Dynamic correlation for strongly orthogonal geminals

Katarzyna Pernal

Instytut Fizyki
Politechnika Łódzka

Uncorrelated strongly orthogonal electron pairs approximation

- Many-electron wavefunction is given as an antisymmetrized product of twoelectron functions (strongly orthogonal geminals)

$$
\Psi\left(x_{1}, \ldots, x_{N}\right)=\hat{\mathcal{A}} \prod_{P=1}^{N / 2} \phi_{P}\left(x_{2 P-1}, x_{2 P}\right)
$$

- Each geminal is of the form (APSG)

$$
\phi_{P}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=2^{-1 / 2} \sum_{p \in P} c_{p} \psi_{p}\left(\mathbf{r}_{1}\right) \psi_{p}^{*}\left(\mathbf{r}_{2}\right)\left[\alpha\left(s_{1}\right) \beta\left(s_{2}\right)-\alpha\left(s_{2}\right) \beta\left(s_{1}\right)\right]
$$

where

$$
\forall_{q} \quad\left(c_{q}\right)^{2}=n_{q} \in(0,1)
$$

- Geminals are strongly orthogonal

$$
\underset{Q \neq P}{\forall} \underset{\mathbf{x}_{1}, \mathbf{x}_{1}^{\prime}}{\forall} \int \phi_{P}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \phi_{Q}\left(\mathbf{x}_{1}^{\prime}, \mathbf{x}_{2}\right) d \mathbf{x}_{2}=0
$$

PP-GVB (perfect-pairing generalized valence bond)

- Each geminal is of the form

$$
\forall_{P} \quad \phi_{P}^{G V B}\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=c_{1_{P}} \psi_{1_{P}}\left(\mathbf{r}_{1}\right) \psi_{1_{P}}\left(\mathbf{r}_{2}\right)+c_{2_{P}} \psi_{2_{P}}\left(\mathbf{r}_{1}\right) \psi_{2_{P}}\left(\mathbf{r}_{2}\right)
$$

where

$$
\forall_{q} \quad\left(c_{q}\right)^{2}=n_{q} \in(0,1)
$$

Localization on bonds and lone pairs of geminal densities
densities of geminals localized on $\mathrm{C}-\mathrm{H}$ bonds

densities of geminals localized on atoms

a geminal localized on bond

Ground state energy functional in the APSG model

- The spin-summed expression for the electron energy takes a simple form

Coulomb and exchange intergeminal interaction
where I_{p} stands for the index of a geminal which the p th orbital belongs to.

- The ground state energy is obtained upon minimization with respect to (1) the orbitals, (2) the coefficients c_{p} under normalization constraint, and (3) Arai subspaces.

$$
\forall_{P} \quad \sum_{p \in P} c_{p}^{2}=1
$$

Lack of pair-pair correlation results in failure in capturing dispersion interaction

Inter-pair correlation energy

- Inter-domain correlation between I and J domains results from coupling density-density fluctuations

$$
\begin{aligned}
\rho_{I J}^{(2)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)= & \frac{1}{2}\left[\left\langle\delta \hat{\rho}_{I}\left(\mathbf{x}_{1}\right) \delta \hat{\rho}_{J}\left(\mathbf{x}_{2}\right)\right\rangle+\left\langle\delta \hat{\rho}_{J}\left(\mathbf{x}_{1}\right) \delta \hat{\rho}_{I}\left(\mathbf{x}_{2}\right)\right\rangle\right] \\
& \delta \hat{\rho}_{I}(x)=\hat{\rho}_{I}(x)-\rho_{I}(x) \\
E_{\text {corr }}^{I J}= & \frac{1}{2} \sum_{\sigma_{1}, \sigma_{2}} \iint \frac{\rho_{I J}^{(2)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} d \mathbf{r}_{1} d \mathbf{r}_{2}
\end{aligned}
$$

K. Pernal, J. Chem. Theory Comput. 10, 4332 (2014).
K. Pernal, Phys. Chem. Chem. Phys., 18, 2111 (2016).

Intergeminal correlation from the fluctuation-dissipation theorem for geminals

- It is more convenient to write the Inter-Geminal (IG) correlation in terms of the transition density matrix elements

$$
\begin{gathered}
\left(T_{\nu}\right)_{p q}=\langle 0| \hat{a}_{q}^{\dagger} \hat{a}_{p}|\nu\rangle \\
E_{I G c o r r}=\frac{1}{2} \sum_{\substack{I, J \\
I>J}} \sum_{p q \in I} \sum_{r s \in J} \sum_{\nu \neq 0}\left(T_{\nu}\right)_{q p}\left(T_{\nu}\right)_{r s}^{*}\langle p r \mid q s\rangle
\end{gathered}
$$

