ISOCYANIDES IN CHEMISTRY Application of VB to RNC XMVB 2.0 Conclusion

A VALENCE BOND STUDY OF ISOCYANIDES' ELECTRONIC STRUCTURE

Romain Ramozzi

Benoît Braïda, Nicolas Chéron, Philippe Hiberty, Paul Fleurat-Lessard

VB Workshop - July 2012

ISOCYANIDES IN CHEMISTRY APPLICATION OF VB TO RNC

XMVB 2.0 Conclusion PRESENTATION ISOCYANIDES' REACTIVITY STUDIES OF THE -NC BOND

Plan

1 Isocyanides in chemistry

- Presentation
- Isocyanides' reactivity
- Representing isocyanides
- Studies of the -NC bond

2 Application of VB to RNC

- Mesomeric forms
- Methodology
- Effect of the substituent
- Importance of structures
- Isocyanides' nucleophilicity
- 3 XMVB 2.0
- 4 CONCLUSION

PRESENTATION ISOCYANIDES' REACTIVITY STUDIES OF THE -NC BOND

FIRST ISOCYANIDES SYNTHESIS BY LIEKE (1859)

I + AgCN ----- NC + AgI

- Lieke synthesis :
 - Expensive and toxic method
 - Reduced applications

• Other synthesis developed at the end of the 20th century.

Why did isocyanides remain marginal for decades?

PRESENTATION ISOCYANIDES' REACTIVITY STUDIES OF THE -NC BOND

ISOCYANIDES' SMELL

- "It has a penetrating, extremely unpleasant odour; the opening of a flask of allyl [iso]cyanide is enough to foul up the air in a room for several days." W. Lieke.
- "It is true that many potential workers in this field have been turned away by the odour." I. Ugi.

PRESENTATION ISOCYANIDES' REACTIVITY STUDIES OF THE -NC BOND

ISOCYANIDES' SMELL

- "It has a penetrating, extremely unpleasant odour; the opening of a flask of allyl [iso]cyanide is enough to foul up the air in a room for several days." W. Lieke.
- "It is true that many potential workers in this field have been turned away by the odour." I. Ugi.

ISOCYANIDES' TOXICITY

Bayer industry showed in the 60's that oral and subcutaneous doses of 0.5-5 kg/kg of most isocyanides can be tolerated by mice.

PRESENTATION ISOCYANIDES' REACTIVITY STUDIES OF THE -NC BOND

REACTIVITY OF ISOCYANIDES

ISOCYANIDE AS A NUCLEOPHILE

PRESENTATION ISOCYANIDES' REACTIVITY STUDIES OF THE -NC BOND

REACTIVITY OF ISOCYANIDES

ISOCYANIDE AS A NUCLEOPHILE

ISOCYANIDE AS AN ELECTROPHILE

PRESENTATION ISOCYANIDES' REACTIVITY STUDIES OF THE -NC BOND

ISOCYANIDES IN MCR : THE UGI COUPLING

 R_1 - NH_2 + R_2 -CHO + R_3 -NCI + R_4CO_2H

PRESENTATION ISOCYANIDES' REACTIVITY STUDIES OF THE -NC BOND

ISOCYANIDES IN MCR : THE UGI COUPLING

J. Org. Chem., 2012, 77 (3), 1361-1366

PRESENTATION ISOCYANIDES' REACTIVITY STUDIES OF THE -NC BOND

LEWIS STRUCTURES USUALLY ACCEPTED

Carbene representation	Zwitterionic representation
R−N=C	R−N≡CI
(Nef - 1892)	(Lindemann and Wiegrebe - 1930)

PRESENTATION ISOCYANIDES' REACTIVITY STUDIES OF THE -NC BOND

LEWIS STRUCTURES USUALLY ACCEPTED

Carbene representation	Zwitterionic representation
	⊛ ⊖ R−N≡C
(Nef - 1892)	(Lindemann and Wiegrebe - 1930)

EXPERIMENTAL FACTS

- Linear R-N-C linkage observed by electron diffraction.
- C-N stretching band around 2130 cm⁻¹ and slow variation with the solvent.
- Isoeletronic with CO.

Zwitterionic mesomeric form more used by organic chemists.

