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Uncorrelated strongly orthogonal electron pairs approximation
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8P GV BP (r1; r2) = c1P 1P (r1) 1P (r2) + c2P 2P (r1) 2P (r2)

8q (cq)
2 = nq 2 (0; 1)

n1; n2; : : : ; nN = 1

nN+1; : : : = 0

8

• Each geminal is of the form (APSG)

where

• Many-electron wavefunction is given as an antisymmetrized product of two-
electron functions (strongly orthogonal geminals)

In the dissociation limit

EHFtot =
R!1


sAjt̂+ r1A jsA


+
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

+
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Ecorr = E
FCI  EHF

EPBEcorr = 91%

EM062X
corr = 84%

(x1; : : : ; xN) = Â
N=2Y

P=1

P (x2P1; x2P )

APSG function is a determinant for Be

(x1; x2; x3; x4) =
1
p
2
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1(x1; x2) 1(x3; x4)

2(x1; x2) 2(x3; x4)



where

P (x1; x2) = P (x2; x1)

II. ELECTRON-ELECTRON INTERACTION FROM THE FLUCTUATION-

DISSIPATION THEOREM

Consider the electron-electron interaction given by the pair density

Eee =
1

2

Z Z
(2)(x1; x2)jr1  r2j1dx1dx2 (1)

where

(2)(x1; x2) =

̂(2)(x1; x2)


(2)

The pair-density operator can be written in terms of the density áuctuation operator

̂(x) = ̂(x) h̂(x)i

Consequently, one obtains

(2)(x1; x2) = h̂(x1)̂(x2)i+ (x1)(x2) (x1  x2)(x1) (3)
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• Geminals are strongly orthogonal
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where Â is an antisymmetrizer "including the appropriate
normalization constant# and %P is the Pth normalized gemi-

nal given by
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*"r2#()"s1#*"s2#
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with all the coefficients ,cp- being real-valued
15 "here and in

the following the upper- and lower-case subscripts are em-

ployed to index geminals and orbitals, respectively#. The
strong orthogonality requirement

#
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implies that #pp!P⇒#Q.P p"Q , i.e., the sets of orbitals

belonging to individual geminals are disjoint.16 The

electron–electron repulsion energy corresponding to the

APSG ansatz is given by the expression
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The usefulness of the APSG theory in the derivation of

approximate one-matrix functionals stems from the fact that

the one-matrix pertaining to the wave function "6# is diago-
nal in the basis of ,'p-, the occupation numbers being di-
rectly related to ,cp-,

np!2cp
2. "10#

Thus, combining Eqs. "9# and "10# and comparing the result-
ing expression with Eq. "2# produces

Apq"n#!" npnq if p and q belong to different geminals

0 otherwise
"11#

and

Bpq"n#

!" "1/2#npnq if p and q belong to different geminals

" f p f q"npnq#
1/2 otherwise,

"12#

where , f p- is a set of phase factors, each equal to "1 or 1,
chosen in such a way that Vee is minimized. The JK-only

expression for Vee with ,Apq(n)- and ,Bpq(n)- given by the
above equations (which trivially satisfy the condition "5#+
constitutes a straightforward generalization of the Kutzelnigg

functional,17 which is exact for singlet ground-state two-

electron systems. Note that due to the normalization of indi-

vidual geminals, the APSG-derived functional is defined

only for one-matrices with occupation numbers that conform

to the sum rule

#
P
&
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III. JK-ONLY FUNCTIONAL FROM AN AUGMENTED
APSG ANSATZ

Neglecting intergeminal correlation, the APSG ansatz re-

produces only a fraction of correlation energy in typical

many-electron systems.14 For this reason, several attempts

have been made at improving upon the APSG theory while

retaining its desirable property of size extensivity.18–20 Un-

fortunately, due to the presence of geminals describing the

so-called nonsymmetrical singlet states15 in the pertinent

wave functions, none of those improvements gives rise to

one-matrices that are diagonal in the basis of ,'p-.
On the other hand, consider the following augmented