Equation of motion

- By considering the Rowe's equation of motion and the ERPA (extended random phase approximation) excitation operator

$$
\hat{O}_{E R P A}^{\dagger}=\sum_{p>q}\left(X_{\nu}\right)_{p q}\left(\hat{a}_{p_{\alpha}}^{\dagger} \hat{a}_{q_{\alpha}}+\hat{a}_{p_{\beta}}^{\dagger} \hat{a}_{q_{\beta}}\right)+\sum_{p>q}\left(Y_{\nu}\right)_{p q}\left(\hat{a}_{q_{\alpha}}^{\dagger} \hat{a}_{p_{\alpha}}+\hat{a}_{q_{\beta}}^{\dagger} \hat{a}_{p_{\beta}}\right)
$$

where p, q pertain to the natural spinorbitals, we have obtained equations for excitation energies

$$
\begin{aligned}
(\mathbf{A}+\mathbf{B})(\mathbf{X}+\mathbf{Y}) & =\omega \mathcal{N}(\mathbf{Y}-\mathbf{X}) \\
(\mathbf{A}-\mathbf{B})(\mathbf{Y}-\mathbf{X}) & =\omega \mathcal{N}(\mathbf{X}+\mathbf{Y})
\end{aligned}
$$

The eigenvectors are related to the transition density matrix elements

$$
\begin{gathered}
\forall_{p>q}\left(n_{p}-n_{q}\right)\left[\left(Y_{v}\right)_{p q}-\left(X_{v}\right)_{p q}\right]=\left(T_{v}\right)_{p q}+\left(T_{v}\right)_{q p} \\
\left(T_{\nu}\right)_{p q}=\langle 0| \hat{a}_{q}^{\dagger} \hat{a}_{p}|\nu\rangle
\end{gathered}
$$

D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968).
K. Chatterjee and K. Pernal, J. Chem. Phys. 137, 204109 (2012).
K. Pernal, K. Chatterjee, and P. H. Kowalski, J. Chem. Phys. 140, 014101 (2014).

Obtained expression for the inter-pair correlation involves pairwise terms representing interactions of transition densities from A and B electron pairs

Charge transfer

Many-body correlation terms in ERPA-GVB

The idea of inter-pair (two-body interaction) has been generalized to include

- 1-body (intra-pair) correlation
- 2-body correlation (density fluctuations of two pairs are coupled)
- 3-body correlation (density fluctuations of three pairs are coupled)
- 4-body correlation (density fluctuations of four pairs are coupled)

$$
E_{c o r r}^{E R P A-G V B}=\sum_{A}^{1-b o d y} E_{A}^{c o r r}+\sum_{A B}^{2-b o d y} E_{A B}^{c o r r}+\sum_{A B C}^{3-b o d y} E_{A B C}^{c o r r}+\sum_{A B C D}^{4-b o d y} E_{A B C D}^{c o r r}
$$

where A, B, C, D stand for geminals.

[^0]Twisting of the CC bond in ethylene

Dissociation curve of F_{2} (cc-pVDZ basis set)

Dissociation curve of F_{2} - inter-domain contributions

$\mathrm{Ne}_{2}($ aug-cc-pVDZ)

PP-GVB: no inter-domain correlation
ERPA-GVB (2 domains): intra- and inter-domain ERPA correlation added
$\mathrm{C}_{2} \mathrm{H}_{4}--\mathrm{F}_{2}$ dimer (aug-cc-pVDZ)

PP-GVB: no intra and inter-domain ERPA correlation
ERPA-GVB (2 domains): intra- and inter-domain ERPA correlation added

Circular H_{6} - breakdown for non-Lewis-structure molecule

[^0]: K. Chatterjee, E. Pastorczak, K. Jawulski, and K. Pernal, J. Chem. Phys. 145, 244111 (2016).
 K. Pernal, Phys. Chem. Chem. Phys. 18, 21111 (2016).

