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Introduction

About electrical conductivity Kohn PR 133 A171 (1964); Resta PRL 80, 1800 (1998)

What does it characterize a metal/insulator?
At the mean-field level: One electron band gap (HOMO-LUMO)
In general: Excitation spectrum

Is it possible to determine this character from the ground state?
A seminal paper by Kohn (1964) establishes this link.
The theory of the insulating state: Insulators display ground states with
disconnected regions in the Hilbert space.

Forgotten for long time until revisited & generalized by Resta (1998-)
It is the organization of electrons that renders a system conducting or
insulating.
Broadly speaking: delocalized vs. localized.
A quantitative measure is provided by the localization tensor.
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Introduction

Conductivity indicators in real space
May real space descriptors of metallic or insulating-like character be
found in extended as well as molecular systems?

Partitioning of space provided by the QTAIM

Long-standing question without only recent clear answers.
Some initial QTAIM proposals unfruitful:

Non-nuclear attractors found in Li molecular clusters.
Present in bcc-Li, .... but not in Cu, Al.

From Kohn-Resta, .... it is not in the density.
Tempting to examine real space delocalization measures.
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Known results in extended systems

Metals e.g. Goedecker, PRB 58, 3501, (1998)

ρ(r; r′) ≡ ρ(|r− r′|) ≡ ρ(r) decays like a power law at T = 0.
For free electron bands
ρ(r) = 2(2π)−3

∫
k<kF

dke−ikr = −kF
π2r2 (cos(rkF)− sin(rkF)/(rkF))

Insulators e.g. PRL 88, 196405 (2002)

Exponential decay for ρ(|r− r′|) ≈ e−λ|r−r′|

Decay length λ proportional to the gap ∆.
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Real space delocalization measures

Well known in real space theories of the chemical bond.
Becke’s & Edgecombe ELF (local, drawback).
QTAIM’s delocalization indices δAB, extension of Wiberg-Mayer bond order.
etc.

Delocalization index Bader & Stephens 1974

DI(A,B) = δAB = 2
∫

ΩA
dr1
∫

ΩB
dr2ρ

xc
2 . ρxc

2 (r1, r2) = ρ1(r1)ρ1(r2)− ρ2(r1, r2)

Scalar parameter between each pair of atoms: 1/2
∑

A,B δ
AB = N.

Condenses two-center electron population fluctuations.
δAB = −2cov(nA, nB) = −2 [〈nAnB〉 − 〈nA〉〈nB〉]
〈nAnB〉 =

∑
nA,nB

nAnBp(nA, nB), 〈nA〉 =
∑

nA
nAp(nA)

At the single-determinant level (non-interacting effective electrons)
ρxc

2 = ρ(r1; r2)ρ(r2; r1) ≡ |ρ(r1; r2)|2
For interacting systems (correlated level) still dominated by Fock-Dirac.
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Real space delocalization measures

Expectations for extended systems
DI’s should fall as power-law for metals: δ ≈ r−f

f depends on dimension.
DI’s might show Friedel-like oscillations.

DI’s should fall exponentially for insulators. δ ≈ e−λr

λ depends on ∆.

Results
DIs behave as predicted in models (Hückel, TB, Hubbard).
Actual computations in real systems support results in models.
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Finite analytical model systems
Hückel heteroatomic AB chain

1 2 3 n

α
β

∆

α ’

H = diag(αi) + βT, T = δ|i−j|=1 is tridiagonal
Two α and α′ values (α′ = 0).

λk =
(
α±

√
α2 + 16 cos2(kπ/(n + 1))

)
/2, k = 1, n/2

Gap ∆(γ) = α+ 2π2γ2/α+O(γ3)

n = 10 chain. α = 0, 1, 2. From power-law to exponential
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λ ≈ 1.5, 1.8
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Metallic-like behavior
Hydrogen chains

H chains
Fixed nearest neighbors distance.
6-311G(p) Hartree-Fock finite data.
Elk+DGRID 1D Kohn-Sham periodic calculations.
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 0.01

 0.1

 1

 1  10

δ
1
i

dH−H [bohr]

δ1n = (n−1)
f
δ12

infinite f = −2.33
cyclic f = −2.40
finite f = −2.50

f = −2.00 a = 1.84 au.
δ1,2i+1 6= 0 but small.
Friedel-like oscillations clear even
for finite chains
f values larger than Hückel or TB,
but definitely power-law scaling.

δ1,2(4) close to models: 0.44(0.40), 0.04(0.04) for infinite chain.
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Effect of correlation

Mapping to Hubbard Hamiltonian

H = −t
∑

〈i,j〉,σ(c
+
iσcjσ + c+jσciσ) + U

∑
i ni↑ni↓

U/t measures correlation

U = 0 ≡ TB: independent electrons, 1SD.
U/t→∞ ≡ d →∞ dissociation limit
U/t ≈ d mapping

Lieb-Wu exact solution: No Mott transition for 1D Hubbard. AF singlet solution for any U/t
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U/t=8

δ1,n for H14

Wild oscillations for small U/t

Dampening on growing U/t

Change above U/t = 4 to exponential
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The theory of the insulating state

The localization tensor (LT) Resta JCP 124 104104 (2006)

λ is the second cumulant moment of the total position operator R̂ =
∑N

i r̂i

The R̂ operator is ill-defined under periodic boundary conditions⇒ Berry
phases, nice stuff.

