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• Successes & failures of
– Coupled Cluster (CC) theory

– Symmetry breaking & restoration (SB&R)

• Their merger
– Using a symmetry adapted reference

– Using a symmetry broken reference

• A few benchmark results

Outline



Weak correlation paradigm

in quantum chemistry :

single reference

coupled cluster theory

an incredibly successful theory but…



CCSD has an unphysical bump
UCCSD(T) : right energy but wrong wavefunction

N2 dissociation
min basis:

strong
correlation

dominates at
dissociation



• U = 0   =>  RHF is exact

• U small =>  weakly correlated

• U large =>  strongly correlated

• Exact solution is known in 1D

• Model has a local interaction but at large U yields 
huge degeneracy and collective excitations

Repulsive Hubbard model
† †

,
, , ,p q p p pp p

p q p
H t c c U n n n c c    



 
 

      



CC catastrophic failure
10x1 Hubbard ring (PBC); 10 sites; half-filling

As U/t increases, the system gets strongly correlated

CCDT, CCDTQ… all fail similarly, except for full CC
UCCSD is fine but we lose good quantum numbers
Variational CCD (not shown) undercorrelates

T1 = 0
by symmetry



Full CC reverse-engineered from FCI

In the large U limit (strongly correlated), full-CC has no natural truncation.
Note how large are T3 & T4;  CCSD assumes T3 ~ T4 ~ 0

10x1 Hubbard ring; 10 electrons ; RHF (plane wave) basis

T1 = T9 = 0
by symmetry



Weak & strong correlation

• Weak correlation: |H1|>>|H2|, RHF is stable, 
symmetries do not break, PT works and CC is king

• Strong correlation: |H1|<<|H2|, RHF is unstable, 
symmetries break spontaneously, CC fails 
and PHF is important

• Symmetry implies degeneracy and degeneracy 
near the ground state implies strong correlation 
that can be spotted by spontaneous symmetry breaking
of the RHF solution, a symmetry dilemma



• The diagonal of the hessian matrix is very instructive:

• For the hessian to have a negative eigenvalue, a negative 
diagonal element is sufficient but not necessary.

• Under orbital near-degeneracy (small HOMO-LUMO 
gap), the triplet instability occurs first.

• Yet, strong correlation can occur with very large gaps. 

• Best example: fullerenes and particularly C60

RHF instabilities
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 When symmetries break, we can restore them by projection: P |Ф>

 We can also do variation after projection: 
Optimize |Ф> to minimize E ~ <Ф| P† H P |Ф> with  δE=0
(deliberate symmetry breaking and restoration)

 P is an integral operator that is discretized over a grid (next slide)

 Equivalent to CI between non-orthogonal determinants with known CI
coefficients: only the orbitals need to be optimized

 Our work (2011-2015):
 Number (N), Spin (S2 and Sz)
 Complex Conjugation (K), Point Group (PG)
 Under PBC: Linear Momentum (LM), Space Group (SG=LM+PG) 

Symmetry Breaking & Restoration



S2 spin projection: SUHF
Lowdin’s approach (1955): a many-body projection operator that 

leads to a complicated set of equations

One can simply impose rotational invariance in spin space

This leads to simple equations with ~ HF x Ng computational cost

The language of SB&R is symmetry coherent states, non-orthogonal 
determinants and collective excitations
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N2 dissociation

SUHF includes all strong/static but very little weak/dynamic correlation

cc-pvDZ basis : weak correlation is important everywhere

Residual weak
correlations
are large

UCCSD(T)
right energy
but wrong Ψ

RCCSD
(not shown)
is not good



Rings of equidistant H atoms @ 1.80 Bohr with minimum basis

Another problem:
SUHF size extensivity

SUHF yields zero correlation energy  per electron 
with respect to UHF in infinite systems



PHF and CC
Merging PHF with CC is challenging

because they are dissimilar theories !
• CC is not variational but size-extensive

It uses ph excitations and orthogonal determinants

• PHF is variational; size extensive component is UHF
It uses rotations and non-orthogonal determinants

• We are pursuing two mergers:
• Express PHF in terms of ph excitations of RHF 

and do PHF together with RCCSD
• Work in the unrestricted basis (UCCSD) 

and then project



PHF + CC
• CC is based on a similarity transformation that does not 

change the Hamiltonian spectrum
• Heff = exp(-T) H exp(T) truncates at 4th commutator (6-b)
• CCSD is exact if given the exact T3 and T4

