaks in the PES spectrum (adapted from Ref. 61 with permission of
Helvetica Chemica Acta).

Scheme 11
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The diagonalization can be done using a Hückel program; however, the
result can be found even without any calculation (e.g, by use of symmetry pro-
jection operators of the Td point group). Diagonalization of the above Hückel
matrix, with negatively signed b leads to the final states of CHþ

4 , shown along-
side the interaction graph in Figure 5. These cationic states exhibit a three-
below-one splitting (i.e., a low-lying triply degenerate 2T2 state and above it
a 2A1 state). The importance of the sign of the matrix element can be appre-
ciated by diagonalizing the above Hückel matrix using a positively signed b.
Doing that would have reversed the state ordering to one-below-three, which
is of course incorrect. Thus, simple VB theory correctly predicts that methane
will have two ionization peaks, one (IP1) at lower energy corresponding to
transition to the degenerate 2T2 state and one (IP2) at a higher energy corre-
sponding to transition to the 2A1 state. The facility of making this prediction
and its agreement with experiment show once more that, here, too, the ‘‘fail-
ure’’ of VB theory is due more to a myth that caught on due to the naivety of
the initial argument than to any true failure of VB.

Aromaticity–Antiaromaticity
As discussed in the introduction, simple resonance theory completely

fails to predict the fundamental differences between C5Hþ
5 and C5H	

5 ,
C3Hþ

3 , and C3H	
3 , C7Hþ

7 , and C7H	
7 , and so on. Hence, a decisive defeat

was dealt to VB theory when, during the 1950–1960s, organic chemists
were finally able to synthesize these transient molecules and establish their sta-
bility patterns (which followed Hückel rules) with no guide or insight coming
from resonance theory. We shall now demonstrate (which has been known for
quite a while52,146,147) that the simple VB theory outlined above is capable of
deriving the celebrated 4n þ 2=4n dichotomy for these ions.

As an example, we compare the singlet and triplet states of the cyclopro-
penium molecular ions, C3Hþ

3 and C3H	
3 , shown in Figures 6 and 7. The VB

configurations needed to generate the singlet and triplet states of the equilat-
eral triangle C3Hþ

3 are shown in Figure 6. It is seen that the structures can be
generated from one another by shifting single electrons from a singly occupied
pp orbital to a vacant one. By using the guidelines for VB matrix elements (see
Appendix A.2), we deduce that the leading matrix element between any pair of
structures with singlet spins is þb, while for any pair with triplet spin the
matrix element is 	b. The corresponding configurations of C3H	

3 are shown
in Figure 7. In this case, the signs of the matrix elements are inverted compared
with the case of the cyclopropenium cation, and are 	b for any pair of singlet
VB structures, and þb for any pair of triplet structures.

If we symbolize the VB configurations by heavy dots we can present these
resonance interactions graphically, as shown in the mid-parts of Figures 6 and
7. These interaction graphs are all triangles and have the topology of corre-
sponding Hückel and Möbius AO interactions.148 Of course, one could diag-
onalize the corresponding Hückel–Möbius matrices and obtain energy levels
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and wave functions, but a shortcut based on the well-known mnemonic of
Frost and Musulin149 exists. A triangle is inscribed within a circle having a
radius 2jbj, and the energy levels are obtained from the points where the ver-
tices of the triangle touch the circle. Using this mnemonic for the VB mixing
shows that the ground state of C3Hþ

3 is a singlet state, while the triplet state is
higher lying and doubly degenerate. By contrast, the ground state of C3H	

3 is a
triplet state, while the singlet state is higher lying, doubly degenerate, and

Figure 6 The VB structures for singlet and triplet states of C3Hþ
3 , along with the

graphical representation of their interaction matrix elements (adapted from Ref. 61 with
permission of Helvetica Chemica Acta). The spread of the states is easily predicted from
the circle mnemonic used in simple Hückel theory. The expressions for the VB structures
are deduced from each other by circular permutations:1�1 ¼ j abj 	 j a bj; 1�2 ¼
j bcj 	 j b cj; 1�3 ¼ j caj 	 j c aj; 3�1 ¼ j abj; 3�1 ¼ j bcj; 3�1 ¼ j caj.
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hence Jahn-Teller unstable. Thus, C3Hþ
3 is aromatic, while C3H	

3 is antiaro-
matic.52

In a similar manner, the VB states for C5Hþ
5 and C5H	

5 can be con-
structed. Restricting the treatment to the lowest energy structures, there
remain five structures for each spin state, and the sign of the matrix elements
will be inverted compared to the C3H	;þ

3 cases. The cation will have 	b matrix

Figure 7 The VB structures for singlet and triplet states of C3H	
3 , along with the

graphical representation of their interaction matrix elements (adapted from Ref. 61 with
permission of Helvetica Chemica Acta). The spread of the states is easily predicted from
the circle mnemonic used in simple Hückel theory. The expressions for the VB structures
are deduced from each other by circular permutations:1�1 ¼ j ab ccj 	 j a bccj; 1�2 ¼
j bc aaj 	 j b c a aj; 1�3 ¼ j ca bbj 	 j c a bbj; 3�1 ¼ j ab ccj; 3�1 ¼ j bc aaj; 3�1 ¼ j ca bbj.
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elements for the singlet configurations and þb for the triplets, while the anion
will have the opposite signs. The VB-mnemonic shows that C5H	

5 possesses a
singlet ground state, and by contrast, C5Hþ

5 has a triplet ground state, whereas
its singlet state is higher in energy and Jahn–Teller unstable. Thus, in the cyclo-
pentadienyl ions, the cation is antiaromatic while the anion is aromatic.

Moving next to the C7Hþ;	
7 species, the sign patterns of the matrix ele-

ment will invert again and agree with those in the C3Hþ;	
3 case. As such, the

VB-mnemonic will lead to similar conclusions, that is, that the cation is aro-
matic, while the anion is antiaromatic with a triplet ground state. Thus, the
sign patterns of the b-matrix element, and hence also the ground state’s stabi-
lity obey the 4n=4n þ 2 dichotomy.

Clearly, a rather simple VB theory is all that is required to reproduce the
rules of aromaticity and antiaromaticity of the molecular ions, and to provide
the correct relative energy levels of the corresponding singlet and triplet states.
This VB treatment is virtually as simple as HMO theory itself, with the excep-
tion of the need to know the sign of the VB matrix element. But, with some
practice, this can be learned.

Another highly cited ‘‘failure’’ of VB theory concerns the treatments of
antiaromatic molecules such as CBD and COT versus aromatic ones like ben-
zene. The argument goes as follows: Since benzene, CBD, and COT can all be
expressed as resonance hybrids of their respective Kekulé structures, they
should have similar properties, and since they do not, this must mean that
VB theory fails. As we have already stressed, this is a failure of resonance
theory that simply enumerates resonance structures, but not of VB theory. Indeed,
at the ab initio level, Voter and Goddard58 demonstrated that GVB calcula-
tions, predict correctly the properties of CBD. Subsequently, Gerratt and co-
workers150,151 showed that spin-coupled VB theory correctly predicts the
geometries and ground states of CBD and COT. Recently, in 2001, the present
authors and their co-workers used VB theory to demonstrate57 that (a) the ver-
tical RE of benzene is larger than that of CBD and COT, and (b) the standard
Dewar resonance energy (DRE) of benzene is 21 kcal/mol, while that for CBD
is negative, in perfect accord with experiment. Thus, properly done ab initio
VB theory indeed succeeds with CBD, COT, or with any other antiaromatic
species. A detailed analysis of these results for benzene CBD and COT, has
been given elsewhere55,152 but is beyond the scope of this chapter.

Can VB Theory Bring New Insight into
Chemical Bonding?

The idea that a one-electron bond might be stronger than a two-electron
bond between the same atoms sounds unnatural in simple-MO theory. How
could two bonding electrons stabilize a molecular interaction less than a single
one? If we take a common interatomic distance for the two kinds of bonds, the
one-electron bonding energy should be half the two-electron bonding energy
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according to the qualitative MO formulas in Table 1. Relaxing the bond
length should disfavor the one-electron bond even more than the two-electron
one, since the latter is shorter and enjoys larger overlap between the fragments’
orbitals.

The simple VB model makes a very different prediction. By using VB for-
mulas, an overlap-dependent expression is found for the ratio of one-electron
to two-electron bonding energies (Table 1 and Eq. [62]):

Deð1 	 eÞ
Deð2 	 eÞ ¼

1 þ S2

2Sð1 þ SÞ ½62�

According to Eq. [62], the one-electron bond is weaker than the two-electron
bond in the case of strong overlap (typically the Hþ

2 /H2 case), but the reverse is
true if the overlap S is smaller than a critical value of 0.414. There are many
chemical species that possess smaller overlap than this critical value (e.g., alkali
dimers and other weak binders). By contrast, strong binders like H, C, and
so on, usually maintain larger overlaps, S � 0:5. The qualitative prediction
based on Eq. [62], compares favorably with experimental and computational
data. Indeed the binding energy of the two-electron bond in H2 (4.75 eV) is
somewhat less than twice that of the one-electron bond in Hþ

2 (2.78 eV). In
contrast, comparing Liþ2 and Li2 leads to the intriguing experimental result
that the binding energy for Liþ2 (1.29 eV) is larger than that for Li2 (1.09
eV), which is in agreement with the VB model but at variance with qualitative
MO theory.

What is the reason for the discrepancy of the MO and VB approaches?
As we have seen, the qualitative expression for the odd-electron bonding ener-
gies is the same in both theories. However, the two-electron bonding energies
are different. Assuming that the b integral is proportional to the overlap S, the
two-electron bonding energy is a linear function of S in the MO model, but a
quadratic function of S in the VB model. It follows that, for large overlaps, the
VB and MO models more or less agree with each other, while they qualita-
tively differ for weak overlaps. In this latter case, the VB model predicts a lar-
ger one-electron versus two-electron ratio of bonding energies than the MO
model. Note that the reasoning can be extended to three-electron bonds
as well: for weakly overlapping binders, the VB model predicts that three-
electron bonds might approach the strength of the corresponding two-electron
bonds. In comparison, application of simple MO theory would have predicted
that any three-electron bond energy should always be less than one-half of the
corresponding two-electron bond energy, for any overlap. In agreement with
the VB prediction, the three-electron bond in F	

2 , in which the two interacting
orbitals have a typically weak overlap (�0.10), has a binding energy of 1.31
eV, not much smaller than the two-electron bonding energy of F2 which is no
larger than 1.66 eV.
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Insight into bonding is not limited to this example. In fact, VB theory
gives rise to new bonding paradigms that are discussed in the literature but
are not reviewed here for lack of space. One such paradigm is called
‘‘charge-shift bonding’’ and concerns two-electron bonds that are neither
covalent nor ionic but whose bonding energy is dominated by the covalent–
ionic resonance interaction; for example, F		F and O		O are charge-shift
bonds.153–155 Another paradigm is the ‘‘ferromagnetic-bonding’’ that occurs
in high-spin clusters (e.g., nþ1Lin) that are devoid of electron pairs.156,157

VB Diagrams for Chemical Reactivity

One advantage of representing reactions in terms of VB configurations is
the unique and unified insight that it brings to reactivity problems. The center-
piece of the VB diagram model is the VB correlation diagram that traces the
energy of the VB configurations along the reaction coordinate. The subsequent
configuration mixing reveals the cause of the barrier, the nature of the transi-
tion state, and the reasons for occurrence of intermediates. Furthermore, the
diagram allows qualitative and semiquantitative predictions to be made about
a variety of reactivity problems, ranging from barrier heights, stereo- and
regio-selectivities, and mechanistic alternatives. Since its derivation, via the
projection of MO-based wave functions along the reaction coordinate,81 the
VB diagram model has been applied qualitatively53,83–85,158 as well as quanti-
tatively by direct computation of the VB diagram;159–168 as such this is a qua-
litative model with an isomorphic quantitative analogue.

The straightforward representation of the VB diagram focuses on the
‘‘active bonds’’, those that are being broken or made during the reaction.
Of course, it is the localized nature of the electron pairs in the VB representa-
tion that makes this focusing possible. The entire gamut of reactivity phenom-
ena requires merely two generic diagrams, which are depicted schematically in
Figure 8, and that enable a systematic view of reactivity. The first is a diagram
of two interacting states, called a VB state correlation diagram (VBSCD),
which describes the formation of a barrier in a single chemical step due to
avoided crossing or resonance mixing of the VB states that describe reactants
and products. The second is a three-curve diagram (or generally a many-curve
diagram), called a VB configuration-mixing diagram (VBCMD), which
describes a stepwise mechanism derived from the avoided crossing and VB
mixing of the three curves or more. The ideas of curve crossing and avoided
crossing were put to use in the early days of VB theory by London, Eyring,
Polanyi, and Evans, who pioneered the implementation of VB computation
as a means of generating potential energy surfaces and locating transition
states. In this respect, the VB diagrams (VBSCD and VBCMD) are develop-
ments of these early ideas into a versatile system of thought that allows pre-
diction of a variety of reactivity patterns from properties of the reactants and
products.
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A review of both kinds of VB diagrams has recently appeared,85 and we
refer the reader to this review paper for comprehensive information. Here we
will concentrate on diagrams of the first type, VBSCD, and give a brief account
of their practical use.

