Merging Symmetry Restoration and Coupled Cluster Theories

Gustavo E. Scuseria

Theory and applications of RPA-and-beyond methods in physics and chemistry Paris, UPMC Jussieu, 2-4 May 2017

Outline

- Successes \& failures of
- Coupled Cluster (CC) theory
- Symmetry breaking \& restoration (SB\&R)
- Their merger
- Using a symmetry adapted reference
- Using a symmetry broken reference
- A few benchmark results

Weak correlation paradigm

 in quantum chemistry :single reference coupled cluster theory an incredibly successful theory but...

N_{2} dissociation

CCSD has an unphysical bump
$\operatorname{UCCSD}(T)$: right energy but wrong wavefunction

Repulsive Hubbard model

$$
H=-t \sum_{<p, q>\sigma} c_{p \sigma}^{\dagger} c_{q \sigma}+U \sum_{p} n_{p \uparrow} n_{p \downarrow}, \quad n_{p \sigma}=c_{p \sigma}^{\dagger} c_{p \sigma}, \quad \sigma=\uparrow, \downarrow
$$

- $U=0 \Rightarrow$ RHF is exact
- U small => weakly correlated
- U large => strongly correlated
- Exact solution is known in 1D
- Model has a local interaction but at large U yields huge degeneracy and collective excitations

CC catastrophic failure

10×1 Hubbard ring (PBC); 10 sites; half-filling As U/t increases, the system gets strongly correlated

CCDT, CCDTQ... all fail similarly, except for full CC UCCSD is fine but we lose good quantum numbers Variational CCD (not shown) undercorrelates

Full CC reverse-engineered from FCI

10x1 Hubbard ring; 10 electrons ; RHF (plane wave) basis

In the large U limit (strongly correlated), full-CC has no natural truncation.
Note how large are $T_{3} \& T_{4}: \operatorname{CCSD}$ assumes $T_{3} \sim T_{4} \sim 0$

Weak \& strong correlation

- Weak correlation: $\left|H_{1}\right| \gg\left|H_{2}\right|, R H F$ is stable, symmetries do not break, PT works and CC is king
- Strong correlation: $\left|H_{1}\right| \ll\left|H_{2}\right|$, RHF is unstable, symmetries break spontaneously, CC fails and PHF is important
- Symmetry implies degeneracy and degeneracy near the ground state implies strong correlation that can be spotted by spontaneous symmetry breaking of the RHF solution, a symmetry dilemma

RHF instabilities

- The diagonal of the hessian matrix is very instructive:

$$
\begin{aligned}
& M_{a i, a i}^{t}=\varepsilon_{a}-\varepsilon_{i}-J_{a i}-K_{a i} \\
& M_{a i, a i}^{c}=\varepsilon_{a}-\varepsilon_{i}-J_{a i}+K_{a i} \\
& M_{a i, a i}^{s}=\varepsilon_{a}-\varepsilon_{i}-J_{a i}+3 K_{a i}
\end{aligned}
$$

$$
\begin{array}{|l|}
\hline J_{a i}>0 \\
K_{a i}>0 \\
J_{a i}>K_{a i}
\end{array}
$$

- For the hessian to have a negative eigenvalue, a negative diagonal element is sufficient but not necessary.
- Under orbital near-degeneracy (small HOMO-LUMO gap), the triplet instability occurs first.
- Yet, strong correlation can occur with very large gaps.
- Best example: fullerenes and particularly \boldsymbol{C}_{60}

Symmetry Breaking \& Restoration

- When symmetries break, we can restore them by projection: P |玉>
- We can also do variation after projection: Optimize $|\Phi\rangle$ to minimize $E \sim\langle\Phi| P^{\dagger} H P|\Phi\rangle$ with $\delta E=0$ (deliberate symmetry breaking and restoration)
- $\quad P$ is an integral operator that is discretized over a grid (next slide)
- Equivalent to CI between non-orthogonal determinants with known CI coefficients: only the orbitals need to be optimized
- Our work (2011-2015):
- Number (N), Spin (\mathbf{S}^{2} and $\mathbf{S}_{\mathbf{z}}$)
- Complex Conjugation (K), Point Group (PG)
- Under PBC: Linear Momentum (LM), Space Group (SG=LM+PG)

S^{2} spin projection: SUHF

Lowdin's approach (1955): a many-body projection operator that leads to a complicated set of equations

$$
\hat{P}=\prod_{l \neq s} \frac{\hat{S}^{2}-l(l+1)}{s(s+1)-l(l+1)}
$$

One can simply impose rotational invariance in spin space

$$
\widehat{P}=\int_{0}^{\pi} d \beta \sin \beta \quad e^{i \beta \hat{S}_{y}}
$$

