RPA and CC theory & some recent
results including range separation
Gustavo E. Scuseria
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Outline

* The connection between RPA and coupled
cluster (CC) theory

* Range-separation: a powerful tool for mixing
wavefunction and density functional theories

+ Some recent results for RPA ground-state
correlations

- A model for based on HFB



Coupled Cluster (CC) Theory

Arguably the most successful quantum chemistry theory

Borrowed from nuclear physics (Coester-Kimmel) in the 60s
by Cizek & Paldus

Single-reference version can treat metals but not strongly-
correlated systems (requires multi-reference [MR] )

MRCC theory has “issues” and has never taken off...

Size extensivity (CC) is more important than variational
energy bound (CT). This was settled in mid to late 80s and
changed the QC paradigm

Of course, 2" and Iar'grer' revolution in QC was DFT in early
90s (hybrid functionals)



Coupled Cluster (CC) Theory

‘LV >z el l@ >  Exponential (as opposed to Linear) T ansatz
T= Tl + TZ + T3 + ... Electronic structure: T, dominates!

In simplest form, CCD:
T,=21,%afa'a a,

CCD equations:
E=<&|eT He" | &>

0=«<® TZ T e’ | &> = quadratic algebraic eqnin T,

linear eqn in T,
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RPA problem for A B XY (XY (1)
excitations is: -B -AJ\Y Y
RPA ground-state
correlation energy: RPA 1
difference in ZPVE between ¢ = 3w =4A) 2)
two harmonic oscillators
(1) is ma’rhema’ncally B+AT+TA +TBT =0, (3)
equivalent to a
ring CCD equation
Energies are ErCCP — LTy(BT) = LTr(w - A). (4)

mathematically identical
with CC amplitudes T=YX", (13a)



RPA for ground-state correlations

* Q-Chem perspective from the late 70s &
early 80s:

- Plagued by triplet instability problem
- When no instabilities are present (~Re),
E. is off by a factor 2

- Ouch! Not good

* Green's function & DFT perspective:

- Forget about exchange, just keep only the
“direct” (Coulomb) part of the interaction!

* Perdew & Langreth (80s): long-range RPA
correlation energy is ok, short-range is bad



A hierarchy of DFT approximations

The quest for accurate exchange-correlation potentials

+ LSDA : functional of electron density

* 6GA: adds gradient of electron density

* meta-GGA: adds kinetic energy density

* hybrids: add nonlocal HF -type exchange
(6eneralized Kohn-Sham scheme)

» This talk: range-separated hybrids
+ long-range RPA correlation
+ strong static correlation via "HFB"



Hybrid Functional example

- PBE : Perdew, Burke, Ernzerhof, PRL (1996)

- GGA (depends on e-density + gradient e-density)
- No empirical parameters

* PBEh : add HF -type exchange
E(PBEh) = a E (HF) + (1-a) E (PBE) + E_(PBE)

a = 0.25 based on good theory
Uses nonlocal HF-type potential
(Generalized Kohn-Sham scheme)

Perdew, Ernzerhof & Burke (1997); Ernzerhof & Scuseria (1999);
Adamo & Barone (1999)



Range-separation

-erf(@ ny) | erf (0 1)

1
20 "o 2P

short-range long-range

W determines the splitting between short- and long-range

Andreas Savin (1985) proposed to use
-  DFT for short-range
- Wavefunction theory for long-range

Keep the best of both worlds:
SR - local LR = nonlocal

Rigorous mathematical support (ask Andreas! )



LC-wPBE : a long-range hybrid

Vydrov & Scuseria, JCP 125, 234109 (2006)

E(Lc-wPBE) = E_(wPeE,sR) + E (wHF LR) + E_(PBE)

100% PBE exchange in SR
100% HF exchange in LR

Only one parameter: w

w=0.40 (fitted)

No range-separation for correlation
(we will add RPA ground state correlation later)




LC-wPBE: Mean Absolute Errors

(Molecules)

mH kcal/mol kcal/mol

Excellent HTBH38 activation barriers
and 62 heats of formation

Vydrov & Scuseria, JCP 125, 234109 (2006)