The VBSCDs apply to the general category of reactions that can be
described as the interplay of two major VB structures, that of the reactants
(A/B		C in Fig. 8a) and that of the products (A		B/C). The diagram displays
the ground state energy profile of the reacting system (bold curve), as well
as the energy profile of each VB structure as a function of the reaction coordi-
nate (thin curves). Thus, starting from the reactant’s geometry on the left, the
VB structure that represents the reactant’s electronic state, R, has the lowest
energy and merges with the supersystem’s ground state. Then, as one deforms
the supersystem towards the products’ geometry, the latter VB structure gra-
dually rises in energy and finally reaches an excited state P* that represents the
VB structure of the reactants in the products’ geometry. A similar diabatic
curve can be traced from P, the VB structure of the products in its optimal geo-
metry, to R�, the same VB structure in the reactants’ geometry. Consequently,
the two curves cross somewhere in the middle of the diagram. The crossing is
of course avoided in the adiabatic ground state, owing to the resonance energy
B that results from the mixing of the two VB structures. The barrier is thus
interpreted as arising from avoided crossing between two diabatic curves,
which represent the energy profiles of the VB structures of the reactants and
products.

The VBSCD is a handy tool for making predictions by relating the mag-
nitudes of barriers to the properties of reactants. Thus, the barrier �E6¼ of a

Figure 8 The VB diagrams for conceptualizing chemical reactivity: (a) VBSCD showing
the mechanism of barrier formation by avoided crossing of two curves of reactant and
product type state curves. (b) VBCMD showing the formation of a reaction intermediate.
The final adiabatic states are drawn in bold curves.
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reaction can be expressed as a function of some fundamental parameters of the
diagrams. The first of these parameters is the vertical energy gap G (Fig. 8a)
that separates the ground state of the reactant, R, from the excited state R�.
This parameter can take different expressions, depending on which reaction
is considered, but is always related to simple and easily accessible energy quan-
tities of the reactants. Another important factor is the height of the crossing
point, �Ec, of the diabatic curves in the diagram, relative to the energy of
the reactants. For predictive purposes, this quantity can, in turn, be expressed
as a fraction f , smaller than unity, of the gap G (Eq. [63]).

�Ec ¼ f G ½63�

This parameter is associated with the curvature of the diabatic curves,
large upward curvatures meaning large values of f, and vice versa for small
upward curvature. The curvature depends on the descent of R* and P* toward
the crossing point and on the relative pull of the ground states, R and P, so that
f incorporates various repulsive and attractive interactions of the individual
curves along the reaction coordinate. The last parameter is the resonance
energy B arising from the mixing of the two VB structures in the geometry
of the crossing point. The barrier �E 6¼ can be given a rigorous expression as
a function of the three physical quantities f, G, and B as in Eq. [64]:

�E6¼ ¼ f G 	 B ½64�

A similar expression can be given for the barrier of the reverse reaction as a
function of the product’s gap and its corresponding f factor. One then distin-
guishes between the reactant’s and product’s gaps, Gr and Gp, and their cor-
responding f factors fr and fp. A unified expression for the barrier as a function
of the two promotion gaps and the endo- or exothermicity of the reaction can
be derived by making some simplifying approximations.85,169,170 One such
simplified expression has been derived recently168 and is given in Eq. [65].

�E 6¼ ¼ f0G0 þ 0:5�Erp 	 B f0 ¼ 0:5ðfr þ fpÞ G0 ¼ 0:5ðGr þ GpÞ ½65�

Here, the first term is an intrinsic factor that is determined by the aver-
aged f and G quantities, the second term gives the effect of the reaction ther-
modynamics, and the third term is the resonance energy of the transition state,
due to the avoided crossing.

Taken together the barrier expressions describe the interplay of three
effects. The intrinsic factor f0G0 describes the energy cost due to unpairing
of bonding electrons in order to make new bonds, the �Erp factor accounts
for the classical rate-equilibrium effect, while B involves information about
the preferred stereochemistry of the reaction. Figure 9 outlines pictorially
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the impact of the three factors on the barrier. As such, the VB diagram consti-
tutes in principle a unified and general structure–reactivity model.

A quantitative application of the diagram requires calculations of either
�Ec and B or of f , G, and B. The energy gap factor, G, is straightforward to
obtain for any kind of process. The height of the crossing point incorporates
effects of bond deformations (bond stretching, angular changes, etc.) in the
reactants and nonbonded repulsions between them at the geometry corre-
sponding to the crossing point of the lowest energy on the seam of crossing
between the two state curves (Fig. 8a). This, in turn, can be computed by
means of ab initio calculations (e.g., straightforwardly by use of a VB
method 159,166–168 or with any MO-based method), by determining the energy
of the reactant wave function at zero iteration (see Appendix A.3) or by con-
strained optimization of block-localized wave functions.171 Alternatively, the
height of the crossing point can be computed by molecular mechanical
means.172–174 Except for VB theory that calculates B explicitly, in all other
methods this quantity is obtained as the difference between the energy of
the transition state and the computed height of the crossing point. In a few
cases, it is possible to use analytical formulas to derive expressions for the

Figure 9 Illustration of the factors that control the variation of the barrier height in the
VBSCD.
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parameters f and B.53,85,167 Thus, in principle, the VBSCD is computable at
any desired accuracy.142

The purpose of this section is to teach an effective way for using the dia-
grams in a qualitative manner. The simplest way starts with the G parameter,
which is the origin of the barrier, since it serves as a promotion energy needed
to unpair the bonds of the reactants and pair the electrons in the mode
required by the products. In certain families of related reactions both the cur-
vatures of the diabatic curves (parameter f ) and the avoided crossing reso-
nance energy (parameter B) can be assumed to be nearly constant, while in
other reaction series f and B vary in the same manner as G. In such cases,
the parameter G is the crucial quantity that governs the reaction barriers in
the series: the larger the gap G, the larger the barrier. Let us proceed with a
few applications of this type.

Radical Exchange Reactions
Figure 10 describes the VB correlation diagram for a reaction that

involves cleavage of a bond A		Y by a radical X
�
(X, A, Y ¼ any atom or mole-

cular fragment):

X
� þ A		Y ! X		A þ Y

� ½66�

Since R� is just the VB image of the product in the geometry of the reactants,
this excited state displays a covalent bond coupling between the infinitely

Figure 10 The state correlation in the VBSCD that describes a radical exchange
reaction. Avoided crossing as in Figure 8a will generate the final adiabatic profile.
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separated fragments X and A, and an uncoupled fragment Y
�
in the vicinity of

A. The VB wave function of such a state reads (dropping normalization
factors):

cðR�Þ ¼ j x a y j 	 j x a y j ½67�

where x, a, and y are, respectively, the active orbitals of the fragments X, A, Y.
By using the rules of qualitative VB theory (Eqs. [40] and [42] where S2 is
neglected), the energy of R� relative to the separated X, A, Y fragments
becomes 	baySay, while the energy of R is just the bonding energy of the
A		Y fragment (i.e., 2baySay). It follows that the energy gap G for any radical
exchange reaction of the type in Eq. [66] is 	3baySay, which is just three quar-
ters of the singlet–triplet gap �EST of the A		Y bond, namely,

G � 0:75�ESTðA		YÞ ½68�

The state R� in Eq. [67] keeps strictly the wave function of the product P, and
is hence a quasi-spectroscopic state that has a finite overlap with R. If one
orthogonalizes the pair of states R and R�, by for example, a Graham–Schmidt
procedure, the excited state becomes a pure spectroscopic state in which the
A		Y is in a triplet state and is coupled to X

�
to yield a doublet state. In such

an event, one could simply use, instead of Eq. [68], the gap G0 in Eq. [69] that
is simply the singlet–triplet energy gap of the A		Y bond:

G0 ¼ �ESTðA		YÞ ½69�

Each formulation of the state R� has its own advantages,175 but what is essen-
tial for the moment is that both use a gap that is either the singlet–triplet exci-
tation of the bond that is broken during the reaction, or the same quantity
scaled by approximately a constant 0.75. As mentioned above, a useful way
of understanding this gap is as a promotion energy that is required in order
to enable the A		Y bond to be broken before it can be replaced by another
bond, X		A.

As an application, let us consider a typical class of radical exchange reac-
tions, the hydrogen abstractions from alkanes. Eq. [70] describes the identity
process of hydrogen abstraction by an alkyl radical:

R
� þ H		R ! R		H þ R

� ½70�

Identity reactions proceed without a thermodynamic driving force, and project
therefore the role of promotion energy as the origin of the barrier.

The barriers for a series of radicals have been computed by Yamataka
and Nagase,176 and were found to increase as the R		H bond energy D
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increases; the barrier is the largest for R ¼ CH3 and the smallest for
R ¼ C(CH3)3. This trend has been interpreted by Pross et al.177 using the
VBSCD model. The promotion gap G that is the origin of the barrier
(Eq. [68]) involves the singlet–triplet excitation of the R		H bond. Now,
according to Eqs. [41] and [42], this singlet–triplet gap is proportional to
the bonding energy of the R		H bond, that is, �EST � 2D. Therefore, the cor-
relation of the barrier with the bond strength is equivalent to a correlation
with the singlet–triplet promotion energy (Eq. [68]), a correlation that reflects
the electronic reorganization that is required during the reaction. In fact, the
barriers for the entire series calculated by Pross et al.177 can be fitted very well
to the barrier equation, as follows:

�E6¼ ¼ 0:3481G 	 50 kcal=mol G ¼ 2DRH ½71�

which indicates that this is a reaction family with constant f ¼ 0:3481 and
B ¼ 50 kcal/mol.

Recently, ab initio VB computations demonstrated that the �EST quan-
tity167 is the factor that organizes the trends for the barriers for the hydrogen
exchange identity reaction, R� þ RH ! RH þ� R, when R varies down the
column of the periodic table, that is, R ¼ CH3, SiH3, GeH3, and PbH3.
Thus, in this series, the barriers decrease down the column since the �EST

quantity decreases.
Similar reaction series abound.53,85 Thus, in a series of Woodward–Hoff-

mann forbidden 2 þ 2 dimerizations, the promotion gap is proportional to the
sum of the �EST (pp�) quantities of the two reactants. Consequently, the bar-
rier decreases from 42.2 kcal/mol for the dimerization of ethylene, where
��EST (pp�) is large (�200 kcal/mol) down to <10 kcal/mol for the dimeriza-
tion of disilene for which ��EST(pp�) is small (�80 kcal/mol). A similar trend
was noted for Woodward–Hoffmann allowed reactions (4 þ 2 or 2 þ 2 þ 2),
where the barrier jumps from 22 kcal/mol for the Diels–Alder reaction where
��EST(pp�) is small (�173 kcal/mol) to 62 kcal/mol for the trimerization of
acetylene where ��EST(pp�) is very large (�297 kcal/mol).

Reactions between Nucleophiles and Electrophiles
Figure 11 illustrates the formation of the VB correlation diagram for a

reaction between a nucleophile and an electrophile, Eq. [72]:

X	 þ A		Y ! X		A þ Y	 ½72�

Equation [72] represents a typical SN2 reaction where the nucleophile, X	,
shifts an electron to the A		Y electrophile, forms a new X		A bond, while
the leaving group Y departs with the negative charge.

Let us now examine the nature of the R� excited state for this process.
Geometrically, A and Y are close together (as in the ground state R) and
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separated from X by a long distance. The X fragment, which is neutral in the
product P, must remain neutral in R�, and therefore carries a single active elec-
tron. As a consequence, the negative charge is located on the A		Y complex, so
that the R� state is the result of a charge transfer from the nucleophile to the
electrophile, and can be depicted as X

�
/(A;Y)	. It follows that the promotion

from R to R� is made of two terms: An electron detachment from the nucleo-
phile (e.g., X�

�
	) and an electron attachment to the electrophile (e.g, A		Y).