ansatz
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with the real-valued coefficients ,dp- constrained by the re-
quirements that %̃P is normalized and has a vanishing over-

lap with %P . Although Eq. "15# does not constitute the most
general expression for a geminal orthogonal to %P , it assures

the diagonal character of one-matrix in the basis of ,'p-,
yielding the occupation numbers
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and the electron–electron repulsion energy
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Solving Eq. "16# for dp yields

dp!AP
"1 f p"np/2#

1/2("1"BP/p
2#1/2"A0/p+ , p!P ,
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where
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where

PP-GVB (perfect-pairing generalized valence bond)



Localization on bonds and lone pairs of geminal densities
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Ground state energy functional in the APSG model

where Ip stands for the index of a geminal which the pth orbital belongs to. 

• The spin-summed expression for the electron energy takes a simple form

I. APSG ANSATZ

In APSG the energy for a closed shell N -electron system is given by (all indices pertain

to orbitals, summations with respect to orbitals)
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The variational equations for the orbitals derived under condition that the orbitals are

orthonormal reads
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2

Coulomb and exchange intergeminal interaction

• The ground state energy is obtained upon minimization with respect to (1) the 
orbitals, (2) the coefficients cp under normalization constraint, and (3) Arai 
subspaces.
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Inter-pair correlation energy

• Inter-domain correlation between I and J domains results from coupling 
density-density fluctuations

Neglecting the inter-domain correlation e§ects the "uncorrelated" 2-electron reduced density

matrix (2-RDM) for the whole systems can be reconstructed as follows

uncorrpqrs =

8
<

:
Ipqrs

nrns(prqs  qrsp) ;

if p; q; r; s 2 I

otherwise
: (28)

If each domain 2-RDM, I , satisfy the antisymmetry conditions and the sum rule so does

the total uncorrelated 2-RDM. It is interesting to notice that after neglecting the inter-

domain correlation contribution [the last term in Eq.(27)] the energy expression becomes

equivalent to the generalized product functions method of McWeeny [ref???], which assumes

partitioning of electrons into "groups", describing each group by a separate wavefunction,

imposing strong orthogonality conditions of the group-wavefunctions, and constructing the

wavefunction of the total system as an antisymmetrized product of the group-wavefunctions.

McWeenyís method has been proposed having in mind noncovalently interacting subsystems

and the intergroup correlation e§ects are captured by applying the conÖguration interaction

(CI) expansion in the basis of the generalized product functions.

We would like to introduce the pair-wise inter-domain correlation e§ects by assuming

that they arrise due to coupling of density áuctuations of pairs of domains. In other words,

correlation of electrons belonging to two di§erent domains I; J originates from áuctuation

of density of one domain

̂I(x) = ̂I(x) I(x) ; (29)

̂I(x) =
X

p;q2I

âyqâp 'p(x)'q(x)
 (30)

[where

âyp; âp


are creation and anihilation operators in the representation of the natural

spinorbitals] coused by the áuctuating density of another domain, ̂J(x). The inter-domain

correlation energy EIJcorr should result from considering the correlation pair density


(2)
IJ (x1;x2) =

1

2
[h̂I(x1)̂J(x2)i+ h̂J(x1)̂I(x2)i] (31)

as

EIJcorr =
1

2

X

1;2

Z Z

(2)
IJ (x1;x2)

jr1  r2j
dr1dr2 : (32)

Derivation of the correlation energy in the context of strongly orthogonal geminal theory has

been already presented in details in Ref.[???]. Since derivation of the inter-domain correlation
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and

̂I(x) = ̂I(x) I(x) ; (12)

respectively, where I(x) is a diagonal part of the geminal reduced density matrix deÖned

introduced in Eq.(6), i.e.

