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Random Phase Approximation from the Nuclear
Physics Point of View

The nucleus is a SELFBOUND system of FOUR different fermions:

neutrons, spin up/down—-protons, spin up/down

Ground state: HARTREE-FOCK
Mean-Field

relativistic and non-relativistic

Excited states: QUADRUPOLE DEFORMATIONS, BREATHING
(COMPRESSION) MODE, etc. →

TIME DEPENDENT HF



Definitions:
Hamiltonian with two body interaction

H =
∑

α

a+αaα +
1

4

∑

αβγδ

v̄αβγδa
+
αa

+
β aδaγ

Density Matrices

ραα′ = 〈Ψ|a+α′aα|Ψ〉; ραβα′β′ = 〈Ψ|a+α′a
+
β′aαaα|Ψ〉; ect.



BBGKY hirarchy:
One body density matrix ρ1

i ρ̇1 = [ρ1,H] = F1[ρ1, ρ2] →

Eq. of Motion for two-body density matrix

i ρ̇2 = [ρ2,H] = F2[ρ2, ρ3]

and so on. We decouple in approximating ρ3 by ρ3 ' ρ2 ⊗ ρ2

The time ordering in ρ3 is so that it leads to 2p-1h or 2h-1p correlation
functions. It is shown in the figure.



Linearisation:

ρ1 = ρ01 + δρ1

C2 = C 0
2 + δC2 ; C2 = ρ2 − [ρ1ρ1]a.s.

With the identifications

δρ1 ≡ χ
and

δC2 ≡ X
one arrives at the following eigen value problem called
ESRPA (Extended Second RPA)



(
S C
C+ D

)(
χ1

X2

)
= E

(
N1 T
T + N2

)(
χ1

X2

)
(1)

with

Sαβα′β′ = 〈0|[a+β aα, [H, a+α′aβ′ ]]|0〉 = F [ρ,C2]

and

N1;αβα′β′ = nβδββ′ − nαδαα′

with nα = 〈0|a+αaα|0〉 the occupation numbers, etc.

The above one body part is called SELF-CONSISTENT RPA (C2 → χχ )

Sχ1 = EN1χ1



Equivalent Green’s function formulation

Gω
2 = G

(0),ω
2 + G

(0),ω
2 [MSCRPA

1 + Mω
2 ]Gω2

This is exact formulation of 2-body propagator with kernel dependent
only on ONE energy. Neglecting M2 is equivalent to SCRPA. [NPA 628
(1998)17].

M1 ↔ S



Relation to Couple Cluster Theory (CCT) wave function

|Z 〉 = e
1
4

∑
zp1p2h1h2J

+
p1h1

J+
p2h2 |HF〉 ; J+ph = a+p ah

One can show

Q|Z 〉 = 0

with

Q+
ν =

∑

ph

[X ν
phJ

+
ph − Y ν

phJ
−
ph

+
1

2

∑

php1p2

ηp1p2phJ
0
p1p2J

+
ph −

1

2

∑

phh1h2

ηh1h2phJ
0
h1h2J

+
ph (2)

and
J− = [J+]+ ; J0k1k2 = a+k2ak1

z = Y /X ; η = Xz

The non-linear operator is difficult to handle. Therefore, APPROXIMATION

J0k1k2 → 〈J0k1k1〉δk1k2 ≡ nk1δk1k2



Then, we have HFB ansatz for Fermion pairs

Q+
ν =

∑

k>k′

[X ν
kk′a+k ak′ − Y ν

kk′a+k′ak ]

Please note that there are also pp and hh type of apmlitudes. This ansatz
solves, e.g., the Tomonaga-Luttinger model exactly.

IMPORTANT PROPERTY:
All nice properties of standard RPA are maintained with SCRPA and also with
ESRPA !
Conservation laws, sum-rules, Goldstone mode, Wardidentities.
Kadanoff-Baym φ derivable approach has also this property. But numerically
untractable!
Resummation of parquet diagrams !



Approximation

J0k1k2 → nk1δk1,k2 ; nk = 〈a+k1ak1〉
Leads to renormalised Y -amplitude. Very good approximation
SCRPA, variation of sum rule

Eν =
〈[Qν , [H,Q+

ν ]]〉
〈[Qν ,Q+

ν ]〉
This leads to

(
A[XY ] B[XY ]
−B∗ −A∗

)(
X
Y

)
= Ω

(
X
Y

)
(3)

This is like HFB for bosons, only bosons have been replaced by fermion pairs.
Refs.: Eur. Phys. J. B 89:45; PRB 93, 444329; PRC 72,064305



Illustration of what contains SCRPA kernel, that is effective p-h interaction

Screening!



Not all is perfect though!

For finite systems transition to symmetry broken state is not continuous;
shows wrong first order phase transition.



Application to Lipkin model
For simplicity, we consider two levelLipkin model ———- 1
-

———- 0

H = εJ0 −
V
2
(J+J+ + J−J−)

with [J−, J+] = −2J0 , [J0, J±] =± and

J0 =
1
2

∑

m

(c†
1mc1m − c†

0mc0m) J+ =
∑

m

c†
1mc0m J− = (J+)†

We try exponential with two body operator:

|z〉 = ezJ+J+ |HF〉
Using following operator withz = 1

N
Y
X andη = 2

N
Y
X

Q† = XJ+ − Y J− + ηJ−J0 we have→ Q|RPA〉 = 0!!



Again: J−J0 → J−〈J0〉
Scheme can be and has been worked out for general many body
problem. Two particle case exact without η term !.

0 0.2 0.4 0.6 0.8 1 1.2

χ

0

0.2

0.4

0.6

0.8

1

Ω/ε
s-RPA
SCRPA [Eq.(36)]
SCRPA
Exact

N=4

(a)

χ = V (N − 1)/ε
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Projected symmetry-broken HFB
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In Lipkin model states become pairwise degenerate!



The HUBBARD Model

We treat a ring with 6 sites and half filling, i.e. 6 electrons.

H = −t
∑

〈ij〉σ
c†

iσcjσ + U
∑

i

n̂i+n̂i− , n̂iσ = c†
iσciσ (4)

Two site problem again exact in SCRPA!
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ground state energy with full TDDM
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Goes far beyond instability point U/t ∼ 2.5



SCRPA in the particle-particle (hole-hole) channel. The pairing or
Picket Fence Model.

H =
Ω∑

i=1

(εi − λ)Ni − G
Ω∑

i,j=1

P†
i Pj

where

Pi = cīci , P†
i = (Pi )

† , Ni = c†
i ci + c†

ī
cī

The pp-RPA operator is

A†
µ =

∑

p

Xµ
p P†

p −
∑

h

Yµ
h P†

h

Self-Consistent mashinerie gives following results. 2 particle case
again exact standard RPA: E ∝

√
1 − G ; SCRPA: E ∝

√
1 + G.

Screening has changed sign from attraction to repulsion !!



The Picket Fence Model





Conclusions

i) Decoupling of BBGKY at ρ2 level: leads to SCRPA

ii) SCRPA conserves all appreciated properties of standard RPA: Conservation
laws, sum-rules, Goldstone mode, gauge invariance, and Ward identities

iii) Wrong first order transition at break point of symmetry for finite systems

iv) Applications: Lipkin model; 1D Hubbard chain; Pairing model. In all cases
very good results.