The promotion energy G is therefore the difference between the vertical ioni-
zation potential of the nucleophile, I�X�

�
, and the vertical electron affinity of the

electrophile, A�
A		Y, given by Eq. [73],

G ¼ I�X�
�
	 A�

A		Y ½73�

where the asterisk denotes a vertical quantity with respect to molecular as well
as solvent configurations.105,106 Thus, the mechanism of a nucleophilic substi-
tution may be viewed as an electron transfer from the nucleophile to the
electrophile, and a coupling of the supplementary electron of the electrophile
to the remaining electron of the nucleophile.

A whole monograph and many reviews were dedicated to discussion of
SN2 reactivity based on the VBSCD model, and the interested reader may
consult these.85,169,170,178 One important feature that emerges from these

Figure 11 The state correlation in the VBSCD that describes a nucleophilic substitution
reaction. Avoided crossing as in Figure 8a will generate the final adiabatic profile.
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treatments is the insight into variations of f . Thus, whether or not the single
electrons in the R� state are easily accessible to couple to a bond determines
the size of the f factor; the easier the bond coupling along the reaction coor-
dinate, the smaller the f and vice versa. For example, in delocalized nucleo-
philes (acetate, phenyl thiolate, etc.), the active electron is not 100% located
on the atom that is going to be eventually linked to the fragment A in the reac-
tion in Eq. [72]. So the diabatic curve will slowly descend from R� to P and
one may expect a large f factor. On the other hand, localized nucleophiles will
correspond to smaller f factors. Of course, the same distinction can be made
between localized and delocalized electrophiles, leading to the same prediction
regarding the magnitude of f .

In general, all reactions between closed-shell electrophiles and nucleo-
philes subscribe to the same diagram type85 with R� and P� states, which
are vertical charge-transfer states that involve an electron transfer from the
nucleophile to the electrophile, while coupling the single electron on the oxi-
dized nucleophile to that on the reduced electrophile to form a bond pair. An
example is the nucleophilic cleavage of an ester where the rate-determining
step is known179,180 to involve the formation of a tetrahedral intermediate,
as depicted in Figure 12.

The promotion energy for the rate-determining step is, accordingly, the
difference between the vertical ionization potential of the nucleophile and the
electron attachment energy of the carbonyl group. The latter quantity is a con-
stant for a given ester, and therefore the correlation of barriers with the pro-
motion energy becomes a correlation with the vertical ionization energy of the
nucleophiles. Figure 13 shows a structure–reactivity correlation for the nucleo-
philic cleavage of a specific ester based on the VBSCD analysis of Buncel
et al.181 It is seen that the free energies of activation correlate with the vertical
ionization energies of the nucleophile in the reaction solvent. Furthermore,
localized and delocalized nucleophiles appear to generate correlation lines of

Figure 12 The ground and vertical charge-transfer states in the VBSCD that describes a
nucleophilic attack on a carbonyl group.
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different slopes. The two correlation lines obtained for the experimental data
in Figure 13 are readily understood based on Eq. [64] as corresponding to dif-
ferent f values, where the localized nucleophiles possess the smaller f value and
hence a smaller structure–reactivity slope in comparison with the delocalized
nucleophiles.

Significance of the f Factor
The f factor defines the intrinsic selectivity of the reaction series to a

change in the vertical gap,85,169 that is,

f ¼ qð�E6¼Þ=qG ½74�

In reactions of electrophiles and nucleophiles, we just indicated that f
increases as the nucleophile becomes more delocalized. Thus, the series of
delocalized nucleophiles, in Figure 13, is more selective to changes (of any
kind) that affect the gap, G, compared with the series of localized nucleo-
philes. This would be general for other processes as well; delocalization of
the single electrons in the R� states of the diagram results in higher f values,
and vice versa. Such trends abound in electrophile–nucleophile combinations;

Figure 13 A plot of the free energy of activation for nucleophilic cleavage of an ester vs.
the vertical ionization potential of the nucleophile (adapted from Ref. 85).
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they were analyzed for radical addition to olefins,182 and are likely to be a gen-
eral feature of reactivity.

Another factor that raises f is the steric bulk of the substrate or the
nucleophile.169 For example in SN2 reactions the bulkier the alkyl group in
A		Y (Eq. [72]) the larger will be the value of f , and vice versa.169 As a result,
bulkier substrates will exhibit higher sensitivity to changes in the vertical gap.
One such variation occurs when the reaction conditions change from gas
phase to solution, in which case the promotion gap, G ¼ I�X�

�
	 A�

A		Y, increases
by a significant amount. If we now compare two A		Y substrates such
as methyl chloride and neopentyl chloride, the latter will possess a larger f
value. The consequence is that the steric effect that is observed in the gas phase
will be amplified and become more significant in a solvent. This exciting
finding was recently published by Ren and Brauman.183

Making Stereochemical Predictions with the VBSCD Model
Making stereochemical predictions is easy using FO–VB configura-

tions.52,81,85 To illustrate the manner by which this can be practiced, let us
take a simple example with well-known stereochemistry, the nucleophilic sub-
stitution reaction, Eq. [72]. The corresponding R� state is depicted in Figure 14
in its FO–VB formulation, where the nucleophile appears here in its one-
electron reduced form X

�
, with a single electron in fX, while the substrate

has an extra electron in its s�
CY orbital. The two single electrons are coupled

into a fX 	 s�
CY bond pair.

The R� state correlates to product, X		C/:Y	, since it contains a
fX 	 s�

CY bond-pair that becomes the X		C bond, and at the same time the
occupancy of the s�

CY orbital causes the cleavage of the C		Y bond to release

Figure 14 The ground (R) and charge-transfer (R�) states in the VBSCD of the SN2
reaction X	 þ C 	 Y ! X 	 C þ Y	. The R� state has a bond pair shown by the line
connecting the orbitals fx and s�

cy.
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the: Y	 anion. Furthermore, the R� state contains information about the
stereochemical pathway. Since the bond pair involves a fX 	 s�

CY overlap,
due to the nodal properties of the s�

CY orbital the bond pair will be optimized
when the X

�
is coupled to the substrate in a colinear X		C		Y fashion. Thus,

the steepest descent of the R� state, and the lowest crossing point will occur
along a backside trajectory of the nucleophile toward the substrate.

If we assume that the charge-transfer state remains the leading configura-
tion of R� near the crossing point, then the matrix element between R and R�

will dominate the size of the resonance energy B, and will enable making pre-
dictions about B. Since these two VB configurations differ by the occupancy of
one spin orbital (fX in R is replaced by s�

CY in R�) then following the quali-
tative rules for matrix elements (see Appendix A.2), the resonance energy of
the transition state (TS) will be proportional to the overlap of these orbitals,
that is,

B / hfXjs�
CYi ½75�

It follows therefore, that in a backside trajectory, we obtain both the lowest
crossing point as well as the largest TS resonance energy. Computationally,
the back-side barrier is smaller by �10–20 kcal/mol compared with a front-
side attack.184 Equation [75] constitutes an orbital selection rule for an SN2
reaction. Working out this rather trivial prediction is nevertheless necessary
since it constitutes a prototypical example for deriving orbital selection rules
in other reactions, using FO–VB configurations. Thus, the intrinsic bonding
features of R� provide information about the reaction trajectory, while the
hRjR�i overlap provides information about the geometric dependence of the
resonance energy of the TS, B.

By using this approach, it is possible to derive orbital selection rules for
cases that are ambiguous in qualitative MO theory. For example, for radical
cleavage of s bonds, using the R� with a triplet s1 s�1 configuration on the
substrate leads to prediction that the course of the reaction and the resonance
interaction in the transition state will be determined by the product of overlaps
between the orbital of the attacking radical, fR, and the s and s� orbitals of
the substrate, namely, hfRjsihfRjs�i. This product is optimized once again in
a back-side attack, and therefore one can predict that radical cleavage of s
bonds will proceed with inversion of configuration. All known experimental
data185–190 conform to this prediction. Another area where successful predic-
tions have been made involves nucleophilic attacks on radical cations. Here
using the corresponding R and R� states,191 it was predicted that stereoselec-
tivity and regioselectivity of nucleophilic attack should be controlled by the
lowest unoccupied molecular orbital (LUMO) of the radical cation. Both regio-
selectivity and stereospecificity predictions were verified by experiment192,193

and computational means.184 For a more in depth discussion the reader may
consult the most recent review of the VBSCD and VBCMD models.85
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VBSCD: A GENERAL MODEL FOR ELECTRONIC
DELOCALIZATION AND ITS COMPARISON WITH
THE PSEUDO-JAHN–TELLER MODEL

The valence bond state correlation diagram (VBSCD) serves as a model
for understanding the status of electronic delocalization in isoelectronic series.
Consider, for example, the following exchange process between monovalent
atoms, which exchange a bond while passing through an X�

3 cluster in which
three electrons are delocalized over three centers.

X
� þ X		X ! ½X�

3� ! X		X þ�
X ½76�

We can imagine a variety of such species (e.g., X ¼ H, F, Cl, Li, Na, Cu), and
ask ourselves the following question: When do we expect the X�

3 species to be a
transition state for the exchange process, and when will it be a stable cluster,
an intermediate en-route to exchange? In fact, the answer to this question
comes from the VBSCD model, that describes all these process in a single dia-
gram where G is given by Eq. [68], that is, G � 0:75 �EST(X		X). Thus, as
shown in Figure 15 a very large triplet promotion energy for X ¼ H (250
kcal/mol) results in an H�

3 transition state, while the small promotion energy
for X ¼ Li (32 kcal/mol) results in a stable Li�3 cluster. The VB computations
of Maı̂tre et al.166 in Figure 15 show that, as the promotion gap drops drasti-
cally, the avoided crossing state changes from a transition state for H�

3 to a
stable cluster for Li�3. Moreover, this transition from a barrier to an intermedi-

Figure 15 Ab initio computations of VBSCDs for the exchange processes, X�þ
X		X ! X		X þ �X, for X ¼ H and Li (adapted from Ref. 166). The abscissa is a
reaction progress coordinate that stretches between zero and one (using the normalized
reaction coordinates, 0.5(n1 	 n2 þ 1), where n1 and n2 are the X		X bond orders in
X		X		X).
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ate can in fact be predicted quantitatively from the barrier equation, by deriv-
ing explicit expressions for G, f , and B.167

The spectacular relationship between the nature of the X�
3 species and the

promotion energy shows that the VBSCD is in fact a general model of
the pseudo-Jahn–Teller effect (PJTE). A qualitative application of PJTE would
predict all the X�

3 species to be transition state structures that relax to the dis-
torted X�		X		X and X		X		�X entities. The VBSCD makes a distinction
between strong binders that form transition states and weak binders that
form stable intermediate clusters.

The variable nature of the X�
3 species in the isoelectronic series form a

general model for electronic delocalization, enabling one to classify the species
either as distortive or as stable. By using the isoelectronic analogy, one might
naturally ask about the isoelectronic p-species in allyl radical; does it behave
by itself like H�

3 or like Li�3? Moreover, the same transformation displayed for
X�

3 in Figure 15 can be shown for Xþ
3 , X	

3 , X4, and X6 species.57 Likewise one
might wonder about the status of the corresponding isoelectronic p compo-
nents in allyl cation, anion, cyclobutadiene, or benzene. These questions
were answered in detail elsewhere and the reader is advised to consult a recent
review,57 while here we deal only with the intriguing question concerning the
p-electrons of benzene.

What Is the Driving Force, s or p, Responsible for the
D6h Geometry of Benzene?

