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Random Phase Approximation from the Nuclear
Physics Point of View

The nucleus is a SELFBOUND system of FOUR different fermions:

neutrons, spin up/down—-protons, spin up/down

Ground state: HARTREE-FOCK
Mean-Field

relativistic and non-relativistic

Excited states: QUADRUPOLE DEFORMATIONS, BREATHING
(COMPRESSION) MODE, etc. →

TIME DEPENDENT HF



i
d
dt

ρ̂ = [hHF , ρ̂]

Small amplitude...........Linear response →

ρ̂ = ρ̂0 + δρ

This leads to standard RPA eqs:

[Ων − (εk − εk ′)]δρk ,k ′ = (n0
k ′ − n0

k )
∑

l,l′

vk ,l′;k ′lδρl,l′

δρph ≡ Xph δρhp ≡ Yph

-
hHF from ENERGY DENSITY FUNCTIONAL (EFFECTIVE FORCES)
(about 12 adjustable parameters). Microscopic nucleon- nucleon
force unknown !!



Energy Density Functional:

ε(ρ, τ,∇ρ, τρ, ...)

ρ(r) =
∑

i

φ(r)φ∗(r) τ(r) =
∑

i

∇φ(r)∇φ∗(r)

minimisation with respect toφ’s →
HF eqs

hHF [φk ]φi (r) = εiφi(r)



Vibrations around HF minimum (RPA):
(

A B
B∗ A∗

)(

Xν

Y ν

)

= Eν

(

Xν

−Y ν

)

with Aph;p′h′ =
δ2ε

δρphδρp′h′

andBph;p′h′ =
δ2ε

δρphδρh′p′

GROUND STATE ENERGY:

E0 = EHF +
∑

ν

∑

ph

Eν |Y ν
ph|2

- (Applications by other speakers)



Some appreciated properties of RPA

HF: always some symmetries are broken!
-
1) Translational Invariance
2) Rotational Invariance
3) Particle Number (BCS)
etc.
-
HF-RPA: Goldstone mode atEν = 0 (Spurious mode)
Translation: P2

2Am = E total
kin

-
Conservation laws, Ward Identitiesfullfilled! !
Sum rule, etc.
Very well estabished scheme in nuclear physics!



EXTENSIONS OF RPA THEORY.

-
SELFCONSISTENT-RPA
-
also
renormalised RPA
-
standard RPA→ Quasi boson approximation→
-
First: ideal bosons→



Hartree-Fock Bogoliubov theory for bosons
The Bogoliubovunitarytransformation for bosons is

q†
ν =

∑

α

[

Uναb†
α − Vναbα

]

↔ [ b†
α =

∑

ν

[Uανq†
ν + Vανqν ] .

where the coefficientsU andV are determined by minimisation of

eν =
〈0|[qν , [H, q†

ν ]]|0〉
〈0|[qν , q†

ν ]|0〉
; H =

∑

tb†b +
∑

vb†b†bb

|0〉 ≡ |HFB〉 qν |HFB〉 = 0

The minimisation leads to the following set of equations
(

h[U, V ] ∆[U, V ]
∆∗[U, V ] h∗[U, V ]

)(

U
V

)

= E
(

U
−V

)

,

with

h[U, V ] = 〈0|[b, [H, b†]]|0〉 ; ∆[U, V ] = g〈0|bb|0〉 = gUV . (1)



SCRPA for particle-hole excitations

RPA excitation operator in the particle-hole channel is

Q†
ν =

∑

ph

[

Xν
phA†

ph − Y ν
phAph

]

,

A†
ph = cph

∑

ν

[Xν
phQ†

ν + Y ν
phQν ]

A†

ph = a†
pah

where a†, a are fermion creation/destruction operators.
-
It is like Bogoliubov unitary transformation for ph pairs!
-
The operator should have the properties

Q†
ν |RPA〉 = |ν〉 , Qν |RPA〉 = 0 .