MESOMERIC FORMS METHODOLOGY EFFECT OF THE SUBSTITUENT IMPORTANCE OF STRUCTURES ISOCYANIDES' NUCLEOPHILICITY

PLAN

1 ISOCYANIDES IN CHEMISTRY

- Presentation
- Isocyanides' reactivity
- Representing isocyanides
- Studies of the -NC bond

2 Application of VB to RNC

- Mesomeric forms
- Methodology
- Effect of the substituent
- Importance of structures
- Isocyanides' nucleophilicity

3 XMVB 2.0

4 CONCLUSION

MESOMERIC FORMS METHODOLOGY EFFECT OF THE SUBSTITUENT IMPORTANCE OF STRUCTURES ISOCYANIDES' NUCLEOPHILICITY

MESOMERIC FORMS FOR MENC

How to write the VB wave function for MeNC?

ISOCYANIDES IN CHEMISTRY Application of VB to RNC XMVB 2.0 Conclusion MESOMERIC FORMS METHODOLOGY EFFECT OF THE SUBSTITUENT IMPORTANCE OF STRUCTURES ISOCYANIDES' NUCLEOPHILICITY

EFFECT OF THE VB METHOD

Weight in percent of each structure

R-NC	I	Π		IV	Energy (kcal.mol $^{-1}$)
MeNC ^a _{vbscf}	56.8	27.9	8.4	6.9	16.1
MeNC ^a _{bovb}	51.5	28.1	8.8	11.6	0
MeNC ^b _{bovb}	49.8	29.9	9.6	10.7	-

Geometries optimized in $MP2/6-311^{++}G^{**}$.

- ^a : Basis set for VB calculations : 6-31G*.
- ^b : Basis set for VB calculations : $6-31^+$ G*.

ISOCYANIDES IN CHEMISTRY Application of VB to RNC XMVB 2.0 Conclusion MESOMERIC FORMS METHODOLOGY EFFECT OF THE SUBSTITUENT IMPORTANCE OF STRUCTURES ISOCYANIDES' NUCLEOPHILICITY

EFFECT OF THE SOLVATION

R-NC	1 11			IV
MeNC	51.5	28.1	8.8	11.6
MeNC _{PCM(H2O)}	49.5	31.0	9.7	9.8
$MeNC_{PCM(CH_2Cl_2)}$	49.8	30.6	9.6	10.0
MeNCH-OH	50.4	29.8	9.3	10.5
MeNCH-CHCl ₂	50.7	29.3	9.3	10.7

Geometries optimized in MP2/6-311⁺⁺G**. All VB calculations are done in BOVB/6-31G*. Weight in percent of each structure.

MESOMERIC FORMS METHODOLOGY EFFECT OF THE SUBSTITUENT IMPORTANCE OF STRUCTURES ISOCYANIDES' NUCLEOPHILICITY

EFFECT OF THE SUBSTITUENT

$\begin{bmatrix} R - \overline{N} = \overline{C} & & & R - N = C \\ I & & & I \end{bmatrix}$		R-N-Ci ◄	→ F	₹- <u>N</u> - <mark>C</mark> ◎ IV
R-NC	I			IV
MeNC	51.5	28.1	8.8	11.6
EtNC	51.1	28.4	8.9	11.6
i- PrNC	50.9	28.6	9.0	11.5
t- BuNC	50.1	29.4	9.4	11.1
PhCH ₂ NC	50.9	28.3	9.0	11.9
$CH_2 = CHNC$	52.0	27.4	8.6	12.0
CF ₃ NC	54.8	23.8	7.5	14.6
MeSO ₂ CH ₂ NC	54.5	26.5	8.0	11.0

Geometries optimized in MP2/6-311⁺⁺ G**. All VB calculations are done in BOVB/6-31G*.

Mesomeric forms Methodology **Effect of the substituent** Importance of structures Isocyanides' nucleophilicity

PRELIMINARY RESULTS

- Unexpected major mesomeric form : the carben one (50-55%).
- III et IV can be considered as exotic mesomeric forms.
- No significant effect of the solvation.
- Variation with the substituent.
- The carben form explains the reactivity of isocyanides but...not all experimental facts.

Mesomeric forms Methodology Effect of the substituent Importance of structures Isocyanides' nucleophilicity

INFLUENCE OF STRUCTURES TO CORRECTLY DESCRIBE THE WAVE FUNCTION?