J. Chem. Phys. 136, 164109 (2012)

This leads to simple equations with $\sim \mathrm{HF} \times \mathrm{N}_{\mathrm{g}}$ computational cost

$$
|S U H F\rangle=\hat{P}|\phi\rangle=\int_{0}^{\pi} d \beta \sin \beta e^{i \beta \hat{S}_{y}}|\phi\rangle, \quad\langle\phi| e^{i \beta \hat{S}_{y}}|\phi\rangle \neq 0
$$

The language of SB\&R is symmetry coherent states, non-orthogonal determinants and collective excitations

N_{2} dissociation

cc-pvDZ basis : weak correlation is important everywhere

SUHF includes all strong/static but very little weak/dynamic correlation

Another problem: SUHF size extensivity

Rings of equidistant H atoms @ 1.80 Bohr with minimum basis

SUHF yields zero correlation energy per electron with respect to UHF in infinite systems

PHF and CC

Merging PHF with CC is challenging

 because they are dissimilar theories!- CC is not variational but size-extensive

It uses ph excitations and orthogonal determinants

- PHF is variational; size extensive component is UHF It uses rotations and non-orthogonal determinants
- We are pursuing two mergers:
- Express PHF in terms of ph excitations of RHF and do PHF together with RCCSD
- Work in the unrestricted basis (UCCSD) and then project

PHF + CC

- CC is based on a similarity transformation that does not change the Hamiltonian spectrum
- $H_{\text {eff }}=\exp (-T) H \exp (T)$ truncates at $4^{\text {th }}$ commutator (6-b)
- CCSD is exact if given the exact T_{3} and T_{4}
- Symmetry adapted reference model

Bad news: T_{3} and T_{4} are large and cannot be neglected Good news: T_{3} and T_{4} factorize from one-body amplitudes and we now understand their structure

- Broken symmetry reference model

Good news: U_{3} and U_{4} are small and can be neglected
Bad news: We lose good quantum numbers and restoring symmetries is complicated

SUHF as a ph excitation ansatz

- UHF can be obtained from a Thouless rotation:

$$
|U H F\rangle=e^{T_{1}+U_{1}^{0}}|R H F\rangle
$$

- T_{1} is the totally symmetric component ($s=0, m=0$) of singles
- \boldsymbol{U}_{1} is the $(\mathbf{s}=1, \mathrm{~m}=0)$ component that breaks \mathbf{S}^{2}

$$
T_{1}=\sum t_{i}^{a}\left(c_{a \uparrow}^{\dagger} c_{i \uparrow}+c_{a \downarrow}^{\dagger} c_{i \downarrow}\right)=\sum t_{i}^{a} E_{a}^{i}, \quad U_{1}^{0}=\sum u_{i}^{a}\left(c_{a \uparrow}^{\dagger} c_{i \uparrow}-c_{a \downarrow}^{\dagger} c_{i \downarrow}\right)
$$

- The projected spin state is:

$$
|S U H F\rangle=e^{T_{1}} \widehat{P}\left(e^{U_{1}}\right)|R H F\rangle=e^{T_{1}} F\left(K_{2}\right)|R H F\rangle
$$

- The polynomial $F\left(K_{2}\right)$ contains only even powers of U_{1}

$$
\begin{aligned}
& F\left(K_{2}\right)=I+K_{2}+\frac{3}{10} K_{2}^{2}+\frac{3}{70} K_{2}^{3}+\frac{1}{280} K_{2}^{4}+\ldots= \\
& K_{2}=\frac{1}{2} \widehat{P}\left(U_{1}^{0} U_{1}^{0}\right)=-\frac{1}{6} \sum\left(u_{i}^{a} u_{j}^{b}+2 u_{i}^{b} u_{j}^{a}\right) E_{a}^{i} E_{b}^{j}
\end{aligned}
$$

Y. Qiu, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. 145, 111102 (2016)

Similar idea for Number projection yields a Bessel polynomial of ph excitations: Phys. Rev. B 93, 125124 (2016)

SUHF + CCSD

- Proof of principle results can be obtained for the joint SUHF + CCSD ansatz on small systems using a variational representation of both components:

$$
E=\frac{\langle R H F| F\left(K_{2}^{\dagger}\right) e^{T_{1}^{+}+T_{2}^{T}} H e^{T_{1}+T_{2}} F\left(K_{2}\right)|R H F\rangle}{\langle R H F| F\left(K_{2}^{\dagger}\right) e^{T_{t}^{+}+T_{2}^{+}} e^{T_{1}+T_{2}} F\left(K_{2}\right)|R H F\rangle}
$$