In order to determine the amplitudes X , Y of (10) we define a
generalised sum rule

Ων =
〈0|[Qν , [H, Q†

ν ]]|0〉
〈0|[Qν , Q†

ν ]|0〉
.

which we minimise with respect to X , Y .
This leads to the RPA-type of equations of the form

(

Ak1k2k ′

1k ′

2
Bk1k2k ′

1k ′

2

B∗
k1k2k ′

1k ′

2
A∗

k1k2k ′

1k ′

2

)(

Xν
k ′

1k ′

2

Y ν
k ′

1k ′

2

)

= Ων

(

Xν
k1k2

−Y ν
k1k2

)

,

where
Ak1k2k ′

1k ′

2
= 〈0|

[

δQk1k2

[

H, δQ†

k ′

1k ′

2

]]

|0〉 ,

and
Bk1k2k ′

1k ′

2
= −〈0|

[

δQ†

k1k2

[

H, δQ†

k ′

1k ′

2

]]

|0〉 .



where

δQ†

k1k2
=

Ak1k2√
nk2 − nk1

, Ak1k2 = a†

k1
ak2 ,

are the normalised pair creation operators and

nk = 〈0|a†

k ak |0〉 ,

are the single particle occupation numbers
The Bogoliubov orthonormality relations allow us to invertthe operator (14)

A†

k1k2√
nk2 − nk1

=
∑

ν

(

Xν∗
k1k2

Q†
ν + Y ν∗

k1k2
Qν

)

.

The double commutators inA,B contain the occupation numbers andnk

〈A†A〉 or 〈AA〉. The latter can be expressed byX , Y amplitudes via killing
relationQ|RPA〉 = 0.

〈A†A〉 = F [X , Y ] 〈AA〉 = G[X , Y ]



Occupation numbers can be expanded

a†

k ak = [A†A + c2A†A†AA + ....]k

With inversion and killing condition, we get

nk = nk [X , Y ]

and thus
(

A[X , Y ] B[X , Y ]
B∗[X , Y ] A∗[X , Y ]

)(

X
Y

)

= E
(

X
−Y

)

Leads to a fullySelf-consistent scheme, very similar to HFB eqs for bosons.
Linearising withX → 1, Y → 0 in matrix→ standard RPA.



Determination ofoptimal single particle basis
Minimisation of ground state energy with respect to s.p. basis→

〈[H, Q†]〉 = 〈[H, a†

k ak ′ ]〉 = Ψ[X , Y ; φ] = 0

Very natural result, since just another Equation of Motion!Again onlynk

and〈AA〉 enter and, thus, s.p. basis gets coupled toX , Y amplitudes,
selfconsistently.



SOME RESULTS: Hubbard model; periodic linear chain, six sites,

half- filling
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M. Jemai et al., PRB 71(2005)085115
-
Two site case: EXACT SOLUTION !



DISCUSSION

-
PROBLEM: Has killing conditionQ|RPA >= 0 a solution? (Linderberg-
Oehrn, Toyoda, ..)
Otherwise:Approximate decoupling scheme
Pleasent properties of RPA remain fullfilled: Goldstone mode appears→
Delion
This is a very strong property!! Difficult to obtain with other approaches.
Sum rules satisfied!
Can be formulated with Green’s functions and at finite temperature. (talk by
Dinh Dang; A. Storozhenko et al,. Annals Phys. 307(2003)308
An approximation to SCRPA→ renormalised RPA:
In standard RPA one only replaces

n0
k → nk = nk [X , Y ]

Yields often appreciable improvement over standard RPA; much easier than
SCRPA. (F. Catara et al., PLB 306(1993)197; PRB 51(1995)4569)





Further considerations on ’killing’ condition
For simplicity, we consider two levelLipkin model ———- 1
-

———- 0

H = εJ0 −
V
2

(J+J+ + J−J−)

with

J0 =
1
2

∑

m

(c†
1mc1m − c†

0mc0m) J+ =
∑

m

c†
1mc0m J− = (J+)†

We try exponential with two body operator:

|z〉 = ezJ+J+ |HF〉 (similar to exp[S] or coupled cluster ansatz) .

Using following operator and withz = 1
N

Y
X

Q† = XJ+ − Y J− +
2
N

Y J−J0 we have→ Q|RPA〉 = 0!!



Problem with inversion, since nonlinear transformation. But
ǫ = 2

N Y = small !
Can be treated perturbatively.
Scheme can be and has been worked out for general many body
problem.
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SECOND RPA; double Goldstone modes
Second RPA attempts to include 2p-2h configurations. We again can
start from Equation of Motion method

Q† =
∑

k1k2

Xk1k2c
†

k1
ck2 +

1
4

∑

k1k2k3k4

Xk1k2k3k4c
†

k1
c†

k1
ck3ck4

and minimise double commutator

Ων = 〈0|[Qν , [H, Q†
ν ]]|0〉/〈0|[Qν , Q†

ν ]|0〉 .