The regular hexagonal structure of benzene can be considered as a stable
intermediate in a reaction that interchanges two distorted Kekulé-type iso-
mers, each displaying alternating C		C bond lengths as shown in Figure 16.
It is well known that the D6h geometry of benzene is stable against a Kekuléan
distortion (of b2u symmetry), but one may still wonder which of the two sets of
bonds, s or p, is responsible for this resistance to a b2u distortion. The s
frame, which is just a set of identical single bonds, is by nature symmetrizing
and prefers a regular geometry. It is not obvious whether the p electronic com-
ponent, by itself, is also symmetrizing or on the contrary distortive, with a
weak force constant that would be overwhelmed by the symmetrizing driving
force of the s frame. To answer this question, consider in Figure 16 the
VBSCD that represents the interchange of Kekulé structures along the b2u

reaction coordinate; the middle of the b2u coordinate corresponds to the
D6h structure, while its two extremes correspond to the bond-alternated
mirror-image Kekulé geometries. Part a of the figure considers p energies
only. Starting at the left-hand side, Kekulé structure K1 correlates to the
excited state K�

2 in which the p bonds of the initial K1 structure are elongated,
while the repulsive nonbonding interactions between the p bonds are rein-
forced. The same argument applies if we start from the right-hand side,
with structure K2 and follow it along the b2u coordinate; K2 will then rise
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and correlate to K�
1. To get an estimate for the gap, we can extrapolate the

Kekulé geometries to a complete distortion, in which the p bonds of K1 and
K2 would be completely separated (which in practice is prevented by the s
frame that limits the distortion). At this asymptote, the promotion energy,
Ki ! K�

i ði ¼ 1;2Þ, is due to the unpairing of three p bonds in the ground state,
Ki, and replacing them, in K�

i , by three nonbonding interactions. As we recall
the latter are repulsive triplet interactions. The fact that such a distortion can
never be reached is of no concern. What matters is that this constitutes an
asymptotic estimate of the energy gap G that correlates the two Kekulé struc-
tures, and that eventually determines if their mixing results in a barrier or in a
stable situation, in the style of the X3 problem in Figure 15 above. According
to the VB rules, G is given by Eq. [77]:

GðK ! K�Þ ¼ 9=4�STðC				CÞ ½77�

Since the �EST value for an isolated p bond is of the order of 100 kcal/mol,
Eq. [77] places the p electronic system in the region of large gaps. Conse-
quently, the p component of benzene is predicted by the VBSCD model to
be an unstable transition state, as illustrated in Figure 16a. This ‘‘p-transition
state’’ prefers a distorted Kekuléan geometry with bond alternation, but is
forced by the s frame, with its strong symmetrizing driving force, to adopt
the regular D6h geometry. This proposal, which appeared as a daring predic-
tion at the time, was made by Shaik and Bar on the basis of a qualitative VB
diagram and semiempirical calculations.194 It was later confirmed by rigorous

Figure 16 The VBSCDs showing the crossing and avoided crossing of the Kekulé
structures of benzene along the bond alternating mode, b2u for: (a) p-only curves, (b) full
pþ s curves, and (c) p-only curves in a putative situation where the avoided crossing
leads to a ground state with a p-symmetrizing tendency. In this latter case, the excited
state will have a distortive p-state and hence, a low frequency for the b2u mode.
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ab initio calculations, using different techniques of s–p separations, by the
present authors and their co-workers195–198 and by others.199–202 It was
further linked, by the work of Haas and Zilberg,203 to experimental data asso-
ciated with the vibrational frequencies of the excited states of benzene.

The experimental data discussed by Haas and Zilberg,203 as well as those
of pioneering assignments204–206 show a peculiar phenomenon. This phenom-
enon is both state specific to the 1B2u excited state, as well as vibrationally
mode specific, to the bond-alternating mode, that is, the Kekulé mode b2u.
Thus, upon excitation from the 1A1g ground state to the 1B2u excited state,
with exception of b2u all other vibrational modes behave ‘‘normally’’ and
undergo frequency lowering in the excited state, as expected from the decrease
in p bonding and disruption of aromaticity following a p!p� excitation. By
contrast, the Kekulé b2u mode, undergoes an upward shift of 257–261 cm	1.
As explained below, this phenomenon is predictable from the VBSCD model
and constitutes a critical test of p distortivity in the ground state of benzene.

Indeed, the VBSCD model is able to lead to predictions not only on the
ground state of an electronic system, but also on some selected excited state.
Thus, the mixing of the two Kekulé structures K1 and K2 in Figure 16a leads to
a pair of resonant and antiresonant states K1 � K2; the 1A1g ground state
K1 þ K2 is the resonance-stabilized combination, and the 1B2u excited state
K1 	 K2 is the antiresonant mixture (this is the first excited state of ben-
zene207). In fact, the VBSCD in Figure 16a predicts that the curvature of the
1A1g(p) ground state (restricted to the p electronic system) is negative, whereas
by contrast, that of the 1B2u(p) state is positive. Of course, when the energy of
the s frame is added as shown in Figure 16b, the net total driving force for the
ground state becomes symmetrizing, with a small positive curvature. By com-
parison, the 1B2u excited state displays now a steeper curve and is much more
symmetrizing than the ground state, having more positive curvature. As such,
the VBSCD model predicts that an 1A1g!1B2u excitation of benzene should
result in the reinforcement of the symmetrizing driving force, which will be
manifested as a frequency increase of the Kekulean b2u mode. We may consider
an alternative scenario, displayed in Figure 16c where now we assume that
the p component for the ground state is symmetrizing (positive curvature) as
might have been dictated by common wisdom. In such an event, the p compo-
nent would be distortive in the 1B2u state, and consequently, the excitation
would have resulted in the lowering of the b2u frequency. Since this is clearly
not the case, the finding of an enhanced b2u frequency in the excited state
constitutes an experimental proof of the p distortivity in the ground state of
benzene.

In order to show how delicate the balance is between the s and p oppos-
ing tendencies, we recently57 derived an empirical equation, Eq. [78], for
4n þ 2 annulenes:

�Epþs ¼ 5:0ð2n þ 1Þ 	 5:4ð2nÞ kcal=mol ½78�
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Here �Epþs stands for the total (p and s) distortion energies, the terms
5.0(2n þ 1) represent the resisting s effect, which is 5.0 kcal/mol for an adja-
cent pair of s bond, whereas the negative term, 	5.4(2n), accounts for the p
distortivity. This expression predicts that for n ¼ 7, namely, the C30H30 annu-
lene, the �Epþs becomes negative and the annulene undergoes bond localiza-
tion. If we increase the p distortivity coefficient a tiny bit, namely, to

�Epþs ¼ 5:0ð2n þ 1Þ 	 6:0ð2nÞ kcal=mol ½79�

the equation would now predict that the annulene with n ¼ 3, namely,
C14H14, will undergo bond localization. This extreme sensitivity, which is pre-
dicted to manifest in computations and experimental data of annulenes, is a
simple outcome of the VBSCD prediction that the p component of these spe-
cies behaves as a transition state with a propensity toward bond localization.

VBSCD: THE TWIN-STATE CONCEPT AND ITS LINK
TO PHOTOCHEMICAL REACTIVITY

Photochemistry is an important field for future applications. The pio-
neering work of van Der Lugt and Oosterhoff89 and Michl91 highlighted the
importance of avoided crossing regions as decay channels in photochemistry.
Köppel and co-workers208,209 showed that conical intersections, rather than
avoided crossing regions, are the most efficient decay channels, from excited
to ground states. Indeed, this role of conical intersections in organic photo-
chemistry has been extensively investigated by Robb and co-workers,93,96

and conical intersections are calculated today on a routine basis using software
such as GAUSSIAN. Bernardi et al.93 further showed that VB notions can be
useful to rationalize the location of conical intersections and their structure.

As was subsequently argued by Shaik and Reddy,97 the VBSCD is a
straightforward model for discussing the relation between thermal and photo-
chemical reactions and between the avoided crossing region and a conical
intersection. Thus, the avoided crossing region of the VBSCD leads to the
twin-states �z and �� (Fig. 17); one corresponds to the resonant state of the
VB configurations and the other to the antiresonant state.85 Since the extent of
this VB mixing is a function of geometry, there should exist in principle, a spe-
cific distortion mode that converts the avoided crossing region into a conical
intersection where the twin-states �z and �� become degenerate, and thereby
enable the excited reaction complex to decay into the ground-state surface. In
this manner, the conical intersection will be anchored at three structures; two
of them are the reactant (R) and product (P1) of the thermal reaction, and
the third is the product (P2) generated by the distortion mode that causes
the degeneracy of the twin-states �z and ��. The new product would therefore
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be characteristic of the distortion mode that is required to convert the avoided
crossing region into a conical intersection. Assuming that most of the excited
species roll down eventually to the �� funnel, then P2 would be a major photo-
product.a

A trivial example is the celebrated hydrogen exchange reaction,
Ha 	 Hb þ Hc ! Ha þ Hb 	 Hc, where the transition state has a colinear geo-
metry, Ha 	 Hb 	 Hc. In this geometry, the ground state �z is the resonating
combination of R and P and the transition state for the thermal reaction, while
the twin-excited state �* is the corresponding antiresonating combination:

�z ¼ R 	 P;

R ¼ jabcj 	 jabcj P ¼ jabcj 	 jabcj ½80�
�� ¼ R þ P ¼ jabcj 	 jabcj ½81�

where the orbitals a, b, and c belong to Ha, Hb, and Hc, respectively.
It is clear from Eq. [81] that �� involves a bonding interaction between

Ha and Hc and will be lowered by the bending mode that brings Ha and Hc

together. Furthermore, the expression for the avoided crossing interaction B
(Eq. [82]) shows that this quantity shrinks to zero in an equilateral triangular

B ¼ hRjHeffjPi ¼ 	2babSab 	 2bbcSbc þ 4bacSac ½82�

Figure 17 (a) The VBSCD showing the twin-states formed by avoided crossing along the
reaction coordinate of the thermal reaction leading to product P1. (b) The crossover of
the twin-states to generate a conical intersection (CI) along a coordinate that stabilizes
the twin excited state, and leading to product P2. (c) The conical intersection will be
anchored in three minima (or more): reactants (R), P1, and P2.

a If, however, there exist other excited-state funnels near the twin excited state, ��, other

products will be formed, which are characteristic of these other excited states and can be predicted

in a similar manner provided one knows the identity of these excited states.
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structure where the Ha 	 Hc, Ha 	 Hb, and Hb 	 Hc interactions are identical.
As such, the equilateral triangle defines a conical intersection with a doubly
degenerate state, in the crossing point of the VBSCD. This D3h structure
will relax to the isosceles triangle with short Ha 	 Hc distance that will give
rise to a ‘‘new’’ product Hb þ Ha 	 Hc. The photocyclization of allyl radical
to cyclopropyl radical is precisely analogous. The ground state of allyl is the
resonating combination of the two Kekulé structures, while the twin-excited
state, ��, is their antiresonating combination with the long bond between
the allylic terminals.52 As such, rotation of the two allylic terminals will lower
��, raise the ground state, and establish a conical intersection that will channel
the photoexcited complex to the cyclopropyl radical, and vice versa.

The photostimulation of SN2 systems such as X	 þ A		Y (A ¼ Alkyl)
was analyzed before, using VBSCD-based rationale, for predicting the location
of conical intersections.97 Here, the transition state for the thermal reaction is
the colinear [X		A		Y]	 structure, which is the �6¼(A0) resonating combination
of the two Lewis structures, while the twin-excited state, ��(A00), is their anti-
resonating combination; the symmetry labels refer to Cs symmetry. This latter
excited state is readily written as an A00 symmetry-adapted combination of
Lewis structures, Eq. [83]:

�� ¼ ðj xx ay j 	 j xx a y jÞ 	 ðj yy x a j 	 j yy x a jÞ ½83�

where the orbitals x, a, and y belong to the fragments X, A, and Y, respec-
tively.

Rearranging Eq. [83] to Eq. [84] reveals a stabilizing three-electron
bonding interaction between X and Y, of the type (X� ��Y	 ! X��	

�YÞ:

�� ¼ ðj x xy a j þ j x yy a jÞ 	 ðj xx ya j þ jxy ya jÞ ½84�

As such, the bending mode that brings the X and Y groups together destabi-
lizes the [X		A		Y]	 structure and stabilizes the twin-excited state, until they
establish a conical intersection that correlates down to X;Y	 and R�, as
shown in Figure 18. This analysis is supported by experimental observation
that the irradiation of the I	/CH3I cluster at the charge-transfer band leads
to I	2 and CH�

3, while for I	/ CH3Br such excitation generates IBr	 and
CH�

3.210

The notion of twin-states of the VBSCD and the phase inversion rule of
Longuet–Higgins were utilized by Zilberg and Haas98 to delineate unified
selection rules for conical intersections, and rationalize the outcome of a vari-
ety of photochemical reactions.

The presence of excited-state minima above the thermal transition state
is a well known phenomenon.89,91–93 The VBSCD model merely gives this ubi-
quitous phenomenon a simple mechanism in terms of the avoided crossing of
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VB structures, and hence enables one to make predictions in a systematic man-
ner. Other important applications of the twin states concern the possibility of
spectroscopic probing or accessing the twin excited state that lies directly
above the transition state of a thermal reaction. Thus, much like the foregoing
story of benzene, any chemical reaction will possess a transition state, �z and a
twin excited state, ��.81,211 For most cases, albeit not all, the twin excited
state should be stable, and hence observable; its geometry will be almost co-
incident with the thermal transition state and its electronic state symmetry
should be identical to the symmetry of the reaction coordinate of the
ground-state process,212 namely,

	ð��Þ ¼ 	ðQRCÞ ½85�

In addition, the twin excited state will possess a real and greatly increased fre-
quency of the reaction coordinate mode, by analogy to the benzene story
where the b2u mode was enhanced in the 1b2u twin excited state. Thus, since
the twin pair has coincident geometry, a spectroscopic characterization of ��

will provide complementary information on the transition state �z and will
enable resolution of the transition state structure.