I(x) =
X

p2I

np 'p(x)
'p(x) : (13)

DeÖne the intergeminal correlation (IGcorr) contribution to the pair density resulting from

interactions of pairs of geminals as


(2)
IGcorr(x1; x2) =

1

2

X

I;J
I>J

[h0j̂I(x1)̂J(x2)j0i+ h0j̂J(x1)̂I(x2)j0i] : (14)

Notice that the intergeminal correlation pair density has a proper symmetry to interchanging

coordinates, namely (2)IGcorr(x2; x1)
 = 

(2)
IGcorr(x1; x2). The expression for the intergeminal

correlation energy results immediately from Eqs.(8) and (14) and reads

EIGcorr =
1

4

X

I;J
I>J

Z Z
[h0j̂I(x1)̂J(x2)j0i+ h0j̂J(x1)̂I(x2)j0i]jr1 r2j1dx1dx2 : (15)

The coupled áuctuation density elements that enter the expression for EIGcorr can be ob-

tained from the linear response functions formulated within the APSG theory. From the

linear response theory a perturbed expectation value of the áuctuation density of the geminal

I at x0 perturbed by a áuctuation density of geminal J at x reads

IJ(x
0; x; !) =

X

 6=0


h0j̂I(x0)ji hj̂J(x)j0i

!  E + E0 + i

h0j̂J(x)ji hj̂I(x0)j0i

! + E  E0 + i


: (16)

By taking a sum of IJ(x0; x; i!) and JI(x; x
0; i!) and making use of the integral

R1
0
(a2 + !2)

1
d! = =(2 jaj) one obtains a áuctuation-dissipation theory expression for

geminals, namely it can be shown that


1



Z 1

0

[IJ(x
0; x; i!) + JI(x; x

0; i!)] d! = h0j̂I(x0)̂J(x)j0i+ h0j̂J(x)̂I(x0)j0i :

(17)

Therefore, the intergeminal correlation energy, Eq.(15), can be expressed in terms of the

geminal density-density response functions

EIGcorr = 
1

4

X

I;J
I>J

Z
dx1

Z
dx2

Z 1

0

d! [IJ(x1; x2; i!) + JI(x2; x1; i!)] jr1r2j1 : (18)

3
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Intergeminal correlation from the fluctuation-dissipation theorem for geminals

• It is more convenient to write the Inter-Geminal (IG) correlation in terms of the 
transition density matrix elements 

For practical purpose it may be more convenient to express EIGcorr in terms of elements of

transition density matrices T

(T)pq =

0jâyqâpj


: (19)

Empoying Eq.(11,12) in Eq.(16) and using deÖnition (19) allows one to turn Eq.(18) into

EIGcorr =
1

2

X

I;J
I>J

X

pq2I

X

rs2J

X

 6=0

(T)qp(T)

rs hprjqsi : (20)

Notice that the two-electron integrals in are written in the natural spin-orbitals f'p(x)g.

The transition density matrix elements needed for evaluation of intergeminal correlation

energy, Eq.(20), can be obtained from the APSG ground state properties by employing either

the recently introduce extended random phase approximation (ERPA) or time-dependent

APSG linear formalism [$erpa,$td-apsg]. The ERPA approach is derived from the equation

of motion of Rowe [$rowe]. The initial assumption in Roweís approach is that an excited

state ji arises upon acting with an excitation opertor Ôy upon a ground state j0i. In ERPA

such an operator includes only single excitations and the singlet operator reads

ÔyERPA =
X

p>q

(X)pq(â
y
p âq + â

y
p
âq) +

X

p>q

(Y)pq(â
y
q âp + â

y
q
âp) ; (21)

where the creation and annihilation operators, âyp and âp , respectively, act in the space

of the natural spinorbitals (in Refs.[$erpa and $td-apsg] the excitation operator ÔyERPA in-

volves also a term with diagonal single excitations
P

p(Z)p â
y
p âp but since its contribution

to excitation energies and the interelectron geminal correlation energy is negligable, for sim-

plicity it is skipped in this paper). In the Roweís theory the transition matrix elements of

a given operator ẑ follows as expectation value of a commutator of ẑ and the excitation

operator Ôy, i.e.