Evaluating expectation values with HF ground state leads to:

(ωµ − ε1 − ε2 + ε3 + ε4)X
µ
1234 =

∑

1′2′

(1 − n0
1 − n0

2)v12,1′2′Xµ
1′2′34

−
∑

3′4′

(1 − n0
3 − n0

4)v34,3′4′Xµ
123′4′

−
∑

1′3′

(n0
3 − n0

1)v13′,31′Xµ
1′23′4

+
∑

2′4′

(n0
4 − n0

2)v24′,42′Xµ
12′34′



We see that there are two types of phase space (Pauli blocking)
factors:

1 − n0
1 − n0

2 = (1 − n0
1)(1 − n0

2) − n0
1n0

2

n0
2 − n0

1 = (1 − n0
1)n

0
2 − (1 − n0

2)n
0
1

The first ones are in front of particle-particle matrix elelements and
the second ones in front of particle-hole ones.
One also sees that to obtain these eqs one only has to augment the
TDA Pauli factors by the second terms, ie replace TDA Pauli factors
by RPA Pauli factors.
These generalised Second RPA eqs give raise to 9 different
amplitudes X1234 with all possible types of indices, i.e. 1234 → pppp,
ppph, pphh, phhh, hhhh, hhpp, hppp, hhhp, hphp
-
M. Tohyama, P. Sch., EPJA19(2004)203



Standard HF-RPA obeys the Goldstone theorem for one body
symmetry operator

Q† = Ŝ =
∑

kk ′

skk ′a†

k ′ak

But what about in second RPA with

Q† = ŜŜ ?

It can be shown that one needs ALL types of two body amplitudes so
that double Goldstone mode appears at zero energy !



Self Consistent RPA
for p-p and h-h excitations

The starting point is the definition of the so-called two particle
addition operator

Q†
ρ =

1
2

∑

p1p2

Xρ
p1p2

a†
p1

a†
p2
− 1

2

∑

h1h2

Y ρ
h1h2

a†

h1
a†

h2
, (2)

where p, h again refer to the particle and hole states corresponding to
an optimal single particle basis yet to be defined. The Xρ, Y ρ

amplitudes can, as before, be determined from the minimisation of
the generalised sum rule

Ωρ =
〈0|[Qρ, [H, Q†

ρ]]|0〉
〈|[Qρ, Q†

ρ]〉
, (3)

which leads to
(

A B
−B −C

)(

Xρ

Y ρ

)

= Ωρ

(

Xρ

Y ρ

)

, (4)

with



CONCLUSIONS

Equation of Motion Method probably not exploited enough for Many
body problems with D > 1
Equations are of Schroedinger type and numerically accessible.
Very difficult to implement conservation laws and Ward identities
otherwise, e.g. with Φ- derivable functional a la Kadanoff and Baym.
There are unsolved problems but eventually can be overcome.
-
COLLABORATORS:
Jorge Dukelsky, Doru Delion, Mitsuru Tohyama, Mohsen Jemai,



The vacuum to the corresponding destruction operator is determined
by

Q†
ν |0〉 = |ν〉, (6)

with

Qν|0〉 = 0 . (7)

Given that |0〉 and |ν〉 are, respectively, exact ground state and
excited states of the many body Hamiltonian, i.e.

H|ν〉 = Eν |ν〉
H|0〉 = E0|0〉 ,

(8)

one can write down such an excitation operator.
With 〈ν|0〉 = 0 the solution to (6) and (7) is

Q†
ν = |ν〉〈0| . (9)



With the help of the Schrödinger equation we then obtain

[H, Q†
ν ]|0〉 = ΩνQ†

ν |0〉 , (10)

with Qν = Eν − E0 the excitation energy.
Multiplying from the left with an arbitrary variation of the form 〈0|δQ
we obtain

〈0|[δQ, [H, Q†
ν ]]|0〉 = Ων〈0|[δQ, Q†

ν ]|0〉 . (11)

The variation δQ†|0〉 exhausting the complete Hilbert space, (11) is
equivalent to minimise the mean excitation energy given by

Ων =
〈0|[Qν , [H, Q†

ν ]]|0〉
〈0|[Qν , Q†

ν ]|0〉
. (12)

With the exact operator (9), (12) is equal to exact excitation energy of
the state |ν〉, i.e. Ων = Eν − E0.



Self Consistent RPA for p-h excitations

An obvious but important observation is that the creation operator (6)
is non hermitian and that it is an N-body operator.
It is therefore a natural idea to develop this operator in a series of
one, two, ..., N-body operators as follows

Q†
ν =

∑

k1k2

χν
k1k2

a†
k1

ak2

+
∑

k1k2k3k4

χν
k1k2k3k4

a†

k1
a†

k2
ak3ak4 + ... .