Figure 18 Generation of a conical intersection (CI) by crossing of the twin states
along the bending distortion mode, in SN2 systems. Symmetry labels refer to the mirror
plane m.
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As a proof of principle, the twin states were characterized for the semi-
bullvalene rearrangement212 and found to possess virtually identical geome-
tries. As shown in Figure 19, the twin excited state possesses B2 symmetry
as the symmetry of the reaction coordinate of the thermal process. And the
transition state mode, b2, which is imaginary for � 6¼(A1) was shown to be
real for ��(B2).212 These calculations match the intriguing findings of Quast
et al.213 in the semibullvalene and barbaralene systems. Thus, these
authors213,214 have designed semibullvalene and barbaralene derivatives in
which the barrier for the rearrangement could be lowered drastically, to a
point where it almost vanishes. Quast213,214 found that these molecules exhibit
thermochromism without having a chromophore; they are colorless at low
temperatures but highly colored at 380 K. According to Quast, the thermo-
chromism arises due to the low energy transition from the transition state
(�6¼) to the twin excited state (��), Figure 19. Thus, since the thermal barrier
is exceptionally low, at elevated temperatures the transition state becomes
thermally populated. Since the � 6¼-�� gap is small, one observes color due
to absorption within the visible region. However, at low temperatures, the
molecules reside at the bottom of the reactant–product wells, where the gap
between the ground and excited state is large and hence, the absorption is in
the ultraviolet (UV) region and the color is lost. To quote Quast, ‘‘thermochro-
mic . . . semibullvalene allow the observation of transition states even with
one’s naked eye’’.214 Of course, identifying appropriate systems where the
twin excited state is observable is required for the eventual ‘‘observation’’ of
the transition states of thermal reactions.

Figure 19 The twin states along the b2 reaction coordinate for the semibullvalene
rearrangement. When the thermal barrier is NOT much higher than the zero-point levels
of the two isomers, the transition state (� 6¼) region becomes available thermally.
Absorption in the transition state region is in the visible, leading to thermochromism at
elevated temperature.
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Coherent control215 is a powerful new chemical method that makes use
of the availability of the twin excited state to control the course of chemical
reactions by laser excitation. Thus, laser excitation from �z to ��(Fig. 17a),
using two different and complementary photons causes the decay of �� to
occur in a controlled manner either to the reactant or products. In the case
where the reactants and products are two enantiomers, the twin excited state
is achiral, and the coherent control approach leads to chiral resolution.

In summary, the twin excited state plays an important role in photo-
chemistry as well as in thermal chemistry.

THE SPIN HAMILTONIAN VB THEORY

Quite a different brand of VB theory comes from physics, and is rooted
in the phenomenological Hamiltonians that are called magnetic- or spin-
Hamiltonians after their first formulation by Heisenberg.9 Unlike the theory
used above, which relies on VB structures that are eigenfunctions of both
the Sz and S2 operators, this theory relies on VB determinants, which are eigen-
functions of only the Sz operator. The following section describes the type of
insight that can be gained from this VB approach.

Theory

The spin-Hamiltonian VB theory uses the same approximations as the
qualitative theory presented above to calculate the Hamiltonian matrix ele-
ments, but with a few simplifications. The theory is restricted to determinants
having one electron per AO; this restriction excludes ionic structures or mole-
cules bearing lone pairs. As such, the theory has mainly been applied to con-
jugated polyenes. Another simplification is the zero-differential overlap
approximation, which means that all overlaps are neglected in the formulas.

Apart from these simplifying assumptions, a fundamental difference
between qualitative VB theory and spin-Hamiltonian VB theory is that the
basic constituent of the latter theory is the AO determinant, without any a
priori bias for a given electronic coupling into bond pairs. Instead of an inter-
play between VB structures, a molecule is viewed then as a collective spin-
ordering: The electrons tend to occupy the molecular space (i.e., the various
atomic centers) in such a way that an electron of a spin will be surrounded
by as many b spin electrons as possible, and vice versa. Determinants having
this property, called the ‘‘most spin-alternated determinants’’ (MSAD) have
the lowest energies (by virtue of the VB rules, in Qualitative VB Theory)
and play the major role in electronic structure. As a reminder, the reader
should recall from our discussion above that the unique spin-alternant deter-
minant, which we called the quasiclassical state, is used as a reference for the
interaction energy.
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The usefulness of such a magnetic description in chemistry has been
demonstrated by Malrieu and his co-workers.64,65,216 Without any numerical
computations, the method can be used to deduce qualitative rules, regarding
the spin multiplicity of the ground-states of polyenes (especially for diradicals),
the spin distribution in free radicals and triplet states, differences in bond
lengths, and relative stabilities of isomers. It can also be used quantitatively,
through CI, leading to ground-state equilibrium geometries, rotational bar-
riers, excited-states ordering (for neutral excited states), and so on.

We now briefly describe the principles of the method and simple rules for
the construction of the Hamiltonian matrix. For the sake of consistency, rather
than the original formulation of Malrieu,64,65,216 we use here a formu-
lation52,71–73 that is in harmony with the qualitative VB theory above. The
method can be summarized with a few principles:

1. All overlaps are neglected.
2. The energy of a VB determinant �D is proportional to the number of Pauli

repulsions that take place between adjacent AOs having electrons with
identical spins:

Eð�DÞ ¼
X
r";s"

grs ½86�

where grs is a parameter that is quantified either from experimental data, or
is ab initio (DFT) calculated as one-half of the singlet–triplet gap of the r		s
bond. In terms of the qualitative theory above, grs is therefore just the key
quantity 	2brsSrs. (We, however, avoid the integral S in the present theory
since the overlaps are neglected).

3. The Hamiltonian matrix element between two determinants differing by
one spin permutation between orbitals r and s is equal to grs. Any other off-
diagonal matrix elements are set to zero (see Scheme 12).

Scheme 12
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Diagonalization of this matrix gives the energy of the ground state relative to
the nonbonding state (the spin-alternant determinant), and in addition leads to
the entire spectrum of the lowest neutral excited states. Note that applying the
spin-Hamiltonian model to ethylene leads to a p bonding energy 	g, which is
equivalent to the 2bS used in the qualitative VB theory above.

Applications

Ground States of Polyenes and Hund’s Rule Violations
A simple principle of the spin-Hamiltonian VB theory is that the lowest

state of a molecule will have the multiplicity associated with the Sz value of its
MSAD, that is, it will be a singlet if na ¼ nb in the MSAD, a doublet if na ¼
nb þ 1, a triplet if na ¼ nb þ 2, and so on.217 For example, the MSAD of
orthoxylylene 27 and paraxylylene 28 (Scheme 13) both have Sz ¼ 0 while
that of metaxylylene (29) has Sz ¼ 1.

It follows that ortho- and para-xylylenes will have singlet ground states
while metaxylylene has a triplet ground state. The prediction is correct but not
particularly surprising, since 27 and 28 can be described by a perfectly paired
Kekulé structure while 29 cannot and is therefore a diradical that will be a tri-
plet state based on Hund’s rule. More intriguing are the predictions of Hund’s
rule violations. Let us consider, for example, 2,3-dimethylene-butadiene and
1,3-dimethylene-butadiene.These are two polyenes for which it is impossible
to draw a Kekulé structure, and which are therefore diradicaloids. Now the
MSAD of these two species (30 and 31 in Scheme 14) have different Sz values,
Sz ¼ 0 for 30 versus Sz ¼ 1 for 31.

Scheme 13

Scheme 14
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In this case, the spin-Hamiltonian predicts 2,3-dimethylene-butadiene to
be a singlet diradicaloid (in violation of Hund’s rule) and 1,3-dimethylene-
butadiene to be a triplet, in agreement with experiment. By contrast, monode-
terminantal MO calculations predict that all these diradicaloids have triplet
ground states. It is only after CI that one gets the correct assignments.218 Vio-
lations of Hund’s rule can be explained by the phenomenon of dynamic spin-
polarization and predicted to take place when the degenerate singly occupied
MOs form a disjointed set.218,219 In such a case, the advantage of the triplet
over the singlet becomes very weak owing to a small exchange integral, and
when CI is applied, it preferentially stabilizes the singlet, and reverses the singlet–
triplet energy order. Comparison of the spin-polarization argument to the pre-
sent VB analysis, shows the VB method to be faster, physically intuitive, and
independent of any numerical calculation.

Relative Stabilities of Polyenes
Subtle predictions can be made about the relative energies of two isomers

having comparable Kekulé structures, such as the linear s-trans conformation
and branched conformation of hexatriene, 18 and 22 in Scheme 9 above. For
each of these isomers, we shall consider that the total p energy is a perturbation of

the energy of the MSAD (e.g., 32 for the linear conformation in Scheme 15) by
less ordered determinants. Each of the latter determinants is generated from
the MSAD by the inversion of two spins along a given linkage (e.g., 33 vs.
32 in Scheme 15), while keeping the total Sz constant. According to the above
rules, the Hamiltonian matrix element between 32 and 33 is the integral gbc,
and the energy of 32 relative to 33 is gab þ gcd, since the spin reorganization
introduces two Pauli repulsions along the a-b and c-d linkages.

More generally, the number of Pauli repulsions that one introduces, rela-
tive to the MSAD, by inverting the spins in a linkage r-s is equal to the number
of linkages that are adjacent to r-s. Thus, assuming that all the g integrals are
the same for the sake of simplicity, the energy of a determinant �rs generated
by spin inversion relative to a MSAD � is given by Eq. [87]:

EðcrsÞ 	 EðcÞ ¼ g � naðrsÞ ½87�

Scheme 15
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where na is the number of linkages that are adjacent to r-s. We now consider
all determinants displaying a spin transposition between two adjacent atoms
with respect to the MSAD. The matrix elements between the determinants �rs

and � will be the same and all equal to the g integral. Hence, the total p energy
that arises from a second order perturbation correction (PT2) will be given by
Eq. [88]:

EðPT2Þ ¼
X

rs

g2

gnaðrsÞ
¼ g

X
rs

1

naðrsÞ
½88�

where the energy is calculated relative to the MSAD. Therefore, it appears that
the energy of a polyene is a simple topological function that is related to the
shape of the molecule and to the way the various linkages are connected to
each other. Calculating the energies of the two isomers of hexatriene is thus

a simple matter. In Scheme 16, each linkage in 34 and 35 is labeled by the
number of bonds that are adjacent it. From these numbers, the expressions
for the total energies of each isomer are immediately calculated (Scheme
16), and clearly show that the linear isomer is more stable than the branched
one, in agreement with experimental facts.

AB INITIO VB METHODS

A number of ab initio VB methods have been implemented to calculate
VB wave functions and their associated energies and molecular properties.
Once the general scheme for writing VB wave functions is established (see
Basic VB Theory above), an important task is the optimization of the orbitals
that are used to construct the AO or FO determinants of the VB structures.
Historically, the classical VB method used the atomic orbitals of the free
atoms, without any further change. This crude approximation, which is no
longer employed, resulted in highly inaccurate energies, since it does not
take into account the considerable rearrangements in size and shape that an

Scheme 16
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AO undergoes when fragments assemble to a molecule. Accordingly, we
shall restrict ourselves here to modern VB methods that perform orbital
optimization.

Orbital-Optimized Single-Configuration Methods

A great step forward in accuracy and compactness was made when opti-
mized orbitals of Coulson–Fischer (CF) type were employed in VB calcula-
tions. As shown above (Basic VB Theory), describing a two electron bond
as formally covalent singlet coupling between two CF orbitals ja and jb

(Eqs. [6b] and [6c]), which are optimized and free to delocalize over the
two centers, is an ingenious way to include both the covalent and ionic com-
ponents of the bond in an implicit way in a wave function of the Heitler–
London type. Thus, the CF representation has the advantage of keeping
the well-known picture of perfect pairing while treating the left–right electron
correlation associated with any given bond in a variational way.

The CF proposal, generalized to polyatomic molecules, gave rise to the
‘‘separated electron pair’’ theory that was initiated by Hurley et al.220 and
later developed as the GVB method by Goddard and co-workers,109,221,222

and as the SC method by Gerratt and co-workers.112–114,223–225 In both these
latter methods the valence electrons are described by a single configuration of
singly occupied orbitals, and the various spin-coupled structures—generated
so as to form a complete and linearly independent set of spin-eigenfunc-
tions—are allowed to mix to generate the final state. In the SC method,
both the orbitals and the mixing coefficients are optimized simultaneously,
while in the most general form of GVB theory they are optimized sequentially.
It is important to note that, while no constraint of any kind is applied to the
shapes of the orbitals during the optimization, they are generally obtained
in a form that is pretty much localized, as will be exemplified below. Thus,
each bond in a polyatomic VB structure is viewed as a pair of singlet-coupled
orbitals that are quasi-atomic and display a strong mutual overlap.