0jẑj


=
D
0j[ẑ; Ôy]j0

E
. Setting ẑ = âypâq and using the ERPA excitation

operator given in Eq.(21) it is straightforward to show that a sum of the transition density

matrix deÖned in Eq.(19) and its transpose, T + (T)
T is determined by elements of the

X and Y vectors and the natural occupation numbers, namely

8p>q (np  nq)[(Y)pq  (X)pq] = (T)pq + (T)qp : (22)

The ERPA equations presented in Refs.[$erpa,$td-apsg]
0

@ 0 A+

A 0

1

A

0

@
~Y

~X

1

A = !

0

@
~Y

~X

1

A ; (23)
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y
q
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a given operator ẑ follows as expectation value of a commutator of ẑ and the excitation

operator Ôy, i.e.
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Equation of motion

• By considering the Rowe’s equation of motion and the ERPA (extended 
random phase approximation) excitation operator 

D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968).
K. Chatterjee and K. Pernal, J. Chem. Phys. 137, 204109 (2012).
K. Pernal, K. Chatterjee, and P. H. Kowalski, J. Chem. Phys. 140, 014101 (2014).

where p,q pertain to the natural spinorbitals, we have obtained equations for 
excitation energies
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p âq + â
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âq) +

X

p>q

(Y)pq(â
y
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y
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plicity it is skipped in this paper). In the Roweís theory the transition matrix elements of

a given operator ẑ follows as expectation value of a commutator of ẑ and the excitation

operator Ôy, i.e.

0jẑj


=
D
0j[ẑ; Ôy]j0

E
. Setting ẑ = âypâq and using the ERPA excitation

operator given in Eq.(21) it is straightforward to show that a sum of the transition density

matrix deÖned in Eq.(19) and its transpose, T + (T)
T is determined by elements of the

X and Y vectors and the natural occupation numbers, namely

8p>q (np  nq)[(Y)pq  (X)pq] = (T)pq + (T)qp : (22)

The ERPA equations presented in Refs.[$erpa,$td-apsg]
0
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A ; (23)
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The eigenvectors are related to the transition density matrix elements

∑χ ω
δρ ν ν δρ
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δρ ν ν δρ
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E E
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i
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i
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J I

0 0
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where Eν is the energy of the excited state ν. A sum of
χIJ(x′,x,iω) and χJI(x,x′,iω) will be considered a contribution
from geminals I and J to the total response giving rise to
intergeminal correlation between I and J. It reads

∫
∫∑

π χ ω χ ω ω

π ω
ω

δρ ν ν δρ δρ ν ν δρ

δρ δρ δρ δρ

− ′ + ′

= −
+ −

× ⟨ | ̂ ′ | ⟩⟨ | ̂ | ⟩ + ⟨ | ̂ | ⟩⟨ | ̂ ′ | ⟩

= ⟨ | ̂ ′ ̂ | ⟩ + ⟨ | ̂ ̂ ′ | ⟩
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2
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d
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0 ( ) ( ) 0 0 ( ) ( ) 0

IJ JI

I J J I

I J J I

0

0 0

0
2

0
2

(17)

where the last line has been obtained by utilizing the integral
∫ 0
∞(ω2 + a2)−1 dω = π/(2|a|) and the fact that the expectation

values of the fluctuation density operators vanish, i.e., ⟨0|δρ̂I(x)|
0⟩ = 0. The latter allowed us to include in the summation a ν =
0 term and use a resolution of the identity Σv|v⟩⟨v| = 1 in the
last line. Equation 17 can be seen as a fluctuation−dissipation
theorem for geminals. The intergeminal correlation energy, eq
15, expressed in terms of the intergeminal density−density
response functions reads

