RPA for Superfluid Nuclei and Extensions

Paris, Jan. 28, 2010

Peter Ring

Technical University Munich

TECHNISCHE UNIVERSITÄT MUNCHEN

Content

- Static density functionals in nuclei
- Time dependent density functionals in nuclei
- Quasiparticle RPA
- Applications:
 - relativistic RPA
 - continuum RPA
 - deformed RPA
 - pn RPA

Extensions

- energy dependent KS-fields
- Mixing of deformed configurations
- Symmetry restoration before variation
- Conclusions and outlook

Density functional theory in nuclei

$$E[\rho] = \langle \Psi | H | \Psi \rangle \approx \langle \Phi | H_{eff}(\rho) | \Phi \rangle$$

 $|\Phi\rangle$ Slater determinant $\iff \rho$ density matrix

 $|\Phi\rangle = \mathcal{A}\{\varphi_1(\mathbf{r}_1)\dots\varphi_i(\mathbf{r}_A)\} \iff \hat{\rho}(\mathbf{r},\mathbf{r}') = \sum_{i=1}^{A} |\varphi_i(\mathbf{r})\rangle\langle\varphi_i(\mathbf{r}')|$

Mean field:Eigenfunctions: $\hat{h} = \frac{\delta E}{\delta \rho}$ $h | \varphi_i \rangle = \varepsilon_i | \varphi_i \rangle$

i=1

Extensions: Pairing correlations, Covariance Relativistic Hartree Bogoliubov (RHB)

Density functionals in nuclei:

- the are based on density dependent two-body interactions H(ρ)
 - on the mean field level they contain also three-body forces
- they are completely phenomenological
 - few parameters are adjusted to binding energies and radii
- they can be represented by zero range forces (and gradient corrections)
 on the mean field level one needs only momenta k < k_F
- for zero range forces **Fock terms** can be absorbed in the parameters
- there are large **spin-orbit** terms
- strong pp-correlations lead in open shell nuclei to superfluidity
 - is treated on the mean field level by Hartree-Fock-Bogoliubov methods

3 types of functionals are presently used:

- non relativistic zero range forces (Skyrme)
- finite range forces of Gaussian shape (Gogny)
- relativistic density functionals (RMF)

Density functionals in superfluid systems:

$$E[\boldsymbol{\rho}, \boldsymbol{\kappa}] = E_{\mathsf{KS}}[\boldsymbol{\rho}] + E_{\mathsf{pair}}[\boldsymbol{\kappa}]$$

where

$$\boldsymbol{\rho} = \langle a^{\dagger}a \rangle \qquad \boldsymbol{\kappa} = \langle a^{\dagger}a^{\dagger} \rangle$$

$$\mathcal{R}=\left(egin{array}{cc} oldsymbol{
ho} & \kappa \ -\kappa^* & -oldsymbol{
ho}^* \end{array}
ight)$$

and the Kohn-Sham equations are of the form

Valatin density

$$\begin{pmatrix} \mathbf{h}_{\mathsf{KS}} - \mu & \mathbf{\Delta} \\ -\mathbf{\Delta}^* & -\mathbf{h}_{\mathsf{KS}}^* + \mu \end{pmatrix} \begin{pmatrix} U_k(\mathbf{r}) \\ V_k(\mathbf{r}) \end{pmatrix} = E_k \begin{pmatrix} U_k(\mathbf{r}) \\ V_k(\mathbf{r}) \end{pmatrix}$$

with

$$h_{\rm KS} = \frac{\delta E}{\delta \rho}, \qquad \Delta = \frac{\delta E}{\delta \kappa}$$

Relativistic Kohn-Sham equations:

$$\begin{pmatrix} m - \mathbf{S} + \mathbf{V} & \vec{\sigma}\vec{p} \\ \vec{\sigma}\vec{p} & -m + \mathbf{S} + \mathbf{V} \end{pmatrix} \begin{pmatrix} f_i \\ g_i \end{pmatrix} = \varepsilon_i \begin{pmatrix} f_i \\ g_i \end{pmatrix}$$

scalar potential:
$$S(\mathbf{r}) = G_{\sigma}\rho_s(\mathbf{r}) = G_{\sigma}\sum_{i=1}^{A} (|f_i(\mathbf{r})|^2 - |g_i(\mathbf{r})|^2 \approx 400 \text{ MeV}$$
vector potential: $V(\mathbf{r}) = G_{\omega}\rho(\mathbf{r}) = G_{\omega}\sum_{i=1}^{A} (|f_i(\mathbf{r})|^2 + |g_i(\mathbf{r})|^2 \approx 350 \text{ MeV}$ density dependent couplings: $\mathbf{G} = \mathbf{G}(\mathbf{p})$ rearrangement terms!