• Symmetry adapted reference model
Bad news: T3 and T4 are large and cannot be neglected
Good news: T3 and T4 factorize from one-body amplitudes 

and we now understand their structure

• Broken symmetry reference model
Good news: U3 and U4 are small and can be neglected
Bad news: We lose good quantum numbers and restoring

symmetries is complicated



• UHF can be obtained from a Thouless rotation:

• T1 is the totally symmetric component (s=0,m=0) of singles
• U1 is the (s=1,m=0) component that breaks S2

• The projected spin state is:

• The polynomial F(K2) contains only even powers of U1

SUHF as a ph excitation ansatz
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SUHF + CCSD
• Proof of principle results can be obtained for the 

joint SUHF + CCSD ansatz on small systems using a 
variational representation of both components:

• Think of F(K2) |RHF> as a multireference for CCSD
• Two examples: 

N2 dissociation in a minimum basis 
10x1 Hubbard at half-filling

• Projected Hartree Fock Theory as a Polynomial Similarity Transformation Theory of Single Excitations, 
Y. Qiu, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. 145, 111102 (2016).

• Projected Hartree-Fock as a polynomial of particle-hole excitations and its combination with variational 
coupled cluster theory, Y. Qiu, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys.  in press.
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N2 dissociation
min basis

VCCSD does not get the right answer at dissociation
SPVCCSD = SUHF+VCCSD is very accurate everywhere



VCCSD
10x1 Hubbard chain; 10 electrons
Error per electron respect to FCI

VCCSD undercorrelates badly.
exp(T2) misses important high-order symmetry collective excitations 

RHF basis



SUHF + VCCSD
10x1 Hubbard chain; 10 electrons
Error per electron respect to FCI

UCCSD has better energy than SUHF+VCCSD

RHF basis



• GHF (broken S2 and Sz) can be obtained by a Thouless rotation:

T1 is the totally symmetric component (s=0,m=0) of singles
U1

0 is the (s=1,m=0) component that breaks S2

U1
1 is the (s=1,m=1) component that breaks Sz by Δm=+1

U1
-1 is the (s=1,m=-1) component that breaks Sz by Δm=-1

• The projected spin state is:

T. M. Henderson & G. E. Scuseria, in preparation.

SGHF as a ph excitation ansatz
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Error per electron

VCCSD & VCCSDT undercorrelate.
High-order collective excitations are important and exp(T2+T3) misses them !



Error per electron



Error per electron



Error per electron



Error per electron



Error per electron



Error per electron

Proof of principle results. Combinatorial cost. Not practical.
Similarity transformed version in progress.



Projected  UCCSD
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Main result of this work: 

disconnected terms cancel out.
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Projected  UCCSD

10x1 Hubbard     ½ filling       U=10



Projected  UCCSD
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(1) PAV : Z=0 and U1/U2 from UCCSD 
(2) LR-PAV: solve for Z≠0 and U1/U2 from UCCSD 
(3) VAP: re-optimize U1/U2 in the presence of 
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S2 projected  UCCSD

All calculations use the SUHF optimized determinant
(so that there is a broken symmetry reference even 
when  spin does not break spontaneously)

10x1



Comparing our best models so far

There is a small advantage of symmetry adapted methods
in the recoupling region which may be relevant for molecules

10x1



And for a bit of perspective…

10x1



Conclusion

Symmetry breaking and restoration 
methods combined with coupled cluster 

theory look very promising



Related work on PHF+CC

Merging symmetry projection methods with coupled cluster theory: 
Lessons from the Lipkin model Hamiltonian, 
J. M. Wahlen-Strothman, T. M. Henderson, M. R. Hermes, 
M. Degroote, Y. Qiu, J. Zhao, J. Dukelsky, and G. E. Scuseria, 
J. Chem. Phys. 146, 054110 (2017),
https://arxiv.org/abs/1611.06273

Combining symmetry collective states with coupled cluster theory: 
Lessons from the Agassi model Hamiltonian, 
M. R. Hermes, J. Dukelsky, and G. E. Scuseria,
https://arxiv.org/abs/1703.02123
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