SELF-CONSISTENT RPA

Peter Schuck
IPN Orsay - LPMMC Grenoble
Collaboration: M. Tohyama , D. Delion, J. Dukelsky, M. Jemai

Self-Consistent RPA

CONTENT

1) Introduction
2) BBGKY hirarchy and decoupling
3) Small amplitude approximation and Self-Consistent RPA
4) Symmetries and conservation laws
5) Applications
6) Conclusions

Random Phase Approximation from the Nuclear Physics Point of View

The nucleus is a SELFBOUND system of FOUR different fermions:
neutrons, spin up/down--protons, spin up/down

Ground state: HARTREE-FOCK
Mean-Field
relativistic and non-relativistic

Excited states: QUADRUPOLE DEFORMATIONS, BREATHING (COMPRESSION) MODE, etc.

Definitions:

Hamiltonian with two body interaction

$$
H=\sum_{\alpha} a_{\alpha}^{+} a_{\alpha}+\frac{1}{4} \sum_{\alpha \beta \gamma \delta} \bar{v}_{\alpha \beta \gamma \delta} a_{\alpha}^{+} a_{\beta}^{+} a_{\delta} a_{\gamma}
$$

Density Matrices

$$
\rho_{\alpha \alpha^{\prime}}=\langle\Psi| a_{\alpha^{\prime}}^{+} a_{\alpha}|\Psi\rangle ; \quad \rho_{\alpha \beta \alpha^{\prime} \beta^{\prime}}=\langle\Psi| a_{\alpha^{\prime}}^{+} a_{\beta^{\prime}}^{+} a_{\alpha} a_{\alpha}|\Psi\rangle ; \quad \text { ect. }
$$

BBGKY hirarchy:

One body density matrix ρ_{1}

$$
i \dot{\rho}_{1}=\left[\rho_{1}, H\right]=F_{1}\left[\rho_{1}, \rho_{2}\right] \quad \rightarrow
$$

Eq. of Motion for two-body density matrix

$$
i \dot{\rho}_{2}=\left[\rho_{2}, H\right]=F_{2}\left[\rho_{2}, \rho_{3}\right]
$$

and so on. We decouple in approximating ρ_{3} by $\rho_{3} \simeq \rho_{2} \otimes \rho_{2}$

The time ordering in ρ_{3} is so that it leads to $2 \mathrm{p}-1 \mathrm{~h}$ or $2 \mathrm{~h}-1 \mathrm{p}$ correlation functions. It is shown in the figure.

Linearisation:

$$
\rho_{1}=\rho_{1}^{0}+\delta \rho_{1}
$$

$$
C_{2}=C_{2}^{0}+\delta C_{2} ; \quad C_{2}=\rho_{2}-\left[\rho_{1} \rho_{1}\right]_{\text {a.s. }}
$$

With the identifications

$$
\delta \rho_{1} \equiv \chi
$$

and

$$
\delta C_{2} \equiv \mathcal{X}
$$

one arrives at the following eigen value problem called ESRPA (Extended Second RPA)

$$
\left(\begin{array}{cc}
\mathcal{S} & \mathcal{C} \tag{1}\\
\mathcal{C}^{+} & \mathcal{D}
\end{array}\right)\binom{\chi_{1}}{\mathcal{X}_{2}}=E\left(\begin{array}{cc}
\mathcal{N}_{1} & \mathcal{T} \\
\mathcal{T}^{+} & \mathcal{N}_{2}
\end{array}\right)\binom{\chi_{1}}{\mathcal{X}_{2}}
$$

with

$$
\mathcal{S}_{\alpha \beta \alpha^{\prime} \beta^{\prime}}=\langle 0|\left[a_{\beta}^{+} a_{\alpha},\left[H, a_{\alpha^{\prime}}^{+} a_{\beta^{\prime}}\right]\right]|0\rangle=F\left[\rho, C_{2}\right]
$$

and

$$
\mathcal{N}_{1 ; \alpha \beta \alpha^{\prime} \beta^{\prime}}=n_{\beta} \delta_{\beta \beta^{\prime}}-n_{\alpha} \delta_{\alpha \alpha^{\prime}}
$$

with $n_{\alpha}=\langle 0| a_{\alpha}^{+} a_{\alpha}|0\rangle$ the occupation numbers, etc.
The above one body part is called SELF-CONSISTENT RPA $\left(C_{2} \rightarrow \chi \chi\right)$

$$
\mathcal{S} \chi_{1}=E \mathcal{N}_{1} \chi_{1}
$$

Equivalent Green's function formulation

$$
G_{2}^{\omega}=G_{2}^{(0), \omega}+G_{2}^{(0), \omega}\left[M_{1}^{\text {SCRPA }}+M_{2}^{\omega}\right] G_{2}^{\omega}
$$