Relativistic potentials

Walecka model

- the basis is an effective Lagrangian with all relativistic symmetries
- it is used in a mean field concept (Hartree-level)
- with the no-sea approximation

Effective density dependence:

The basic idea comes from ab initio calculations density dependent coupling constants include Brueckner correlations and threebody forces

Manakos and Mannel, Z.Phys. 330 , 223 (1988)		
Bürvenich, Madland, Maruhn, Reinhard, PRC 65, 044308 (2002):	PC-F1	
Niksic, Vretenar, P.R., PRC 78, 034318 (2008):	DD-PC1	

rms-deviations:masses: $\Delta m = 900 \text{ keV}$ radii: $\Delta r = 0.015 \text{ fm}$

Lalazissis, Niksic, Vretenar, Ring, PRC 71, 024312 (2005)

Comparison with ab initio calculations:

we find excellent agreement with ab initio calculations of Baldo et al.

Fit to ab-initio results

point coupling model is fitted to microscopic nuclear matter:

Static density functionals in nuclei

Time dependent density functionals in nuclei

Quasiparticle RPA

Applications:

- relativistic RPA
- continuum RPA
- deformed RPA
- pn RPA

Extensions

- energy dependent KS-fields
- Mixing of deformed configurations
- Symmetry restauration before variation
- Conclusions and outlook

Time dependent mean field theory:

$$\int dt \left\{ \langle \Phi(t) | i \partial_t | \Phi(t) \rangle - E[\hat{\rho}(t)] \right\} = 0$$
$$i \partial_t \hat{\rho} = \left[\hat{h}(\hat{\rho}) + \hat{f}, \hat{\rho} \right]$$

$$i\partial_t \psi(t) = \left[\left(\vec{\alpha} (\vec{p} - \vec{V}(t)) + V(t) + \beta (m - S(t)) \right] \psi(t) \right]$$

We neglect retardation and find for the fields at each time-step:

$$S(t) = G_{\sigma}\rho_s(t)$$
$$V(t) = G_{\omega}\rho(t)$$
$$\vec{V}(t) = G_{\omega}\vec{j}(t)$$

and similar equations for the isovector and electromagnetic-fields

- Static density functionals in nuclei
- Time dependent density functionals in nuclei
- Quasiparticle RPA
- Applications:
 - relativistic RPA
 - continuum RPA
 - deformed RPA
 - pn RPA

Extensions

- energy dependent KS-fields
- Mixing of deformed configurations
- Symmetry restauration before variation
- Conclusions and outlook

Small amplitude limit gives RPA:Small amplitude limit:
$$\delta \rho_{ph}, \delta \rho_{ah}$$
 $\hat{\rho}(t) = \hat{\rho}^{(0)} + \delta \hat{\rho}(t)$ $\begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \hbar \omega \begin{pmatrix} X \\ Y \end{pmatrix}$ ground-state density $\delta \rho_{hp}, \delta \rho_{hc}$ **RPA matrices:** $\delta \rho_{hp}, \delta \rho_{hc}$ $A_{minj} = (\epsilon_n - \epsilon_i) \delta_{mn} \delta_{ij} + \frac{\partial h_{mi}}{\partial \rho_{nj}}, \quad B_{minj} = \frac{\partial h_{mi}}{\partial \rho_{jn}}$ \longrightarrow the same effective interaction determines
the Dirac-Hartree single-particle spectrum
and the residual interactionIn superfluid systems: quasiparticle RPA

Relativistic (Q)RPA calculations of giant resonances

Linear response theory:

Strength function:

Response function:

$$S(\omega) = -\frac{1}{\pi} \operatorname{Im} R_{FF}(\omega),$$

without interaction: $|\mu|$

$$R_{cc'}(\omega) = \sum_{\mu>0} \frac{\langle 0|Q_c^{\dagger}|\mu\rangle\langle\mu|Q_{c'}|0\rangle}{\omega - \Omega_{\mu} + i\eta} - \frac{\langle\mu|Q_c^{\dagger}|0\rangle\langle0|Q_{c'}|\mu\rangle}{\omega + \Omega_{\mu} + i\eta}$$
$$|\mu\rangle \quad \rightarrow \quad |ph\rangle, \qquad \Omega_{\mu} \quad \rightarrow \quad \epsilon_p - \epsilon_h$$
$$R_{cc'}^0(\omega) = \sum_{i} \frac{\langle h|Q_c^{\dagger}|p\rangle\langle p|Q_{c'}|h\rangle}{\omega - \epsilon_p + \epsilon_h} - \dots$$

separable interaction:

$$V^{ph}(1,2) = \sum_{c} \int_{0}^{\infty} dr \ Q_{c}^{(1)}(r) \ \upsilon_{c}(r) \ Q_{c}^{\dagger(2)}(r)$$

lin. Bethe Salpeter Eq:
$$R(\omega) = R^0(\omega) + R^0(\omega)V^{ph}R(\omega)$$

 $R(\omega) = \frac{1}{1 - R^0 V} R^0 = \frac{1}{R^{0-1} - V}$ solution by inversion: $\overline{\omega - \begin{pmatrix} A & B \\ -B^* & -A^* \end{pmatrix}}$ in the ph-basis: Treatment of the continuum: $R^{0}_{cc'}(\omega) = \sum_{ph} \frac{\langle h | Q^{\dagger}_{c} | p \rangle \langle p | Q_{c'} | h \rangle}{\omega - \epsilon_{p} + \epsilon_{h}} - \dots$ Bertsch 1974 $= \sum_{\mathbf{r}} \langle h | \mathbf{Q}_{c}^{\dagger} \frac{1}{\omega + \epsilon_{h} - \hat{h}_{D}} \mathbf{Q}_{c'} | h \rangle - \dots$ $= \sum_{h} \langle h | Q_c^{\dagger} G(\omega + \epsilon_h) Q_{c'} | h \rangle - \dots$ single particle Greens function:

$$G(E) = \frac{1}{E - \hat{h}_D} \qquad \left(E - \hat{h}_\kappa(r)\right) G_\kappa(r, r'; E) = \delta(r - r')$$

,

peak energy:

escape width:

Vibrations in deformed nuclei

isovector-dipole response in ¹⁰⁰Mo

response of the nucleus to an incoming particle

Spin-Isospin Resonances: IAR - GTR

Isobaric Analog Resonance: IAR

PR C69, 054303 (2004)

PR C69, 054303 (2004)

Distribution of cross section over multipolarities

Cross section (v_e,e⁻) averaged over supernova neutrino flux

- Static density functionals in nuclei
- Time dependent density functionals in nuclei
- Quasiparticle RPA
- Applications:
 - relativistic RPA
 - continuum RPA
 - deformed RPA
 - pn RPA

Extensions

- energy dependent KS-fields
- Mixing of deformed configurations
- Symmetry restauration before variation
- Conclusions and outlook

Problems with mean field:

- no fluctuation in transitional nuclei
- no energy dependence of the self energy
- symmetry violations have to be restored
- no spectroscopy
- • • • •

Particle-vibrational coupling: energy dependent self-energy

Density functional theory - Landau-Migdal theory

Distribution of single-particle strength in ²⁰⁹Bi

RPA workshop, UPMC Paris 6, Jan. 25-29, 2009

Single particle spectrum in the Pb region

Two-body problem: from self-energy to effective interaction

E. Litvinova:

Parameters of Lorentz distribution* (GDR)

		<E $>$ (MeV)	Γ (MeV)	EWSR (%)	
	RRPA	12.9	2.0	128	
208Pb	RRPA-PC	13.7	4.3	134	
	Exp. $[1]$	13.4	4.1		
	RRPA	14.5	2.6	126	
¹³² Sn	RRPA-PC	15.1	4.4	131	
	Exp. $[2]$	16.1(7)	4.7(2.1)		
48.11:	RRPA	17.9	3.1	119	
	RRPA-PC	18.6	5.1	125	
465	RRPA	17.9	3.2	122	
Te	RRPA-PC	18.7	5.5	128	
*Avoraging interval: 0.30 MoV [1] Reference Input Parameter Library, Versio				Parameter Library, Version	
			[2] Adrich et al., PRL 95 , 132501 (2005).		