(13)

For the moment we only want to consider the one body part of (13)
and only later we will also discuss the two body part.



The one body part only has non hermitian pieces if we choose the
amplitudes
χν

k1k2
≡ X̃ν

k1k2
with k1 > k2

χν
k1k2

≡ −Ỹ ν
k1k2

with k1 < k2 and all Xν
kk ≡ 0.

We then write for the one body part of (13)

Q†
ν =

∑

k1>k2

[

X̃ν
k1k2

a†
k1

ak2 − Ỹ ν
k1k2

a†
k2

ak1

]

. (14)

It is very important to write down the operator Q†
ν of (14) in a single

particle basis which is optimal.
As usual we will choose the one which minimises the ground state
energy.



This single particle basis will be given by a generalised single particle
mean field Hamiltonian and we will divide the space into occupied
levels (h: holes) and unoccupied levels (p: particles).
Let us consider 4 levels with the Fermi energy in the middle. We then
order the states according to this energy p4 > p3 > h2 > h1.
We thus have six Xν amplitudes:
Xν

p4p3
, Xν

h2h1
, Xν

p4h2
, Xν

p4h1
, Xν

p3h2
, Xν

p3h1
.

and coresponding six Y ν amplitudes.
This leads to an excited state |ν〉 = Q†

ν |0〉 which is not normalised, i.e.
〈ν|ν〉 = 〈0|[Qν , Q†

ν]|0〉 6= 1.



We therefore introduced slightly modified amplitudes and write

Q†
ν =

∑

k1>k2

(

Xν
k1k2

δQ†

k1k2
− Y ν

k1k2
δQk1k2

)

, (15)

where

δQ†
k1k2

=
Ak1k2√

nk2 − nk1

, Ak1k2 = a†
k1

ak2 , (16)

are the normalised pair creation operators and

nk = 〈0|a†

k ak |0〉 , (17)

are the single particle occupation numbers. With this choice one
imediately verifies that with

∑

k1>k2

(

∣

∣Xν
k1k2

∣

∣

2 −
∣

∣Y ν
k1k2

∣

∣

2
)

= 1 , (18)



The excited states |ν〉 are normalised under the assumption that the
single particle density matrix only has diagonal elements that is

ρkk ′ = 〈0|a†

k ak ′ |0〉 = nkδkk ′ , (19)

a fact which will become clear in a moment. With this we finally can
write for Eq. (11)

(

Ak1k2k ′

1k ′

2
Bk1k2k ′

1k ′

2

−B∗
k1k2k ′

1k ′

2
−A∗

k1k2k ′

1k ′

2

)(

Xν
k ′

1k ′

2

Y ν
k ′

1k ′

2

)

= Ων

(

Xν
k1k2

Y ν
k1k2

)

, (20)

where

Ak1k2k ′

1k ′

2
= 〈0|

[

δQk1k2

[

H, δQ†

k ′

1k ′

2

]]

|0〉 , (21)

and

Bk1k2k ′

1k ′

2
= −〈0|

[

δQ†
k1k2

[

H, δQ†

k ′

1k ′

2

]]

|0〉 . (22)

We realise that (20) has exactly the same mathematical structure as
the standard RPA equations. Therefore in this respect all standard
RPA properties are preserved.



It is useful to introduce the matrices

X =

(

X Y ∗

Y X∗

)

, N =

(

1 0
0 −1

)

. (23)

Equation (20) can then be written as

SX = NXΩ , (24)

where

S =

(

A B
B∗ A∗

)

, (25)

and the diagonal matrix Ω contain the eigenvalues
(

Ων

−Ων

)

, (26)

if S is positive defined.
Simple matrix algebra shows that

[

Ω,X †NX
]

= (NXΩ)
†X − X † (NXΩ)

= X †
(

S† − S
)

X = 0 ,

(27)

that is, Ω commutes with X †NX , and thus X †NX is diagonal
together with Ω.



The normalisation (18) corresponds to the more general orthogonality
relations

X †NX = N . (28)

This closure condition is obtained by multiplying (28) with N , which
shows that NXN is the inverse of X †, or

XNX † = N , (29)

which gives explicitely

∑

ν

(

Xν
k1k2

Xν∗
k ′

1k ′

2
− Y ν∗

k1k2
Y ν

k ′

1k ′

2

)

= δk1k ′

1
δk2k ′

2
. (30)

These orthonormality relations allow us to invert the operator (15)

a†
k1

ak2 =
√

nk2 − nk1

∑

ν

(

Xν∗
k1k2

Q†
ν + Y ν∗

k1k2
Qν

)

. (31)

With (7) it then follows that the density matrix 〈0|a†

k ak ′ |0〉 only has
diagonal elements, as postulated earlier.