∫ ∫ ∫∑π ω χ ω

χ ω

= −

+ | − |
>

∞

−

E x x x x

x x r r

1
4

d d d [ ( , ,i )

( , ,i )]

I J
I J

IJ

JI

IGcorr
,

1 2
0

1 2

2 1 1 2
1

(18)

For practical purpose it is more convenient to express EIGcorr in
terms of elements of transition density matrices Tν defined as

ν= ⟨ | ̂ ̂ | ⟩ν
†T a a( ) 0pq q p (19)

Employing eqs 11 and 12 in eq 16 and using definition 19
allows one to turn eq 18 into

∑ ∑ ∑ ∑= *⟨ | ⟩
ν

ν ν

> ∈ ∈
E T T pr qs1

2
( ) ( )

I J
I J

pq I rs J
qp rsIGcorr

,
(20)

The transition density matrix elements needed for evaluation
of intergeminal correlation energy can be obtained from the
APSG ground state properties by employing either the recently
introduced extended random phase approximation (ERPA) or
the time-dependent APSG linear response formalism (TD-
APSG).9,10 The ERPA approach is derived from the equation of
motion of Rowe.24 The initial assumption in Rowe’s theory is
that an excited state |v⟩ arises upon acting with an excitation
operator Ô† on a ground state vector |0⟩. In ERPA such an
operator includes only single-type excitations and the singlet
excitation operator reads9

∑

∑

̂ = ̂ ̂ + ̂ ̂

+ ̂ ̂ + ̂ ̂

ν

ν

†

>

† †

>

† †

α α β β

α α β β

O X a a a a

Y a a a a

( ) ( )

( ) ( )

p q
pq p q p q

p q
pq q p q p

ERPA

(21)

where the creation and annihilation operators, ap̂σ
† and a ̂pσ,

respectively, act in the space of the natural spin−orbitals [in ref
9 the excitation operator ÔERPA

† includes also a diagonal term
Σp(Zv)pap̂σ

† ap̂σ, but because its contribution to excitation energies
is negligible, it is skipped in this paper]. In Rowe’s theory the
transition matrix elements of a given operator F̂ follow as
expectation values of a commutator of F̂ and the excitation
operator Ô†, i.e., ⟨0|F̂|v⟩ = ⟨0|[F̂,Ô†]|0⟩. Notice that this relation
is exact if the deexcitation operator Ô satisfies the so-called
killer condition reading Ô|0⟩ = 0. The ERPA deexcitation
operator acting on the APSG ground state vector in general
violates the killer condition;9 nevertheless, Rowe’s relation for
the transition matrix of F̂ can be used as an approximation.
Setting F̂ = ap̂

†aq̂ and employing eq 21, it is straightforward to
show that in ERPA approximation a sum of the transition
density matrix defined in eq 19 and its transpose, Tν+(Tν)

T,
reads

∀ − − = +> n n Y X T T( )[( ) ( ) ] ( ) ( )p q p q v pq v pq v pq v qp (22)

Therefore, the ERPA equations9

ω
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where

∀ ̃ = − −ν ν ν> Y c c Y X( ) ( )[( ) ( ) ]p q pq p q pq pq (24)

∀ ̃ = + +ν ν ν> X c c Y X( ) ( )[( ) ( ) ]p q pq p q pq pq (25)

solved with the ground state reduced density matrices obtained
from the APSG approximation yield the ERPA-APSG
approximation to the transition density matrix elements
through eq 22.
In ref 10 we have formulated the linear-response equations

for the APSG functional, which for a real frequency-dependent
perturbation ŵ(r,ω) read

ω
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(26)

where

ω∀ ̃ = +≥ w c c w( ) ( )p q pq p q qp (27)

ω∀ ̃ =w c w( ) 2 ( )p p p ppD (28)