This is exact formulation of 2-body propagator with kernel dependent only on ONE energy. Neglecting M_{2} is equivalent to SCRPA. [NPA 628 (1998)17].

$$
M_{1} \leftrightarrow \mathcal{S}
$$

Relation to Couple Cluster Theory (CCT) wave function

$$
|Z\rangle=e^{\frac{1}{4} \sum z_{p_{1} p_{2} h_{1} h_{2}} J_{p_{1} h_{1}}^{+} J_{p_{2} h_{2}}^{+}}|\mathrm{HF}\rangle \quad ; \quad J_{p h}^{+}=a_{p}^{+} a_{h}
$$

One can show

$$
Q|Z\rangle=0
$$

with

$$
\begin{align*}
Q_{\nu}^{+} & =\sum_{p h}\left[X_{p h}^{\nu} J_{p h}^{+}-Y_{p h}^{\nu} J_{p h}^{-}\right. \\
& +\frac{1}{2} \sum_{p h p_{1} p_{2}} \eta_{p_{1} p_{2} p h} J_{p_{1} p_{2}}^{0} J_{p h}^{+}-\frac{1}{2} \sum_{p h h_{1} h_{2}} \eta_{h_{1} h_{2} p h} J_{h_{1} h_{2}}^{0} J_{p h}^{+} \tag{2}
\end{align*}
$$

and

$$
\begin{gathered}
J^{-}=\left[J^{+}\right]^{+} ; \quad J_{k_{1} k_{2}}^{0}=a_{k_{2}}^{+} a_{k_{1}} \\
z=Y / X ; \quad \eta=X z
\end{gathered}
$$

The non-linear operator is difficult to handle. Therefore, APPROXIMATION

$$
J_{k_{1} k_{2}}^{0} \rightarrow\left\langle J_{k_{1} k_{1}}^{0}\right\rangle \delta_{k_{1} k_{2}} \equiv n_{k_{1}} \delta_{k_{1} k_{2}}
$$

Then, we have HFB ansatz for Fermion pairs

$$
Q_{\nu}^{+}=\sum_{k>k^{\prime}}\left[X_{k k^{\prime}}^{\nu} a_{k}^{+} a_{k^{\prime}}-Y_{k k^{\prime}}^{\nu} a_{k^{\prime}}^{+} a_{k}\right]
$$

Please note that there are also $p p$ and $h h$ type of apmlitudes. This ansatz solves, e.g., the Tomonaga-Luttinger model exactly.

IMPORTANT PROPERTY:

All nice properties of standard RPA are maintained with SCRPA and also with ESRPA!
Conservation laws, sum-rules, Goldstone mode, Wardidentities. Kadanoff-Baym ϕ derivable approach has also this property. But numerically untractable!
Resummation of parquet diagrams !

Approximation

$$
J_{k_{1} k_{2}}^{0} \rightarrow n_{k_{1}} \delta_{k_{1}, k_{2}} \quad ; \quad n_{k}=\left\langle a_{k_{1}}^{+} a_{k_{1}}\right\rangle
$$

Leads to renormalised Y-amplitude. Very good approximation SCRPA, variation of sum rule

$$
E_{\nu}=\frac{\left\langle\left[Q_{\nu},\left[H, Q_{\nu}^{+}\right]\right]\right\rangle}{\left\langle\left[Q_{\nu}, Q_{\nu}^{+}\right]\right\rangle}
$$

This leads to

$$
\left(\begin{array}{cc}
A[X Y] & B[X Y] \tag{3}\\
-B^{*} & -A^{*}
\end{array}\right)\binom{X}{Y}=\Omega\binom{X}{Y}
$$

This is like HFB for bosons, only bosons have been replaced by fermion pairs. Refs.: Eur. Phys. J. B 89:45; PRB 93, 444329; PRC 72,064305

Fig. 8. Schematic representation of the two body mean field. It consists of the direct interaction (full dot), the single particle renormalisation duc to two body correlations (C), and screening terms where a two body correlation is echanged between the two lincs. It should be mentioned that the two body renormalisations occur instantancously as indicated when the time runs from left to right. Also symmetric terms should be added interchanging upper and lower lines. The tad-pole graphs are supposed to be included in the single particle lines.