Hartree-Fock basis

The equations (20) are, however, much more general and it is
obvious that, if the expectation values in (20) are evaluated with the
RPA ground state |RPA〉 defined in (7), then the matrices A and B will
depend in a complicated nonlinear way on the amplitudes X and Y .
This we will call the Self-Consistent RPA (SCRPA).
If, istead of closing the EMM from the left with a variation, we project
from the left with the ground state, we obtain with (7) obviously the
most important equation

〈0|[H, Q†
ν ]|0〉 = 〈0|[H, Qν ]|0〉 = 0 . (32)

Because there are as many operators Q†
ν , Qν as there are

components a†
k1

ak2 , a†
k2

ak1 we also can write for (32)

〈0|[H, a†

k1
ak2 ]|0〉 = 〈0|[H, a†

k2
ak1 ]|0〉 = 0 , (33)

where we again recall our convention k1 > k2.



With the RPA ground state the single particle basis becomes coupled
to the two body RPA correlations as follows

∑

m′

Hmm′Cm′α = ǫαnαCmα , (34)

where Cmα are the transformation coefficients defining the HF basis.
We also introduced as short-hand notation

Hmm′ ≡ nm

∑

µ

ǫµCmµCm′µ

+
1
2

∑

jkl

∑

µβγδ

[〈mjkl〉vαβγδ + 〈jmkl〉vβαγδ

+ 〈kjml〉vγβαδ + 〈ljkm〉vδβγα]Cm′µCjβCkγClδ ,

(35)

where 〈ijkl〉 ≡ 〈a†

i aja
†

k al〉 are the two body densities which together
with occupation numbers nm depend on the RPA amplitudes.



Ground state
There exists, however, another rather direct way to close the system
of equations. This implies an approximate solution of (7) (remember
that (7) only can be solved exactly in very simplified model cases).
One namely can show that the following form of the ground state

|0〉 ∼ |HF 〉 +
1
4

∑

p1p2h1h2

zp1p2h1h2 a†
p1

a†
p2

ah2ah1 |HF 〉 ,

(36)

with

zp1p2h1h2 = −zp2p1h1h2 = −zp1p2h2h1 = zp2p1h2h2 (37)

and

zp1p2h1h2 =
∑

ν

Y ν
p1h1

(X−1)ν
p2h2

, (38)

is the solution of 7) under the condition that higher 2p − 2h excitations
are neglected and the Q† operators are restricted to ph
configurations.
Using this ground state, all expectation values can be calculated as
functions of X , Y and therefore the SCRPA equations are closed.



Self Consistent RPA
for p-p and h-h excitations

The starting point is the definition of the so-called two particle
addition operator

A†
ρ =

1
2

∑

p1p2

Xρ
p1p2

a†
p1

a†
p2
− 1

2

∑

h1h2

Y ρ
h1h2

a†

h1
a†

h2
, (39)

where p, h again refer to the particle and hole states corresponding to
an optimal single particle basis yet to be defined. The Xρ, Y ρ

amplitudes can, as before, be determined from the minimisation of
the generalised sum rule

Ωρ =
〈0|[Aρ, [H, A†

ρ]]|0〉
〈|[Aρ, A†

ρ]〉
, (40)

which leads to
(

A B
−B −C

)(

Xρ

Y ρ

)

= Ωρ

(

Xρ

Y ρ

)

, (41)

with



and

δP†
p1p2

=
a†

p1
a†

p2
√

1 − np1 − np2

δP†
h1h2

=
a†

h1
a†

h2
√

1 − nh1 − nh2

. (43)

The eigenvalues correspond to those where one adds or removes
two particels from the original ground state |0〉 with N particles. We
again have to assume that the ground state is the vacuum to the
addition operators, i.e. Aρ = 0. Also the Xρ, Yρ amplitudes have the
orthonormality and completness relations of standard p-RPA. We can
define the removal operators

R†
α =

1
2

∑

h1h2

Xα
h1h2

ah2 ah1 −
1
2

∑

p1p2

Y α
p1p2

ap2 ap1 . (44)

Again amplitudes can be determined from minimising a
corresponding sum rule. The resulting RPA equations have a similar
structure with (41) and (42). Actually the content of RPA equations for
removal is the same as the one for addition. Only the amplitudes
Xα, Y α and Xρ, Y ρ have subtle relations involving interchange of
p ↔ h indices and relative phases.