λ =
1
N

{
〈Ψ|R̂⊗ R̂|Ψ〉 − 〈Ψ|R̂|Ψ〉 ⊗ 〈Ψ|R̂|Ψ〉

}

Example λxy = 1
N

{
〈Ψ|X̂Ŷ|Ψ〉 − 〈Ψ|X̂|Ψ〉〈Ψ|Ŷ|Ψ〉

}

Thermodynamic limit
λ diverges for conductors
λ converges for insulators
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The theory of the insulating state

Why? Fluctuation-dissipation theorem
if α(ω) is the polarizability tensor,
λ = (1/N)

∫∞
0 dω Imα(ω)

With PBC, σ(ω) the conductivity,
(πe2/~)λβγ = δβγ(V/N)

∫∞
0 dω Reσ(ω)/ω

If Eg is the optical gap, λαα ≤ ~2/(2meEg)

Invariant formulation
After a little playing,
λ = 1

2N

∫
dr1dr2 (r12 ⊗ r12) ρxc(r1, r2).

Interelectron spread...
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The LT in finite systems

The total position spread tensor (PST) Leininger JCTC 9 5286 (2013)

Evangelisti and Leininger have proposed to used Λ = Nλ

The PST has been used as a chemical bonding indicator

It captures dissociations & other processes.

H2 dissociation. HF (CAS)//aug-cc-pVTZ (〈<2〉 = 1 for H)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

 0  1  2  3  4  5  6  7  8  9  10

Λ

R (bohr)

Λ||

Λ
⊥

AMP (Universidad de Oviedo) QCT 2013 Septembre 2016 12 / 20



Introduction Decay rate of DIs The theory of the insulating state The LT for finite systems Thermodynamic limit Conclusions

The LT in finite systems

The total position spread tensor (PST) Leininger JCTC 9 5286 (2013)

Evangelisti and Leininger have proposed to used Λ = Nλ

The PST has been used as a chemical bonding indicator

It captures dissociations & other processes.

H2 dissociation. HF (CAS)//aug-cc-pVTZ (〈<2〉 = 1 for H)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

 0  1  2  3  4  5  6  7  8  9  10

Λ

R (bohr)

Λ||

Λ
⊥

AMP (Universidad de Oviedo) QCT 2013 Septembre 2016 12 / 20



Introduction Decay rate of DIs The theory of the insulating state The LT for finite systems Thermodynamic limit Conclusions

The LT in finite systems

The total position spread tensor (PST) Leininger JCTC 9 5286 (2013)

Why does it diverge in the HF approx.?

How to get insights in polyatomics?

All processes appear at the same time

Can we partition Λ and learn?
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Partitioning Λ in real space

Recall that Λ = 1
2

∫
A dr1

∫
A dr2 (r12 ⊗ r12)

Real space partition, R3 =
⋃

A

Λ =
∑

A≥B

ΛAB,

ΛAA =
1
2

∫

A
dr1

∫

A
dr2 (r12 ⊗ r12)ρxc(r1, r2),

ΛAB =

∫

A
dr1

∫

B
dr2 (r12 ⊗ r12)ρxc(r1, r2).
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Partitioning Λ in real space
Convergence/Divergence

ΛAA is bounded
ΛAB behaves as ∼ (RAB ⊗ RAB)δAB/2 at large RAB

A
B

RA
RB

r1

r2
RAB

O

r12
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Partitioning Λ in real space
Examples

The H2 molecule revisited
At the HF level, ΛAB

‖ diverges as R2/2, since δ = 1

At the CAS level, ΛAA is finite, goes to 1. ΛAB
‖ shows localization, δ

decreases to 0 exponentially.
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Partitioning Λ in real space
Examples

The H2O molecule CAS[8,8]//6-311G*
Dissociation of the OH1 bond

We differentiate the essential/spectator interactions.
The OH1 bond dissociates.
The OH2 bond jumps from the initial to the final bonding situation.
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Partitioning Λ in real space
Convergence/Divergence

The thermodynamic limit of λ = Λ/N

Λ =
∑

A ΛA with ΛA = ΛAA + 1
2

∑
B 6=A ΛAB

If 〈ΛA〉 is the atomic average of ΛA

and κ the average number of electrons per atom,
λ = 〈ΛA〉/κ.
The divergence is that of 〈ΛA〉

Some (or all) of ΛA must diverge.
Some (or all) of

∑
B 6=A ΛAB must diverge.

A B
i=0 1-1 2-2

∑∞
i=−∞R

2
i δ(Ri)1D ΛAB ∼ (RAB ⊗RAB)δAB/2

In 1D,2D,3D λ diverges if δ decays faster than R−d with d = 2, 3, 4.
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Partitioning Λ in real space
Examples II

The H10 linear chain. HF, CAS[10,10]//6-311G*
ΛAB
‖ Atom on one end with all the others.

Oscillations, R−d, d = 2.5, 4.1 at the HF, CAS levels.
R2

ABδ/2 is the long-range limit.
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Localization, as measured by δ determines conductivity
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Summary, Conclusions

As noted by Kohn (1964), insulators are characterized by exponentially
separated regions in Ψ.
Quantified (Resta) by the LT.

λ diverges/converges in metals/insulators.

Previous work shows that δ decays algebraically/exponentially in
metals/insulators.
In molecules, Leininger & Evangelisti have shown that Λ = Nλ informs
about chemical bonding.

Λ is global! No individual bonds, atoms, whatsoever.
Λ may be partitioned in real space

The global problem in chemistry is solved.
It is the interatomic terms that may diverge...
... If our previously found conditions in δ are met.

Chemistry of ground states and physics of conductivity intertwinned.
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