- Think of $F\left(K_{2}\right)$ |RHF > as a multireference for CCSD
- Two examples:
N_{2} dissociation in a minimum basis 10×1 Hubbard at half-filling
- Projected Hartree Fock Theory as a Polynomial Similarity Transformation Theory of Single Excitations, Y. Qiu, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. 145, 111102 (2016).
- Projected Hartree-Fock as a polynomial of particle-hole excitations and its combination with variational coupled cluster theory, Y. Qiu, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. in press.

VCCSD does not get the right answer at dissociation SPVCCSD $=$ SUHF +VCCSD is very accurate everywhere

VCCSD

10x1 Hubbard chain; 10 electrons Error per electron respect to FCI

Error per electron, 10 Sites

RHF basis

VCCSD undercorrelates badly.
$\exp \left(T_{2}\right)$ misses important high-order symmetry collective excitations

SUHF + VCCSD

10x1 Hubbard chain; 10 electrons Error per electron respect to FCI

Error per electron, 10 Sites

RHF basis

UCCSD has better energy than SUHF+VCCSD

SGHF as a ph excitation ansatz

- GHF (broken S^{2} and S_{z}) can be obtained by a Thouless rotation:

$$
|G H F\rangle=e^{T_{1}+U_{1}^{0}+U_{1}^{1}+U_{1}^{-1}}|R H F\rangle
$$

T_{1} is the totally symmetric component ($s=0, m=0$) of singles
$U_{1}{ }^{o}$ is the ($\mathrm{s}=1, \mathrm{~m}=0$) component that breaks S^{2}
$U_{1}{ }^{1}$ is the $(s=1, m=1)$ component that breaks S_{z} by $\Delta m=+1$
$U_{1}{ }^{-1}$ is the $(s=1, m=-1)$ component that breaks S_{z} by $\Delta m=-1$

$$
\begin{array}{ll}
\hline T_{1}=\sum t_{i}^{a}\left(c_{a \uparrow}^{\dagger} c_{i \uparrow}+c_{a \downarrow}^{\dagger} c_{i \downarrow}\right), & U_{1}^{1}=\sum v_{i}^{a} c_{a \uparrow}^{\dagger} c_{i \downarrow} \\
U_{1}^{0}=\sum u_{i}^{a}\left(c_{a \uparrow}^{\dagger} c_{i \uparrow}-c_{a \downarrow}^{\dagger} c_{i \downarrow}\right), & U_{1}^{-1}=\sum w_{i}^{a} c_{a \downarrow}^{\dagger} c_{i \uparrow}
\end{array}
$$

- The projected spin state is:

$$
|S G H F\rangle=e^{T_{1}} \widehat{P}\left(e^{U_{1}^{0}+U_{1}^{1}+U_{1}^{-1}}\right)|R H F\rangle=e^{T_{1}} G\left(K_{2}, K_{3}, K_{4}\right)|R H F\rangle
$$

T. M. Henderson \& G. E. Scuseria, in preparation.

Error per electron

VCCSD \& VCCSDT undercorrelate.
High-order collective excitations are important and $\exp \left(T_{2}+T_{3}\right)$ misses them!

Error per electron

Proof of principle results. Combinatorial cost. Not practical. Similarity transformed version in progress.

Projected UCCSD

$$
E=\frac{\langle U H F|\left(I+Z_{1}+Z_{2}\right) e^{-U_{1}-U_{2}} H \widehat{P}^{U_{1}+U_{2}}|U H F\rangle}{\langle U H F|\left(I+Z_{1}+Z_{2}\right) e^{-U_{1}-U_{2}} \widehat{P} e^{U_{1}+U_{2}}|U H F\rangle}
$$

$$
\widehat{P}=\int_{0}^{\pi} d \beta \sin \beta \quad e^{i \beta \hat{S}_{y}}
$$

\mathbf{S}^{2} projection

Main result of this work:

$$
e^{i \beta \hat{S}_{y}} e^{U_{1}+U_{2}}=e^{\widetilde{U}_{0}(\beta)} e^{\widetilde{U}_{1}(\beta)+\widetilde{U}_{2}(\beta)+\widetilde{U}_{3}(\beta)+\widetilde{U}_{4}(\beta)+\ldots}
$$

disconnected terms cancel out.