The Generalized VB Method
The GVB method is generally used in its restricted perfectly paired form,

referred to as GVB–PP, which pairs the atoms as in the most important Lewis
structure. The GVB–PP method introduces two simplifications. The first one is
the Perfect-Pairing (PP) approximation, by which only one VB structure is gen-
erated in the calculation. The wave function may then be expressed in the sim-
ple form of Eq. [89], where each term in parentheses is a so-called ‘‘geminal’’
two-electron function, which takes the form of a singlet-coupled GVB pair
(jia, jib) and is associated with one particular bond or lone pair.

cGVB ¼ j ðj1aj1b 	 j1aj1bÞðj2aj2b 	 j2aj2bÞ � � � ðjnajnb 	 jnajnbÞ j ½89�
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The second simplification, which is introduced for computational conve-
nience, is the strong orthogonality constraint, whereby all the orbitals in
Eq. [89] are required to be orthogonal to each other unless they are singlet
paired, that is,

hjiajjibi 6¼ 0 ½90a�

hjijjji ¼ 0 otherwise ½90b�

This strong orthogonality constraint is, of course, a restriction, however,
usually not a serious one, since it applies to orbitals that are not expected to
overlap significantly. By contrast, the orbitals that are coupled together in a
given GVB pair display, of course, a strong overlap.

For further mathematical convenience, each geminal in Eq. [89] can be
rewritten, by simple orbital rotation, as an expansion in terms of natural orbi-
tals,

j ðj1aj1b 	 j1aj1bÞ j ¼ Cijfifi j þ C�
i jf

�
i f

�
i j ½91�

This alternative form of the geminal contains two closed-shell terms. The
natural orbitals fi and f�

i , in Eq. [91], have the shapes of localized bond MOs,
respectively bonding and antibonding, and are orthogonal to each other.
They are connected to the GVB pairs by the simple transformation below:

jia ¼ fi þ lf�
i

ð1 þ l2Þ1=2
½92a�

jib ¼ fi 	 lf�
i

ð1 þ l2Þ1=2
½92b�

l2 ¼ 	C�
i

Ci
½92c�

The use of natural orbitals, which constitute an orthogonal set, avoids the N!
problem, resulting in a great computational advantage over the use of the GVB
pairs in the effective equations that have to be solved for self-consistency. A
GVB–PP calculation is thus just a special case of a low-dimensional MCSCF
calculation, with all the CPU advantages of MO calculations and the addi-
tional interpretability of a wave function that is transformed eventually to a
VB form.

The perfect-pairing and strong-orthogonality restrictions result in con-
siderable computer time savings and no great loss of accuracy, as long as
the computed molecule is made of clearly separated local bonds (e.g.,
methane).226 On the other hand, it is clear that these restrictions would be
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highly inappropriate for delocalized electronic species like benzene, for which
the PP approximation is not meaningful, and all electron-pairing schemes have
to be considered to provide a reasonable state wave function.207,227

The GVB method takes care of all the left–right correlation in molecules,
but does not include the totality of the ‘‘nondynamical’’ electron correlation
since the various local ionic situations are constrained to be equal with this
method (e.g., two adjacent local ionic forms þ	/	þ and þ	/þ	 will be
found to possess the same weight). Accounting for the full nondynamical
correlation, requires a ‘‘Complete Active Space’’ MCSCF calculation
(CASSCF,which involves all possible configurations that can be constructed
within the space of valence orbitals). Having said that, we nevertheless empha-
size that as a rule, the GVB method provides results that are much closer to
CASSCF quality than to Hartree–Fock.

As a VB method, GVB ensures correct homolytic dissociation as a bond is
broken. However, the calculated dissociation energy is generally too low, due
to lack of dynamical electron correlation, although far better than the value
computed at the Hartree–Fock level. For example, while Hartree–Fock gives
a negative bond dissociation energy of F2, GVB yields a positive bond energy,
but one that is less than one-half of the experimental value.132 As shown
below, better accuracy can be reached by going beyond the one-configuration
VB model.

The perfect-pairing GVB wave function is a good starting point for
further CI, called ‘‘Correlation-Consistent Configuration Interaction’’
(CCCI). Thus, Carter and Goddard defined a general method employing a
relatively small but well-defined CI expansion for calculating accurate bonding
energies.228 In this method, one first generates a restricted CI expansion (RCI)
in which each GVB pair is allowed to have all three possible occupancies for
two electrons distributed among the orbitals of that bond pair. Then, the CI is
extended by including all single and double excitations from each bond pair
that undergoes dissociation to all other orbitals. Further, since bond dissocia-
tion generally leads to geometric and hybridization changes in the resultant
fragments, the change in shape of the orbitals adjacent to the dissociating
bond(s) is also taken into account. This is done by adding, from each RCI con-
figuration, all single excitations from the valence space to all orbitals. The
GVB–CCCI approach has been successfully applied to single and double bonds
and to transition metal complexes.228

The Spin-Coupled Method
The spin-coupled method of Gerratt and co-workers112–114,223–225

differs from the GVB–PP method in that it removes any orthogonality and
perfect-pairing restrictions. The method is still of the single-configuration
type, but all the modes of spin-pairing are included in the wave functions
and the orbitals are allowed to overlap freely with each other. The SC method
has often been used to provide firm theoretical support to some basic concepts

72 VB Theory, Its History, Fundamentals, and Applications



like orbital hybridization, or resonance between Kekulé structures, which were
qualitative postulates in the early days of VB theory. The chemical picture that
emerges from the SC method has the following features: (a) the SC method
deals with correlated electrons; (b) no preconceptions or constraints are
imposed on the spin-couplings nor on the shapes of the orbitals, which are
determined by the variational principle alone; (c) the set of orbitals arising
from such calculations is unique. As such, the SC method represents the ulti-
mate level of accuracy compatible with the orbital approximation that
describes the molecule as a single configuration with fixed orbital occupancies.
Thus, it is clear that the shape of the orbitals and the relative importance of
the various spin-couplings determined by this method, should have strong
relevance to the nature of chemical bonding.

The methane molecule, as the archetypal system displaying hybridiza-
tion, has been studied by Cooper et al.229 in the framework of SC theory. It
appears that the spin-coupled description of methane resembles very closely
our intuitive view of four localized C		H bonds. The eight spin-coupled orbi-
tals that arise from the variational principle fall into two groups of four. Four
of the orbitals are each localized on a hydrogen atom. The other four degen-
erate orbitals are localized on carbon, and each represents a slightly distorted,
approximately sp3 hybrid pointing toward one of the H atoms. All the hybrid
orbitals are identical in shape and mutually related by symmetry operations of
the Td point group. The full spin-coupled wave function, with its 14 different
spin-couplings, lies 65 mh below the Hartree–Fock wave function and only
12 mh above the full valence CASSCF wave function with its 1764 spin func-
tions. The perfect-pairing function is the dominant mode of spin-coupling,
only 3 mh above the full spin-coupled wave function. It is noted that the strong
orthogonality restriction that is often used in GVB theory is an excellent
approximation that barely raises the total energy, by < 2 mh.226 The hybridi-
zation picture is of course very general, and allows any type of hybridization
beyond the classical sp3, sp2 and sp types. For example, according to a GVB
calculation by Goddard,221 the hybrids involved in the O		H bonds of H2O
have more p character than the lone pairs (82 and 59%, respectively, as com-
pared to the 75% expected for sp3 hybrids), in agreement with the fact that the
HOH angle is smaller than the standard tetrahedral angle.

Calculations of SC230 or GVB231,232 types have also been able to provide
a simple picture for the electronic structure of lithium clusters Lin (n ¼ 3–8). In
these cases, once again a single spin-coupling is found to be sufficient, but the
optimized orbitals, though being localized, are not atomic but interstitial, that
is, localized between two nuclei or more. The rhomboid structure 36 of Li4,
for example, is easily explained by the single spin-coupling displaying two
bonds between interstitial orbitals, as illustrated in Scheme 17.

The SC method has also been used to probe the validity of the traditional
description of conjugated molecules, and in particular aromatic systems, as
sets of resonating Kekulé structures. Taking benzene as an example and using
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the s–p separation, the converged spin-coupled wave function207 displays two
dominant spin functions, which correspond to the traditional Kekulé struc-
tures. The orbitals that arise from the calculation are highly localized and
have the form of slightly distorted 2p AOs perpendicular to the molecular
plane. The three remaining spin functions that are necessary to form a com-
plete basis set of neutral VB structures, the so-called Dewar structures, contri-
bute only 20% to the ground state. This one-configuration wave function is
considerably lower in energy than the Hartree–Fock level, by 75 mh, and
only 7 mh higher than the full valence CI within the p-valence space. The
description of benzene as a mixture of limiting Kekulé structures is thus given
a firm foundation that proves to be generally valid for other aromatic and anti-
aromatic systems.

The spin-coupled valence bond (SCVB) theory is an extension of the spin-
coupled method, in which further CI is performed after the one-configuration
calculation. At the simplest level, the CI includes all the configurations that can
possibly be generated by distributing the electrons within the set of the active
orbitals that were optimized in the preliminary SC calculation; both covalent
and ‘‘ionic’’ type configurations are considered. When applied to the p system
of benzene,207 this level of calculation was found to provide a satisfactory
account of the valence states, and showed that the first excited state, 1B2u, is
made of the antiresonant combination of the two Kekulé structures. A higher
level of SCVB theory includes additional excitations, for example, from the
orbitals of the s core, or to orbitals that are virtual in the one-configuration
calculation. To preserve the valence bond character of the wave function, the
virtual orbitals have to be localized as much as possible. This condition is met
in the SCVB method,223 in which each occupied orbital of the ground config-
uration is made to correspond to a stack of virtual orbitals localized in the
same region of space, by means of an effective operator representing the field
created by the remaining occupied orbitals. There remains to perform a simple
CI (of nonorthogonal type) among the space of the configurations so gener-
ated. By experience, the excited configurations generally bring very little
stabilization as far as ground states are concerned. This is easily explained
by the fact that the orbitals are optimized precisely so as to concentrate all
important physical effects in the reference single configuration. On the other

Scheme 17
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hand, excited configurations are important for satisfactory state ordering and
transition energies.207

Orbital-Optimized Multiconfiguration VB Methods

VBSCF
The VBSCF method of van Lenthe and Balint-Kurti117 is a general

method of multiconfiguration self-consistent field (MCSCF) type, which is
able to deal with nonorthogonal orbitals. The VBSCF wave function is, in
principle, a linear combination of VB structures, in which both orbitals and
coefficients are optimized simultaneously. It is therefore a generalization of
the above one-configuration methods to the multiconfiguration case,with the inter-
esting advantage that no particular configuration is favored during the course
of the orbital optimization. The orbitals can be optimized freely as in GVB or
SC methods, but may also be constrained to be localized each on a single atom
or fragment. The method has been efficiently implemented118,119,233,234 by the
Utrecht group in the TURTLE program.120 A program having similar capabil-
ities, XIAMEN 99, has been developed by Wu and co-workers, based on the
spin-free formulation of VB theory.128 Being a multiconfigurational method,
the VBSCF theory, in TURTLE and XIAMEN99, is an ideal tool for studying
problems that involve resonance energies and avoided crossing situations.
Some examples of this usage are discussed below.

The VBSCF method has been used to probe the validity of the resonance
model in organic chemistry following some controversies that appeared in the
literature, regarding the presence or absence of resonance stabilization, for
example, in the peptide bond, carboxylic acids, and enols. The enhanced acid-
ity of carboxylic acids relative to alcohols is traditionally attributed to the
stabilization of the carboxylate anion by delocalization of its p electrons
via resonance structures 37–39 in Scheme 18.

A similar resonating scheme can be applied to the enolate anion. On the
other hand, not being a conjugated system, this does not apply to the alkoxide
anion. However successful, this traditional view was challenged by several
authors235–238 who advanced the idea that the enhanced acidities originate
from the high polaritizabilities of the carbonyl and vinyl groups. To resolve

Scheme 18
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the controversy, one must answer the key question: how much does p electron
delocalization stabilize the carboxylate and enolate anions relative to a refer-
ence situation in which the delocalization would be ‘‘turned off’’? Clearly, a
meaningful answer to this question would emerge only when the orbitals in
the VB wave function are strictly localized, as in the VBSCF method.