-

MESOMERIC FORMS Methodology Effect of the substituent Importance of structures Isocyanides' nucleophilicity

ARE ALL STRUCTURES USEFUL TO CORRECTLY DESCRIBE THE WAVE FUNCTION?

$$E (kcal.mol^{-1})^{\uparrow} \begin{bmatrix} R - \overline{N} = \overline{C}I & \longrightarrow & R - N \equiv CI \\ \Psi_{I} & \Psi_{II} & \Psi_{II} & \Psi_{II} \\ \Psi_{bovb}^{II} = \Psi_{II} \\ \Psi_{II} \\ \Psi_{II} = \Psi_{II} \\ \Psi_{II}$$

MESOMERIC FORMS METHODOLOGY EFFECT OF THE SUBSTITUENT IMPORTANCE OF STRUCTURES ISOCYANIDES' NUCLEOPHILICITY

CONCLUSION

- The carben form is not enough to correctly describe the RNC structure.
- Strong stabilization of the zwitterionic form II due to the donation of the π lone pair of the nitrogen. Explain :
 - the linear geometry.
 - the C-N stretching band around 2130 cm^{-1} .

New J. Chem., 2012, 36, 1137-1140

Can VB be helpful to deeply understand isocyanides' reactivity?

MESOMERIC FORMS METHODOLOGY EFFECT OF THE SUBSTITUENT IMPORTANCE OF STRUCTURES ISOCYANIDES' NUCLEOPHILICITY

ISOCYANIDES' NUCLEOPHILICITY

Mayr, H. & al, Angew. Chem. Int. Ed., 2007, 46, 3563-3566.

Plan

1 ISOCYANIDES IN CHEMISTRY

- Presentation
- Isocyanides' reactivity
- Representing isocyanides
- Studies of the -NC bond

2 Application of VB to RNC

- Mesomeric forms
- Methodology
- Effect of the substituent
- Importance of structures
- Isocyanides' nucleophilicity

3 XMVB 2.0

R-NC	Nb of (heavy) atoms	Nb of electrons	Nb of basis functions	Number of basis structures	Time
4-CNPhNC _{vbscf}	14 (10)	66	158	20	45 min
4-CNPhNC _{bovb}	14 (10)	66	202	6	4h47
PhMe ₂ NC _{vbscf}	17 (10)	70	168	20	1h25
PhMe ₂ NC _{bovb}	17 (10)	70	214	6	7h30

Xeon Woodcrest 3.0 GHz

Geometries optimized in MP2/6-311⁺⁺ G**. Basis set for VB calculations : 6-31G* Inputs are available for tutorials : /home/vbws_tutor /EXERCISES/MORE

TOSMIC

R-NC	Nb of (heavy) atoms	Nb of electrons	Nb of basis functions	Number of basis structures	Time
Tosmic _{vbscf}	22 (13)	102	217	6	9h40
Tosmic _{VB-QMC}	22 (13)	102	217	6	1h48
Tosmic _{bovb}	22 (13)	102	310	6	50h

VBSCF & BOVB : AMD magny-cours 2.3 Ghz

VB-QMC : Blue Gene/P (2048 proc.)

Geometries optimized in MP2/6-311⁺⁺ G**. Basis set for VB calculations : $6-31G^*$

Weight in percent of each structure in BOVB

R-NC	I	II		IV	N (Experimental)
t-BuNC	50.1	29.4	9.4	11.1	5.47
PhCH ₂ NC	50.9	28.3	9.0	11,9	4.90
PhMe ₂ NC	50.2	29.2	9.3	11.3	4.59
pCNPhNC	52.0	26.3	8.4	13.3	3.57
Tosmic	52.5	26.2	8.2	13.1	3.50

Geometries optimized in MP2/6-311⁺⁺ G^{**}. Basis set : $6-31G^*$.

 $W_{III} = f(N)$

Plan

1 ISOCYANIDES IN CHEMISTRY

- Presentation
- Isocyanides' reactivity
- Representing isocyanides
- Studies of the -NC bond

2 Application of VB to RNC

- Mesomeric forms
- Methodology
- Effect of the substituent
- Importance of structures
- Isocyanides' nucleophilicity

3 XMVB 2.0

• The carben form is the major mesomeric form but the zwitterion form is necessary to correctly describe isocyanides.

• Besides mesomeric form III is exotic, one can explain the nucleophilicity of isocyanides.

Acknowledgments

- Paul Fleurat-Lessard and Benoît Braïda
- Laurence Grimaud and Laurent El Kaïm
- Philippe C. Hiberty
- Wei Wu and Fuming Ying for XMVB 2.0
- Nicolas Chéron
- ENS de Cachan and ENS de Lyon for financial support.