∀ =P P( ) ( )p p ppD
Im Im

(29)

and the components of the vector P are directly related to the
frequency-dependent response of the one-electron reduced
density matrix γ(ω), namely

γ ω∀ = +>
−P c c( ) ( ) ( )p q pq p q pq

Re 1 Re
(30)

γ ω∀ = −P c( ) (2 ) ( )p p p ppD
Re 1 Re

(31)

γ ω∀ = −>
−P c c( ) ( ) ( )p q pq q p pq

Im 1 Im
(32)
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(A+B) (X+Y) = ! N (Y X) (14)

(AB) (Y X) = ! N (X+Y) (15)

In the representation of spinorbitals the ERPAmatrices are deÖned as follows

8pqrs Arspq = Brsqp = (nr  ns)(prhsq  sqhpr)

+
X

tu

purt hstjjqui+
X

tu

stqu hupjjtri+
X

tu

turq hpsjtui+
X

tu

sptu htujqri

+ sq
X

twu

wurt htpjwui+ pr
X

tuw

swtu htujwqi (16)

3 General form of the JK functionals

The ee energy reads

EHFee [] =
1

2

X

pq

npnq hpqjpqi 
1

2

X

pq

npnq hpqjqpi

4 APSG ansatz

In APSG the energy for a closed shell N -electron system is given by (all indices

pertain to orbitals, summations with respect to orbitals)

EAPSG = 2
X

p

nphpp+
X

I

X

pq
Ip=Iq=I

cpcq hppjqqi+
X

I 6=J

X

pq
Ip=I;Iq=J

npnq[2 hpqjpqihpqjqpi]

where I = 1; :::; N=2 indicates the index of a geminal and

np = c2p

8I
X

p
Ip=I

c2p = 1

The energy is minimized with respect to cp under the above condition that leads
to

8I;p 2cphpp +
X

q
Iq=I

cq hppjqqi+ 2cp
X

J 6=I

X

q
Iq=J

nq[2 hpqjpqi  hpqjqpi] = Icp

8I;p 2
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p

nphpp +
X

I

X

pq
Ip=Iq=I

cpcq hppjqqi+ 2
X

I 6=J

X

pq
Ip=I;Iq=J

npnq[2 hpqjpqi  hpqjqpi] =
X

I

I

3

For practical purpose it may be more convenient to express EIGcorr in terms of elements of

transition density matrices T

(T)pq =

0jâyqâpj


: (19)

Empoying Eq.(11,12) in Eq.(16) and using deÖnition (19) allows one to turn Eq.(18) into

EIGcorr =
1

2

X

I;J
I>J

X

pq2I

X

rs2J

X

 6=0

(T)qp(T)

rs hprjqsi : (20)

Notice that the two-electron integrals in are written in the natural spin-orbitals f'p(x)g.

The transition density matrix elements needed for evaluation of intergeminal correlation

energy, Eq.(20), can be obtained from the APSG ground state properties by employing either

the recently introduce extended random phase approximation (ERPA) or time-dependent

APSG linear formalism [$erpa,$td-apsg]. The ERPA approach is derived from the equation

of motion of Rowe [$rowe]. The initial assumption in Roweís approach is that an excited

state ji arises upon acting with an excitation opertor Ôy upon a ground state j0i. In ERPA

such an operator includes only single excitations and the singlet operator reads

ÔyERPA =
X

p>q

(X)pq(â
y
p âq + â

y
p
âq) +

X

p>q

(Y)pq(â
y
q âp + â

y
q
âp) ; (21)

where the creation and annihilation operators, âyp and âp , respectively, act in the space

of the natural spinorbitals (in Refs.[$erpa and $td-apsg] the excitation operator ÔyERPA in-

volves also a term with diagonal single excitations
P

p(Z)p â
y
p âp but since its contribution

to excitation energies and the interelectron geminal correlation energy is negligable, for sim-

plicity it is skipped in this paper). In the Roweís theory the transition matrix elements of

a given operator ẑ follows as expectation value of a commutator of ẑ and the excitation

operator Ôy, i.e.