A direct estimate of the stabilization energy due to delocalization is very
simple, as illustrated with the following example of the carboxylate anion, in
Scheme 18. First, a localized reference state is calculated, in which the geome-
try and the orbitals are optimized with the unique restriction that the p atomic
orbital of one of the oxygens cannot delocalize over the other atoms and
remains doubly occupied, as in 37. Second, the ground state is calculated at
the same level of theory, but with electron delocalization being fully allowed.
The results of the calculations239 give a clear-cut answer: In all cases the delo-
calization of the oxygen p lone pair stabilizes the anion more than the parent
acids. These excess values are 23 kcal/mol for carboxylic acids and 21 kcal/
mol for enols compared with only 8 kcal/mol for alcohols. It follows that,
in accord with the traditional view, p electron delocalization plays an impor-
tant role in the acidity enhancement of carboxylic acids and enols relative to
alcohols. By comparison with the experimental acidities, it was concluded239

that a lower limit for the contribution of electron delocalization to the total
acidity enhancement is 48% for the carboxylic acids and 62% for the enols,
values that clearly establish the importance of resonance effects, while leaving
some room for nonnegligible inductive effects.

The peptide and thio-peptide bonds have some specific properties like
coplanarity, substantial rotational barrier and kinetic stability towards nucleo-
philic attack or hydrolysis. All these properties are easily rationalized by the

classical resonance hybrid model, illustrated in Scheme 19 for an amide.
According to this resonating picture, the peptide bond is mainly described
by 40, with a significant contribution from the charge-transfer structure 41,
and this resonance contribution is the root cause of both the low basicity of
the nitrogen’s lone pair and the barrier to rotation around the C		N bond.

As in the preceding case, the simple resonance picture was critic-
ized240–242 on the basis of electron population analyses using the AIM meth-
od,243 to the extent that (thio)amides were proposed to be viewed as special

Scheme 19
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cases of amines with a carbonyl substituent.242 At the heart of the debate244–

247 was the role of thep electron delocalization energy in the barrier to rotation (16
kcal/mol for formamide, 18 kcal/mol for thioformamide248) around the C		N
bond. To settle the question, the adiabatic energy difference between the loca-
lized form 40, with the p lone pair localized on the nitrogen atom, and the
fully delocalized ground state, was calculated249 for formamide and thiofor-
mamide with the VBSCF method,117 and the same type of calculation was
repeated for the 90� rotated conformations. As a result, the contribution of
resonance stabilization to the rotational barrier, estimated as that quantity
by which electron delocalization stabilizes the planar conformation more
than the 90� rotated conformation, was found to be 7.3 and 13.7 kcal/mol,
respectively, for formamide and thioamide. While this indicates that other fac-
tors do contribute to the rotational barrier, resonance stabilization in amides
and thioamides emerges as an important factor, in agreement with the tradi-
tional view and the common wisdom that allylic resonance is an important
driving force in organic chemistry.

Clearly, therefore, VBSCF constitutes a handy tool for studies of the role
of electronic delocalization, in molecules that possess more than one Lewis
structure.

VBCI: A Post VBSCF Method that Involves Dynamic Correlation
The VBCI method, recently developed by Wu et al.138 is a post-VBSCF

calculation that uses configuration interaction to supplement the VBSCF
energy with dynamic correlation. At the same time, the method preserves
the interpretability of the final wave function in terms of a minimal number
of VB structures, each having a clear chemical meaning. The VB structures
that are used in the VBSCF calculations are referred to as fundamental struc-
tures, denoted as �0

K, and the orbitals that appear in the VBSCF calculation
are referred to as occupied orbitals. Depending on the problem at hand, the
VBSCF calculation may use semidelocalized CF orbitals, or orbitals that are
each localized on a single atom or fragment; in the latter case the fundamental
structures will explicitly involve the covalent and ionic components of the bonds.

The CI calculation that follows the VBSCF step requires the definition of
virtual orbitals. To keep the interpretability of the final wave function, the vir-
tual orbitals are defined, by use of a projector, so as to be localized on the same
fragments as the corresponding occupied orbitals. After generating the virtual
orbitals, the excited VB structures are created in the following way. Given a
fundamental structure �0

K, an excited VB structure �i
K is built-up by replacing

occupied orbital(s) ji with virtual orbital(s) j�
j . By restricting the replacement

of virtual orbital j�
j to the same fragment as ji, the excited structure �i

K

retains the same electronic pairing pattern and charge distribution as �0
K. In

other words, both �0
K and �i

K describe the same classical VB structure.
Thus, the collection of excited VB structures nascent from a given fundamental
VB structure serves to relax the latter and endow it with dynamic correlation.
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Several levels of CI can be employed. The starting point always involves
single excitations and is referred to as VBCIS. This can be followed by
VBCISD, VBCISDT, and so on, where D stands for double excitations and
T for triples. The level at which truncation is made will depend on the size
of the problem and the desired accuracy. In practice, the VBCISD level has
been tested for some dissociation energies and reaction barriers for hydrogen
exchange reactions138,142 and has been shown to match the accuracy of the
molecular orbital based coupled cluster CCSD and CCSD(T) methods, while
retaining the interpretability of simpler VB methods. In the case of the hydro-
gen exchange reaction142 of H þ H2, the method gave a barrier of 10 kcal/mol,
compatible with the corresponding experimental data (9.6–9.8 kcal /mol). In
summary: The VBCI method can be used like the VBSCF method for problems
involving resonance and for calculating VBSCDs. The accuracy of VBCI is
comparable to CCSD and CCSD(T) methods.

Different Orbitals for Different VB Structures
There are many molecules, in particular some radicals, that are naturally

described in terms of two or more resonance structures, and for which the one-
configuration approximation is not appropriate. Such molecules are generally
subject to the well-known broken-symmetry artifact, whereby a wave function
calculated at an insufficient level of theory is of lower symmetry than the
nuclear framework, which results in erroneous energetics and discontinuities
of the calculated potential surface. The formyloxyl radical (42 $ 43 in
Scheme 20) is a typical example, but the problem is very general and includes

an enormous variety of open-shell electronic states, as, for example, allyl radi-
cals250 or radicals of allylic type,251–256 core-ionized diatoms,257 n–p� excited
molecules containing two equivalent carbonyl groups,258 n-ionized molecules
having equivalent remote lone pairs,259 and charged clusters.260–263 The same pro-
blem arises in localized versus mixed-valent organometallic species with two
metal ions that can have different oxidation states, in doped stacks of aromatic
conductors and semiconductors, and in electron-transfer processes between
two identical species (e.g., metal ion centers separated by a bridge). Clearly,
this is a ubiquitous problem in chemistry.

Scheme 20
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The problem has been lucidly rationalized by McLean et al.255 in VB
terms. It arises from a competition between two VB-related effects. The first
is the familiar resonance effect whereby a mixture of two resonance structures
is lower in energy than either one taken separately. The other is the so-called
orbital size effect, whereby each VB structure gains stabilization if it can have
its particular set of orbitals, which are specifically optimized for that VB struc-
ture and not the other. The two effects cannot be taken into account simulta-
neously in any one-configuration theory, be it of VB or MO type, because it
employs a common set of orbitals. In the (frequent) case where the orbital size
effect is the important factor, the wave function takes more or less the form of
one particular VB structure, thereby resulting in an artefactual symmetry-
breaking. In the MO-based framework, the remedy consists of performing
MCSCF calculations in a rather large space of configurations.255 On the other
hand, the remedy is very simple in the VB framework, and consists of allowing
different orbitals for different VB structures in the course of the orbital opti-
mization, as illustrated in Scheme 21, by 44 and 45 for the formyloxyl radical,

in which the doubly occupied orbitals are diffuse and hence drawn larger than
the more compact singly occupied ones. Note that all the orbitals of 44 are
different from those of 45, although the major differences are seen between
the two orbitals that are involved in the electron transfer.

In the spirit of the above described method, Jackels and Davidson252

cured the symmetry-breaking problem in the NO2 radical by using a sym-
metry-adapted combination of two symmetry-broken Hartree–Fock wave
functions, by means of a 2 � 2 nonorthogonal CI. The generalized multistruc-
tural (GMS) method of Hollauer and Nascimento264,265 includes both the
symmetry broken structures and the symmetry-adapted one in the same calcu-
lation, followed by subsequent CI. The symmetry-broken subwave functions
are optimized at the GVB level in the R-GVB (Resonating-GVB) method of
Voter and Goddard.257 In all these methods, the subwave functions represent-
ing the individual resonance structures are optimized separately, which may
lead to an underestimation of the resonance energy since the orbital optimiza-
tion only takes care of the size effect. To remedy this defect, Voter and God-
dard subsequently improved their method by allowing the subwave functions
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to be optimized in the presence of each other, leading to the final generalized
resonating valence bond method (GRVB).258

Breathing Orbitals: A Post VBSCF Method that Involves
Dynamic Correlation
The breathing orbital valence bond (BOVB) method132–137 is a general-

ization of the principle of ‘‘different orbitals for different structures’’ to the
description of the elementary bond, be it of the one-electron, two-electron,
or three-electron type. The objective of the method is threefold: (a) yielding
accurate bond dissociation energy curves, which is a necessary condition
for a meaningful description of the elementary events of a reaction, bond
breaking and bond formation; (2) keeping the wave function compact and
transparent in terms of structural formulas; (3) being suitable for calculations
of diabatic states. In order to achieve these requirements, the method rests on
the basic principle that if all relevant structural formulas for a given electronic
system are generated, and if their VB description is made optimal by a proper
orbital optimization, then a variational combination of the corresponding VB
structures would accurately reproduce the energetics of this electronic system
throughout a reaction coordinate. Accordingly, the composite VB structures of
CF type are abandoned and the wave function takes a classical VB form in
which all possible structural formulas (e.g., covalent and ionic) are generated.
Then, each structural formula is made to correspond to a single VB structure
that displays the appropriate orbital occupancy.

Since the ionic and covalent components of the bonds are explicitly
included in the wave function, it is not necessary (and in fact, not useful) to
let the orbitals of the VB structures be delocalized. This exclusion permits a
better interpretability of the wave function in terms of unambiguous structural
formulas, by dealing with VB structures defined with orbitals that are each
strictly localized on a single atom or fragment. Within this constraint, the orbi-
tals are optimized with the freedom to be different for different VB structures,
so as to minimize the energy of the full multistructure wave function. It is
important to note that the different VB structures are not optimized separately
but in the presence of each other, so that the orbital optimization not only low-
ers the energies of each individual VB structure but also maximizes the reso-
nance energy resulting from their mixing. As such, the BOVB wave function is
a post-VBSCF method that incorporates dynamic correlation.

The difference between the BOVB and GVB or SC philosophies is best
appreciated by comparing their respective descriptions of the two-electron
bond. The classical representation for the GVB or SC wave function, obtained
after expansion of the CF expression into AO determinants as in Eq. [7], takes
the form of a linear combination of covalent and ionic classical VB structures
(46–48), for which both coefficients and orbitals are optimized. However,
there is the penalizing restriction that the same common set of AOs is used
for all three structures, as shown in Scheme 22 for the F2 molecule.
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On the other hand, the BOVB method assumes the three-structure clas-
sical form of the wave function right at the outset. Like the GVB or SC meth-
ods, it optimizes the coefficients and the orbitals simultaneously, but with the
important feature that each VB structure (49–51) may now have its specific set
of orbitals, different from one structure to the other, as pictorially represented
in Scheme 23, for the same F		F bond.

As a consequence of the BOVB procedure, the active orbitals (those
involved in the bond) can use this extra degree of freedom to adapt themselves
to their instantaneous occupancies. The spectator orbitals (not involved in the
bond) can fit the instantaneous charges of the atoms to which they belong.
Thus, all the orbitals follow the charge fluctuation that is inherent to any
bond by undergoing instantaneous changes in size and shape, hence the
name ‘‘breathing orbitals’’. The same philosophy underlies the description
of odd-electron bonds, in terms of two VB structures.

Since the BOVB wave function takes a classical VB form, it is not prac-
tical for the VB description of large electronic systems, because a large number
of VB structures would have to be generated in such a case. As such, the usual
way of applying BOVB is to describe with it only those orbitals and electrons
that undergo significant changes in the reaction, like bond breaking or forma-
tion, while the remaining orbitals and electrons are described as doubly occu-
pied MOs. Thus, even though the spectator electrons reside in doubly
occupied MOs, these orbitals too are allowed to optimize freely, but are other-
wise left uncorrelated.