The $\widetilde{U}_{n}(\beta)$ afford truncation in the spirit of CC theory

Ethan Qiu, Tom Henderson \& GES, in preparation

Projected UCCSD

10×1 Hubbard $\frac{1}{2}$ filling $\quad U=10$

Projected UCCSD

$$
E=\frac{\langle U H F|\left(I+Z_{1}+Z_{2}\right) e^{-U_{1}-U_{2}} H \widehat{P}^{U_{1}+U_{2}}|U H F\rangle}{\langle U H F|\left(I+Z_{1}+Z_{2}\right) e^{-U_{1}-U_{2}} \widehat{P} e^{U_{1}+U_{2}}|U H F\rangle}
$$

Three models:
(1) PAV: $\mathrm{Z}=0$ and $\mathrm{U}_{1} / \mathrm{U}_{2}$ from UCCSD
(2) LR-PAV: solve for $\mathbf{Z} \neq 0$ and U_{1} / U_{2} from UCCSD
(3) VAP: re-optimize U_{1} / U_{2} in the presence of \widehat{P}

$$
\begin{aligned}
& \frac{\partial E}{\partial z_{a}^{i}}=\left\langle{ }_{i}^{a}\right| e^{-U_{1}-U_{2}} H \widehat{P} e^{U_{1}+U_{2}}|U H F\rangle-E\left\langle{ }_{i}^{a}\right| e^{-U_{1}-U_{2}} \widehat{P} e^{U_{1}+U_{2}}|U H F\rangle=0 \\
& \frac{\partial E}{\partial z_{a b}^{i j}}=\left\langle\begin{array}{l}
a b \\
i j
\end{array}\right| e^{-U_{1}-U_{2}} H \widehat{P} e^{U_{1}+U_{2}}|U H F\rangle-E\left\langle\begin{array}{l}
a b
\end{array}\right| e^{-U_{1}-U_{2}} \widehat{P} e^{U_{1}+U_{2}}|U H F\rangle=0
\end{aligned}
$$

S^{2} projected UCCSD

All calculations use the SUHF optimized determinant (so that there is a broken symmetry reference even when spin does not break spontaneously)

Comparing our best models so far

There is a small advantage of symmetry adapted methods in the recoupling region which may be relevant for molecules

And for a bit of perspective...

Conclusion

Symmetry breaking and restoration methods combined with coupled cluster theory look very promising

Related work on PHF+CC

Merging symmetry projection methods with coupled cluster theory: Lessons from the Lipkin model Hamiltonian,
J. M. Wahlen-Strothman, T. M. Henderson, M. R. Hermes, M. Degroote, Y. Qiu, J. Zhao, J. Dukelsky, and G. E. Scuseria, J. Chem. Phys. 146, 054110 (2017), https://arxiv.org/abs/1611.06273

Combining symmetry collective states with coupled cluster theory: Lessons from the Agassi model Hamiltonian, M. R. Hermes, J. Dukelsky, and G. E. Scuseria, https://arxiv.org/abs/1703.02123

Attenuated coupled cluster: a heuristic polynomial similarity transformation incorporating spin symmetry projection into traditional coupled cluster theory

John A. Gomez © ${ }^{\text {a }}$, Thomas M. Henderson ${ }^{\mathrm{a}, \mathrm{b}}$ and Gustavo E. Scuseria ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a D Department of Chemistry, Rice University, Houston, TX, USA; }{ }^{\text {b }} \text { Department of Physics and Astronomy, Rice University, Houston, TX, USA }}$

ABSTRACT

In electronic structure theory, restricted single-reference coupled cluster (CC) captures weak correlation but fails catastrophically under strong correlation. Spin-projected unrestricted Hartree-Fock (SUHF), on the other hand, misses weak correlation but captures a large portion of strong correlation. The theoretical description of many important processes, e.g. molecular dissociation, requires a method capable of accurately capturing both weak and strong correlation simultaneously, and would likely benefit from a combined CC-SUHF approach. Based on what we have recently learned about SUHF written as particle-hole excitations out of a symmetry-adapted reference determinant, we here propose a heuristic CC doubles model to attenuate the dominant spin collective channel of the quadratic terms in the CC equations. Proof of principle results presented here are encouraging and point to several paths forward for improving the method further.

Correlation Strength

ARTICLE HISTORY

Received 30 January 2017
Accepted 25 February 2017

KEYWORDS

Coupled cluster theory; spin symmetry projection; strong correlation; molecular dissociation; Hubbard Hamiltonian

Acknowledgments

\$ DOE, NSF, Welch Foundation \& Gaussian Inc., Jorge Dukelsky, CSIC