0jẑj


=
D
0j[ẑ; Ôy]j0

E
. Setting ẑ = âypâq and using the ERPA excitation

operator given in Eq.(21) it is straightforward to show that a sum of the transition density

matrix deÖned in Eq.(19) and its transpose, T + (T)
T is determined by elements of the

X and Y vectors and the natural occupation numbers, namely

8p>q (np  nq)[(Y)pq  (X)pq] = (T)pq + (T)qp : (22)

The ERPA equations presented in Refs.[$erpa,$td-apsg]
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Charge transfer

Obtained expression for the inter-pair correlation involves pairwise terms

representing interactions of transition densities from A and B electron pairs

Dispersion

AA

A*A*

BB

B* B*

Exchange-Dispersion

A

A*

B

B*

A

A*

B

B*



Many-body correlation terms in ERPA-GVB

• 1-body (intra-pair) correlation

• 2-body correlation (density fluctuations of two pairs are coupled)

• 3-body correlation (density fluctuations of three pairs are coupled)

• 4-body correlation (density fluctuations of four pairs are coupled)

where A,B,C,D stand for geminals.

K. Chatterjee, E. Pastorczak, K. Jawulski, and K. Pernal, J. Chem. Phys. 145, 244111 (2016).
K. Pernal, Phys. Chem. Chem. Phys. 18, 21111 (2016).

I. INTRO

Supermolecular calcs

Eint = E(AB) E(A) E(B)

Single determinant

(x1; :::; xN) = A
NY

i

'i(xi)

EERPAGV Bcorr =

1bodyX

A

EcorrA +

2bodyX

AB

EcorrAB +

3bodyX

ABC

EcorrABC +

4bodyX

ABCD

EcorrABCD

II. GENERALIZED PRODUCT FUNCTION

Consider a Generalized Product Function (GPF) ansatz

 =
Y

I

 ̂yI jvaci (1)

where

 ̂yI =
X

p

cIpâ
y
p1
âyp2 : : : â

y
pNI

(2)

p1; p2; : : : pNI 2 I (3)

Each group I includes NI electrons. Use a natural spinorbital f'pg representation.

An electronic Hamiltonian reads

Ĥ =
X

pq

âypâqhpq +
1

2

X

pqrs

âyrâ
y
sâqâp hrsjpqi (4)

hpq =

Z
'p(x)

 t̂+ ̂ext

'q(x)dx (5)

where ̂ext is an external potential operator and two-electron integrals are deÖned as

hpqjrsi =
Z Z

'p(x1)
'q(x2)

r112 'r(x1)'s(x2)dx1dx2 (6)

and its expectation value reads

EGPF =
X

I

*
I



NIX

i=1

ĥ(ri) +

NIX

i<j

1

rij

I

+
+
X

I>J

EIJCoulExch (7)

Etot = EGPF + EGPFcorr (8)

1

The idea of inter-pair (two-body interaction) has been generalized to include



Twisting of the CC bond in ethylene
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Dissociation curve of F2 (cc-pVDZ basis set) 
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Dissociation curve of F2 - inter-domain contributions
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Ne2 (aug-cc-pVDZ)

PP-GVB: no inter-domain correlation

ERPA-GVB (2 domains): intra- and inter-domain ERPA correlation added
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C2H4--F2 dimer (aug-cc-pVDZ)

PP-GVB: no intra and inter-domain ERPA correlation

ERPA-GVB (2 domains): intra- and inter-domain ERPA correlation added

and MG3S. The MG3S basis64 is the same as MG3 except
that it omits diffuse functions on hydrogens. MG3 is the
modified99,101 G3Large96 basis set. It is also called the
G3LargeMP299 basis set, and it is the same as 6-311++G-
(3d2f, 2df, 2p)140 for H-Si but improved95 for P-Ar.
2.9. Counterpoise Corrections. For all nonbonded com-

plexes, we perform calculations with and without the
counterpoise corrections141,142 for basis set superposition error
(BSSE).