One missing ingredient:

van der Waals

important for biological applications



RPA as ring-CCD for correlation

» Using the CC connection we can
range-separate DFT+ RPA like
DFT + WF (wavefunction method)

- Ansatz:
E. = E (SR-DFT) + E (LR-HF) + E(LR-RPA)

+ Alternative approach: Toulouse et al. (PRL 2009)
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Aia.jb = (€g = €;)0i;0qp + (iblaj), (7a)

Bia, b = (ij|ab). (7b)

"Single-bar" integrals define direct RPA (dRPA)
No instability issues!

Two-electron integrals

are positive definite (iblaj) = (ijlab) = ujzuj, (18a)

In direct ring-CCD

—tj = 6287 18b
T are negative definite 1 (18b)

RPA correlation can be evaluated very efficiently:

1A A A
t?’j!‘": ﬁfﬂ,b (umu;,-b umukr&kca gma ril-‘I'.‘;-:' jh+€m€.ﬁ:cuﬁ:cutd&ld8 ) (19)

7




Why not MP2 ?

+ MP2 = 2" order perturbation theory
= 1s* term of RPA equations

- Problems:

- MP2 cannot treat metals (diverges)
- RPA remains finite for metals
- MP2 is OK for van der waals (but not as good as RPA)

- RPA resolves the conundrum”™ of molecules

versus solids
- Molecules: LR-HFx is good; LR-RPA adds vdw
- Small band gap solids: LR-HFx is pathological
LR-RPA fixes it
(HSE neglects both LR-HF and LR-RPA)



Some RPA results

» Adding range-separated RPA correlation
to LC-wPBE... not ready yet...

* No range-separated PBE correlation
(coming soon)

+ Instead, use LC-wLDA
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Approximation tested is based on LSDA

Ex[: — EE'::E{—LSDI‘; _I_ E;];_;R—HF + CHPAESR_RPPL- (6)

LC-wLDA + dRPA

SR-LDA correlation from Gori-Giorgi et al.

dRPA orbitals from LC-wLDA

Two parameters: w and Cy,

Two models tested:
1. For C,, = 1.00 2> w (opt) = 0.70

2. Both optimized: w = 1.20, Cy, = 1.50




LC-wLDA + dRPA model chemistry

Mean Absolute Errors (kcal/mol)

I ) )l

LC-wPBE

LC-wLDA

LC-wLDA + dRPA
LC-wLDA + C dRPA

C=1.5 6-311+6(2d,2p)

Janesko, Henderson, Scuseria, JCP 130, 081105 (2009)



Interaction Energy (mH)
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Interaction Energy (mH)
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Interaction Energy (mH)
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LC-wLDA + dRPA

"Biological” noncovalent interactions
Mean Absolute Errors (kcal/mol)

MP2 0.44]1 029 ] 0.06 | 0.05
CCSD(T) 0.38]1 0471 0.29 | 0.05
LC-wLDA + dRPA ]10.33]| 141 | 0.72 | 0.24

N U o

HB: Hydrogen Bonds
w=1.2 C=1.5 CT: Charge Transfer Complexes
aug-cc-pVTZ basis DI: Dipole-Dipole Complexes
WI: Weak Interactions

CCSD(T)/CBS, MARE=0
Janesko, Henderson, Scuseria, JCP (2009)



Why C=1.5 ? (for w=12)

Correction for:
1. Basis set effects?
1. Beyond-RPA correlation?
1. Orbitals?
1. Large w?