Generator Coordinate Method (GCM)

Constraint Hartree Fock produces wave functions depending on a generator coordinate q

1.6

2.4

0.8

q (b)

²⁴Mg

GCM wave function is a superposition of Slater determinants

Hill-Wheeler equation:

$$\int dq' \left[\left\langle q | H | q' \right\rangle - E \left\langle q | q' \right\rangle \right] f(q') = 0$$

0

20

16

12

-1.6

-0.8

E (MeV)

$$\left|\Psi\right\rangle = \int dq f(q) \hat{P}^{N} \hat{P}^{I} \left|q\right\rangle$$

Quantum phase transitions and critical symmetries

RPA workshop, UPMC Paris 6, Jan. 25-29, 2009

GCM: only one scale parameter: X(5): two scale parameters:

E(2₁) E(2₁), BE2(2₂ \rightarrow 0₁)

Problem of GCM at this level:

restricted to y=0

AGP and number projected HFB:

AGP is equivalent to number projected HFB (variation after projection: VAP)

$$|AGP\rangle = (C^{\dagger})^{\frac{N}{2}}|0\rangle = \hat{P}^{N}e^{C^{\dagger}}|0\rangle = \hat{P}^{N}|\Phi\rangle$$

with

$$C^{\dagger} = \sum_{ik} C_{ik} a_i^{\dagger} a_k^{\dagger}$$

The coefficients C_{ik} are variational parameters and Φ is a generalized Slater determinant.

The AGP-energy it the number projected HFB-energy.

$$E_{AGP}[\mathcal{R}] = E^{N}[\mathcal{R}] = \frac{\langle \Phi | H\hat{P}^{N} | \Phi \rangle}{\langle \Phi | \hat{P}^{N} | \Phi \rangle}$$

where \mathcal{R} is the Valatin density. This is an intrinsic density. The corresponding projected HFB-Field is

$$\mathcal{H} = \frac{\delta E^N[\mathcal{R}]}{\delta \mathcal{R}}$$

i.e. we need the analytic dependence of $E^N[\mathcal{R}]$ on \mathcal{R}

projected density functionals:

$$E^{I}[\rho] = \langle \Phi | H \hat{P}^{I} | \Phi \rangle$$

where H is an effective Hamiltonian.

The projected HF (or KS) field is given by

$$h_{KS}^{I} = \frac{\delta E^{I}}{\delta \rho}$$

The generalized Wick theorem shows, that $E^{I}[\rho]$ is an integral over the rotational angle α and it depends on the mixed density

$$\rho(\boldsymbol{\alpha}) = \langle \boldsymbol{\Phi} | a^{\dagger} a e^{i \boldsymbol{\alpha} \hat{J}} | \boldsymbol{\Phi} \rangle.$$

It can be shown that the mixed density can be expressed analytically by the intrinsic density

$$\rho(\alpha) = e^{i\alpha J} \rho (1 + (e^{i\alpha J} - 1)\rho)^{-1}$$

Sheikh, P.R., PRC 78, 14312 (2008)

vinding energies

rms-radii

L. Lopes, PhD Thesis, TUM, 2002

Conclusions:

Phenomenological DFT in nuclei produces exellent results

- static: binding energies, radii, deformations,
- quasistatic: treatment of rotational excitations in the rotating frame
- dynamic: QRPA reproduces positions collective excitations and the response of the nuclear systems to external fields

Beyond mean field:

- energy dependence of the self energy reduces the shell gap
- and allows to calculate the width of giant resonances
- configuration mixing of def. states describes fluctuations and phase transitions
- restoration of symmetries allows to calculate spectroscopic properties

Collaborators:

J. Daoutidis (Munich) E. Lopes (Munich, BMW) D. Peña (Orsay) W.Poeschl (Dubai)

T. Niksic	(Zagreb)
N. Paar	(Zagreb)
D. Vretenar	(Zagreb)

G. A. Lalazissis (Thessaloniki)

E. Litvinova (GSI)V. Tselayev (St. Petersburg)J. Meng (Beijing)