3. Results and Discussion
3.1.W1 Results. Table 1 summarizes the 17 new W1
calculations carried out for the new databases. From this
table, it can be seen that the Hartree-Fock (HF) component
of the calculations underestimates all binding energies; the
magnitudes of CCSD correlation contributions to the binding
energies for the two hydrogen bonding dimers in Table 1
are in a range from 3 to 4 kcal/mol, and those for the seven
charge-transfer complexes are in a range from 1.9 to 6.3 kcal/
mol. The (T) correlation contributes about 1 kcal/mol to the
binding energies for the two hydrogen bonding cases and
from 0.4 to 1.9 kcal/mol for the charge-transfer cases. Note
that HF theory gives negative binding energies for the C2H4‚
‚‚F2, NH3‚‚‚F2, and C2H2‚‚‚ClF complexes, that is, the
complex is not bound at the MC-QCISD/3 geometry.
The magnitudes of CCSD correlation contributions to the

binding energies for the five dipole interaction complexes
are in a range from 1.5 to 3.6 kcal/mol, whereas the
magnitudes of the (T) correlation contributions are in a range
from 0.3 to 0.6 kcal/mol, which makes the (T) contribution
relatively less important for the dipole interaction cases than
for the previous two types. The validity of various DFT
methods might be correlated with the relative importance of
(T) contributions because the relative importance of (T)
contributions might be a rough measure of multireference
character, and some DFT methods are better than others for
multireference cases.
The magnitudes of CCSD correlation contributions to the

binding energies for the four weak interaction complexes
are in a range from 0.3 to 2 kcal/mol, and the magnitudes of
(T) correlation contributions are in a range from 0.0 to 0.4
kcal/mol, again relatively small. Note that HF theory give
negative binding energies for CH4‚‚‚Ne, (CH4)2, and (C2H4)2.
This agrees with Tsuzuki and Luthi’s theoretical study.54
They have shown that HF predicts purely repulsive inter-
molecular potentials for the (CH4)2 and (C2H4)2 dimers.
3.2. Benchmark Databases for Nonbonded Interactions.

The new databases are presented in Table 2. The magnitudes
of the binding energies are in the range 3.2 to 16.2 kcal/mol
for the HB6/04 database, 1.1 to 10.6 kcal/mol for the CT7/
04 database, 1.7 to 4.2 kcal/mol for the DI6/04 database,
and 0.04 to 1.42 kcal/mol for the WI9/04 database. The last
row gives the average binding energy for each type, but we
note that each database in Table 2 contains strong, medium,
and weak complexes for each particular kind of nonbonded
interaction. Furthermore, the CT7/04, DI6/04, and WI9/04
databases contain complexes for the first and second row
atoms. In the WI9/04 database, we have rare gas-rare gas
complexes (HeAr, NeAr, etc.), a rare gas-π interaction
complex (C6H6-Ne), an sp2-sp2 interaction complex
((C2H4)2), an sp-sp interaction complex ((C2H2)2), and a rare
gas-sp3 interaction (CH4-Ne). These diverse data for
nonbonded interactions were especially chosen to be suitable
for testing theoretical methods.
3.3. Tests of Theoretical Methods. The mean errors of

the tested methods are listed in Tables 4-8. In these tables
we tabulate the mean unsigned error (MUE, also called mean
absolute deviation) and mean signed error (MSE). We use
“no-cp” to denote calculations without the counterpoise

Figure 1. Geometries of the dimers in the HB6/04 database.

Figure 2. Geometries of the complexes in the CT7/04
database.

Figure 3. Geometries of the dimers in the DI6/04 database.

Figure 4. Geometries of the dimers in the WI9/04 database.
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Circular H6 - breakdown for non-Lewis-structure molecule
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