Answer:
3 and 4

The role of the reference state in long-range RPA,
B. 6. Janesko and G. E. Scuseria, J. Chem. Phys. 131, 154106 (2009)



A short story about RPA

Scuseria, Henderson, and Sorensen,
JCP 129, 231101 (2008)

(ij]ab) + (¢ — ek )oacditi, + (iclak)ty)
“direct ring-CCD” + tig (gc — e1)Opedjn + tfﬂg’-{iduk}

+ ¢ (Kl|cd)t]? =

1l

B+ AT+ TA+TBT =0 “Rjccati Equation”



A short story about dRPA

direct RPA correlation energy:

1
Ecorr = — Z{zﬂab} 9 = 5 Tr(BT)
ijab
byrpa = exp(T2) |WHF(PBE}}

=(1+To4 §T§ 4 .. [wiF(PBE),



Definition of SOSEX

(David Freeman, Phys Rev 1977)

1 . .
Ecorr = 7 3 ((ilab) — (ijlba)) ¢
ijab

1
— ETI’(BasT)a with  Bas = (ij||ab)

Exchange term corrects for all self-interaction terms
<iilaa>,i.e.i=jand a=b.
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Last few bullets on RPA

* Long-range HF + dRPA looks very promising
combined with short-range semilocal xc DFT

- Molecules: RPA is better than MP2 but not as

accurate as CCSD(T)

- Solids: neither MP2 nor (T) are useful for small band

gap systems

+ Cost of dRPA correlation with ring-CCD is between
O(N3)>O(N3) and asymptotically O(N)

- Better (self-consistent) orbitals are crucial for

ground-state RPA correlation



One important additional
ingredient

Strong/static correlation



Static/Strong Correlation

New Method Desideratum:

1. Should preserve space and spin symmetries
(avoid spatial symmetry breaking and spin
contamination)

2. Should have low-computational cost (mean-
field instead of CASSCF exponential blowup)

3. Should cleanly separate static & dynamic
correlation



How do we accomplish this?

Break a different (new!) symmetry in mean-field:
electron number conservation

Introduce electron number fluctuations

The theory that accomplishes this is BCS (HFB) but for
Coulombic Fermionic systems, HFB always reduces to HF
(Lieb 1994)

We introduce an attractive pairing interaction (-1/r,,)
in a “hybrid" HFB scheme with HF (2/r,,)

Is mean-field (roughly same computational cost as KS or HF)

Is "exact” at dissociation (Z ROHF atomic energies)



Our CPMFT model

Yields a "definition’ for static correlation from the 2pdm ansatz
Reduces to HF in the of strong correlation
Yields correct symmetry-adapted orbitals

BCS-type (HFB) wavefunction w/ determinants of different N,
Has correct number of electrons on average <N> = N,

Has correct number of correlated electron pairs
Recent papers:

I. J. Chem. Phys. 131, 121102 (2009)

Il J. Chem. Phys. 131, 164119 (2009)

. J. Chem. Phys. 132, 024111(2010)



Constrained-Pairing Mean-Field Theory

We constrain pairings to the entangled region of the orbital space:

_— mtualz No electrons. HF-like orbitals.
V \

Active: HFB orbitals with the attractive

0o OO

A n n + pairing interaction.
=G SO Bogoliubov transformation.
C Core: Fully occupied HF-like orbitals.
-o0—o-
core active

Wopmrr) = | [ alaals |1 (ﬂfz + yéa;ra@;rg) |—)
C )
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Dynamical Correlation

CPMFT orbitals and density are symmetry-
adapted

How do we add dynamical correlation only?

Answer: use "alternative” densities derived
from the CPMFT 2pdm ansatz

Use total and on-top densities as fundamental
variables

Feed alternative densities into reqular DFT
correlation subroutines



Alternative Densities

We define alternative densities () from total (p) and on-top (I') densities:

Xa(r) = 5 (plr) + V/72() 27 ()

xp(r) = ;( — V2 (r) — 2T ( ))

where Xa(r) +xs(r) = p(r) and ['(r) = 2p4(r)ps(r) — (h‘,ig(l‘) + ﬁ:%a(r))

Exémple: H, molecule
(1) AtR,, Xa(r) =xs(r) = pa(r) = ps(r) (RKS density)
(2) At dissociation, Xa(r) = p(r) 5pg Xp(r) =0 (UKS-like density)

We change variables of E_:
EXC[pO:;pB} v ] — EXC[XCH XB? o ]

T.Tsuchimochi, G.E.Scuseria, and A.Savin, JCP (2010)
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