Scheme 22

Scheme 23
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The BOVB method has several levels of accuracy. At the most basic level,
referred to as L-BOVB, all orbitals are strictly localized on their respective
fragments. One way of improving the energetics by allowing more degrees
of freedom is to let the inactive orbitals get delocalized. This option, which
does not alter the interpretability of the wave function, accounts better for
the nonbonding interactions between the fragments and is referred to as D-
BOVB. Another improvement can be achieved by incorporating radial electron
correlation in the active orbitals of the ionic structures, by allowing the doubly
occupied orbitals to split into two singly occupied orbitals that are spin-paired.
This option carries the label ‘‘S’’ (for split), leading to the SL-BOVB, and SD-
BOVB levels of calculation, the latter being the most accurate.

The BOVB method has been successfully tested for its ability to repro-
duce dissociation energies and/or dissociation energy curves close to full CI
results or other highly accurate calculations performed with the same basis
sets. A variety of two-electron and odd-electron bonds, including difficult
test cases as F2, FH, or F	

2 ,133–135 and the H3M		Cl series (M ¼ C, Si, Ge,
Sn, Pb)137,155,266 were investigated. Owing to its use of strictly localized active
orbitals, the method is suitable for calculating clearly defined diabatic states
that are supposed to retain the physical features of a given asymptotic state
at any point of a reaction coordinate without collapsing to the ground state
by virtue of uncontrolled orbital optimization.

It is interesting to interpret the improvement of BOVB with respect to a
CASSCF, GVB, or SC calculation of a two-electron bond. These four methods
account for all the nondynamic correlation associated with the formation of
the bond from separate fragments, but differ in their dynamic correlation con-
tent. In a medium-sized basis set, say 6-31þG(d), CASSCF, GVB, or SC
account for less than one-half of the bonding energy of F2, 14–16 kcal/
mol.133 On the other hand, an SD-BOVB calculation yields a bonding energy
of 36.2 kcal/mol,a versus an experimental value of 38.2 kcal/mol.137 Where
does this difference come from? It appears that the BOVB method brings
just what is missing in the CASSCF calculation, that is, dynamical correlation,
not all of it but just that part that is associated to the bond that is being broken
or formed. In other words, the BOVB method takes care of the differential
dynamical correlation. In this respect it is approximately equivalent to the
VBCI method.

The importance and physical nature of dynamic correlation is even better
appreciated in the case of three-electron bonds, a type of bond in which the
electron correlation is entirely dynamic, since there is no left–right correlation

aNote that this bonding energy is overestimated with respect to a full CI calculation for the

same basis set, which is estimated as close to 30 kcal/mol. The SD-BOVB systematically

overestimates bonding energies relative to full CI and yields values that are intermediate between

full CI and experiment, a ‘‘fortunate’’ systematic error that compensates for basis set insufficiency.
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associated with odd-electron bonds. As has been noted above, the Hartree–
Fock and simple VB functions for three-electron bonds (hence GVB, SC, or
VBSCF) are nearly equivalent and yield similar bonding energies. If we take
the F	

2 radical anion as an example, it turns out that the Hartree–Fock bonding
energy is exceedingly poor, only 4 kcal/mol at the spin-unrestricted Hartree–
Fock level (UHF), and even worse at the restricted Hartree–Fock (RHF) level,
while the experimental bonding energy is 30.3 kcal/mol. By contrast, the SD-
BOVB calculation, which involves only two VB structures (52, 53) with
breathing orbitals as in Scheme 24 below, yields an excellent bonding energy
of 28.0 kcal/mol.

Looking at 52 and 53 in Scheme 24 allows a clear understanding of the
nature of the dynamic correlation effect. Indeed, with respect to a Hartree–
Fock or VBSCF calculation, the BOVB wave function brings the additional
effect that the orbitals adapt themselves to the net charge of each fragment,
for example, being more diffuse when the fragment is negatively charged
and less so when the fragment is neutral. This effect, which we have called
the ‘‘breathing orbital effect’’ but which is called ‘‘size effect’’ by others, cor-
responds to the differential dynamic correlation associated with the bond, and
is just the instantaneous adaptation of the orbitals to the dynamic charge fluc-
tuations that transpire in the bond. This interpretation of dynamic correlation,
which is particularly apparent in the three-electron bond, carries over to the
two-electron bond (e.g., F2 above) that also undergoes some charge fluctuation
through its ionic components.

The BOVB method has been used for many applications relevant
to bonding in organic, inorganic, and organometallic chemis-
try.133,134,155,167,168,266–274 Recently, the L-BOVB method was applied to
compute the barriers to hydrogen abstraction in the series X� þ H		
X’ ! X		H þ �X’, and gave results comparable with CCSD at the same basis
set.167

In summary, the VBSCF,117–120 VBCI,138 and BOVB133–137 methods are
ideal tools for studying bonding and for generating VBSCDs for chemical reac-
tions. However, while VBSCF will provide a qualitatively correct picture, both
VBCI and BOVB methods will give quantitatively good results in addition to a
lucid chemical picture.

Scheme 24
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PROSPECTIVE

The many examples included in this chapter clearly demonstrate that far
from being dead, VB theory is a vibrant field of research that produces many
new methods and key paradigms of chemical bonding and reactivity. It is
hoped that this chapter will serve its intended purpose of teaching some ele-
ments of this theory.

This review of VB theory and its applications is by no means exhaustive.
The two most important omissions are the applications of this theory to the
study of chemical dynamics and to enzymatic chemistry. Ever since the pio-
neering paper of London on the potential energy surface of H3,275 and the
paper of Eyring and Polanyi276 on elementary reactions, most of the surfaces
used in the studies of chemical dynamics are based on VB formalisms and
thinking, for example, LEPS surfaces, and those generated by application of
DIM theory or the BEBO methods.277,278 This kind of thinking was recently
extended to the treatment of large molecules in the molecular mechanics-based
VB method, called MCMM.140,173 The empirical VB (EVB) method, initiated
by Warshel and Weiss,99 has gradually evolved into a general QM(EVB)/MM
method100,101 for the study of enzymatic reactions within their native protein
environment. Owing to its lucid insight into chemical reactivity the prospects
of this VB-based method are far reaching, and an example is a recent analysis
of the role of near-attack-configuration (NAC) in enzymatic catalysis.279 Else-
where, in the field of enzymatic reactions, the use of VB ideas led to new para-
digms, such as the notion of a chameleon oxidant, for the active species of the
enzyme cytochrome P450.280 Thus, in many respects, VB theory is coming of
age, with the development of faster, and more accurate ab initio VB meth-
ods,142 and with generation of new post-Pauling concepts. As these activities
flourish further, so will the usage of VB theory spread among practicing
chemists.

APPENDIX

A.1 Expansion of MO Determinants in Terms of AO
Determinants

Let DMO be a single determinant involving molecular spin orbitals ji and
jj, which can be of a or b spins:

DMO ¼ j � � �ji � � �jJ � � � j ½A1�

ji ¼
X
m

Cmiwm ½A2�

jj ¼
X
n

Cnj wn ½A3�
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Replacing ji and jj in Eq. [A1] by their expansions in terms of AOs,
DMO can be expanded into a linear combination of AO-based determinants.
The procedure is carried out in the same manner by which one would expand a
simple product of orbitals, as long as one remembers that the ordering of the
orbitals is important in the AO determinants, and that two determinants that
differ by permutation of two of their orbitals are equivalent but of opposite
sign. Thus, many AO determinants in Eq. [A4] can be regrouped after permut-
ing their orbitals and changing their signs.

j � � �ji � � �jj � � � j ¼
X
m

Cmiwm

 !
� � �

X
n

Cnj wn

 !�����
�����

¼
X
m

Cmi � � �
X
n

Cnj � � � j � � � wm � � � wn � � � j ½A4�

While this is a trivial matter for small determinants, larger ones require a bit of
algebra and a systematic method74 that is shown below.

Let us consider the determinant DMO below as being composed of two
‘‘half-determinants’’, ha

MO and hb
MO, one regrouping the spin-orbitals of a spins

and the other those of b spins.

DMO ¼ ðha
MO; h

b
MOÞ ½A5�

Half-determinants have no physical meaning but are defined here as a conve-
nient mathematical intermediary. Each of these MO-based half-determinants
can be expanded into AO-based half-determinants, just as has been done for
the determinants in Eq. [A4]. After orbital permutations the AO-based half-
determinants that are equivalent are regrouped, and we are left with some
AO-based half-determinants ha

r , each having a unique collection of AOs

ha
MO ¼

X
r

Ca
r ha

r ½A6�

where the label r designates a given set of AOs.
The coefficients of each of these AO half-determinants in the expansion

is given by Eq. [A7]:

Ca
r ¼

X
P

ð	1ÞtPð� � � � Cmi � � � � � Cnj � � �Þ ½A7�

where P is a permutation between indices m and n and t is the parity of the
permutation. By associating two AO half-determinants ha

r and hb
s , one gets

the full AO-based determinant ðha
r ; h

b
s Þ whose coefficient in the expansion of
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DMO is just the product of the coefficients of its two half-determinants:

DMO ¼
X
r;s

Ca
r Cb

s ðha
r ; h

b
s Þ ½A8�

A.2 Guidelines for VB Mixing

Derivation of matrix elements between polyelectronic VB determinants
follows from the discussion in the text, and can be carried out by enumerating
all the permutations of the respective diagonal terms, as in Eq. [A9]. Subse-
quently, one must define the reduced matrix element in Eq. [A10].52

h�jHeffj�0i ¼ �d

X
hðiÞ

��� ���Xð	1Þt Pð�0
dÞ

D E
½A9�

h�jHeffj�0ireduced ¼ h�jHeffj�0i 	 0:5ðEð�Þ þ Eð�0ÞÞh�j�0i ½A10�

Unfortunately, the retention of overlap leads to many energy and overlap
terms that need to be collected and organized, making this procedure quite
tedious. A practice that we found useful and productive is to focus on the lead-
ing term of the matrix element. In this respect, we show a few qualitative
guidelines that were derived in detail in the original paper52 and discussed else-
where.53,84,143 Initially, one has to arrange the two VB determinants with
maximum correspondence of their spin–orbitals. Then, one must find the num-
ber of spin–orbitals that are different in the two determinants, and apply the
following rules.

1. The first and foremost rule is that the entire matrix element between two
VB determinants is signed as the corresponding determinant overlap and
has the same power in AO overlap. For example, the overlap between the
two determinants of an HL bond, j ab j and j a b j is 	S2

ab, and hence the
matrix element is negatively signed, 	2babSab. Since bab is proportional to
Sab, both the matrix element and the determinant overlap involve AO
overlap to the power 2. For the one-electron bond case (Eq. [51]), the
overlap between the determinants is þSab and the matrix element þbab,
while for the three-electron bond situation (Eq. [52]) the overlap between
the determinants j aa b j and j bb a j is 	Sab and the matrix element is
likewise 	bab.

2. When the VB determinants differ by the occupancy of one spin-orbital, say
orbital a in one determinant is replaced by b in the other (keeping the
ordering of the other orbitals unchanged), the leading term of the matrix
element will be proportional to bab. Both the one- and three-electron bonds
are cases that differ by a single electron occupancy and the corresponding
matrix elements are indeed �b, with a sign as the corresponding overlap
between the determinants.
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3. When the VB determinants differ by the occupancy of two spin–orbitals,
the leading term of the matrix element will be the sum of the corresponding
bijSij terms with the appropriate sign. An example is the matrix element
	2babSab between the j ab j and j ab j determinants, which differ by the
occupancy of two spin–orbitals, a and b.

4. The above considerations are the same whether the spin–orbitals are AOs,
CF orbitals, or FOs.

A.3 Computing Mono-Determinantal VB Wave Functions
with Standard Ab Initio Programs

This technique utilizes a possibility that is offered by most ab initio stan-
dard programs to compute the energy of the guess function even if it is made of
nonorthogonal orbitals. The technique orthogonalizes the orbitals without
changing the Slater determinant, then computes the expectation energy by
use of Slater’s rules. In the course of the subsequent optimization of the
Hartree–Fock orbitals, this expectation value of the energy appears as the
energy at iteration zero. If the guess determinant is made of localized bonding
orbitals that typify a given VB structure, then the expectation energy of this
wave function at iteration zero defines the energy of this VB structure. Practi-
cally, the localized bonding orbitals that are used to construct the guess deter-
minant can be determined by any convenient means. For example, a Kekulé
structure of benzene will display a set of three two-centered p-bonding MOs
that can arise from the Hartree–Fock calculation of an ethylene mole-
cule.196,281 In a VBSCD calculation, the energy of the crossing point will be
the energy of a guess function made of the orbitals of the reactants, but in
the geometry of the transition state, without further orbital optimization.
The zero-iteration technique has also been used to estimate the energy of
spin-alternated determinants (quasi-classical state).175,198
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