Screening!

Not all is perfect though!

For finite systems transition to symmetry broken state is not continuous; shows wrong first order phase transition.

$$
P R C 72,064305
$$

SELF-CONSISTENT RANDOM PHASE APPROXIMATION ...

FIG. 7. SCRPA excitation energies vs χ for $N=20, \Delta \epsilon=$ 0.001 MeV (full line). Dashed lines give the lowest exact eigenvalues; dot-dashed lines, standard RPA energies. After the phase transition point $\chi=1$ (standard RPA) and $\chi \approx 2.1$ (SCRPA), a Goldstone mode at zero energy appears.

Application to Lipkin model

For simplicity, we consider two level Lipkin model

$$
H=\varepsilon J_{0}-\frac{V}{2}\left(J_{+} J_{+}+J_{-} J_{-}\right)
$$

with $\left[J_{-}, J_{+}\right]=-2 J_{0}, \quad\left[J_{0}, J_{ \pm}\right]={ }_{ \pm}$and

$$
J_{0}=\frac{1}{2} \sum_{m}\left(c_{1 m}^{\dagger} c_{1 m}-c_{0 m}^{\dagger} c_{0 m}\right) \quad J_{+}=\sum_{m} c_{1 m}^{\dagger} c_{0 m} \quad J_{-}=\left(J_{+}\right)^{\dagger}
$$

We try exponential with two body operator:

$$
|z\rangle=e^{z J_{+} J_{+}}|\mathrm{HF}\rangle
$$

Using following operator with $Z=\frac{1}{N} \frac{Y}{X}$ and $\eta=\frac{2}{N} \frac{Y}{X}$

$$
Q^{\dagger}=X J_{+}-Y J_{-}+\eta J_{-} J_{0} \quad \text { we have } \rightarrow \quad Q|R P A\rangle=0!!
$$

Again: $J_{-} J_{0} \rightarrow J_{-}\left\langle J_{0}\right\rangle$
Scheme can be and has been worked out for general many body problem. Two particle case exact without η term !.
(a)

$$
\chi=V(N-1) / \varepsilon
$$

In Lipkin model states become pairwise degenerate!

The HUBBARD Model

We treat a ring with 6 sites and half filling, i.e. 6 electrons.

$$
\begin{equation*}
H=-t \sum_{\langle i j\rangle \sigma} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} \hat{n}_{i+} \hat{n}_{i-}, \quad \hat{n}_{i \sigma}=c_{i \sigma}^{\dagger} c_{i \sigma} \tag{4}
\end{equation*}
$$

Two site problem again exact in SCRPA!

$|q|=\pi / 3$

ground state energy with full TDDM

Goes far beyond instability point $U / t \sim 2.5$

SCRPA in the particle-particle (hole-hole) channel. The pairing or Picket Fence Model.

$$
H=\sum_{i=1}^{\Omega}\left(\varepsilon_{i}-\lambda\right) N_{i}-G \sum_{i, j=1}^{\Omega} P_{i}^{\dagger} P_{j}
$$

where

$$
P_{i}=c_{i} c_{i}, \quad P_{i}^{\dagger}=\left(P_{i}\right)^{\dagger}, \quad N_{i}=c_{i}^{\dagger} c_{i}+c_{i}^{\dagger} c_{i}
$$

The pp-RPA operator is

$$
\mathcal{A}_{\mu}^{\dagger}=\sum_{p} X_{p}^{\mu} P_{p}^{\dagger}-\sum_{h} Y_{h}^{\mu} P_{h}^{\dagger}
$$

Self-Consistent mashinerie gives following results. 2 particle case again exact standard RPA: $E \propto \sqrt{1-G} ; \quad$ SCRPA: $E \propto \sqrt{1+G}$. Screening has changed sign from attraction to repulsion !!

The Picket Fence Model

as a function of the pairing stengits of the system with $\Omega=10$ as a function of the pairing strength G.
\square

Conclusions

i) Decoupling of BBGKY at ρ_{2} level: leads to SCRPA
ii) SCRPA conserves all appreciated properties of standard RPA: Conservation laws, sum-rules, Goldstone mode, gauge invariance, and Ward identities
iii) Wrong first order transition at break point of symmetry for finite systems
iv) Applications: Lipkin model; 1D Hubbard chain; Pairing model. In all cases very good results.

