The Molecular Orbitals in NOFT Workshop on ab initio valence bond theory

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga, G. Merino, J. M. Mercero, E. Matito, J. M. Ugalde

Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia International Physics Center (DIPC), 20080 Donostia. IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.

July 18, 2012

Outline

- Introduction to the NOFT
- 2 PNOF5 Results
 - examples of systems, where DFT yields pathological failures
 - potentiality of the NOF theory.

Density Matrix and Natural Orbital Functionals Singlet states: 2-RDM, Spin, N-representability, PNOF5 Minimization of the energy functional and Euler equations

The electronic energy *E* for *N*-electron systems

$$E = \sum_{ik} H_{ik} \Gamma_{ki} + \sum_{ijkl} \langle ij|kl \rangle D_{kl,ij}$$

- Γ_{ki}: 1-RDM
 H_{ik}: core-Hamiltonian
- *D_{kI,ij}*: 2-RDM

• < ij|kl >: Coulomb integrals

• • • • • • •

 $E[N, \Gamma, \mathbf{D}]$ is an explicitly known functional of the 1- and 2-RDMs!

Density Matrix and Natural Orbital Functionals Singlet states: 2-RDM, Spin, N-representability, PNOF5 Minimization of the energy functional and Euler equations

・ 同 ト ・ ヨ ト ・ ヨ

1-RDM Functional

Last term in the Energy: $U[N, \mathbf{D}] = \sum_{ijkl} \langle ij|kl \rangle D_{kl,ij}$ can be replaced by an unknown functional of the 1-RDM:

$$V_{ee}\left[N,\Gamma\right] = \min_{\mathbf{D}\in\mathbf{D}(\Gamma)} U\left[N,\mathbf{D}\right]$$

 $D(\Gamma)$: family of N-representable 2-RDMs which contract to the Γ

$$E[N, \Gamma, \mathbf{D}] \Rightarrow E[N, \Gamma] = \sum_{ik} H_{ik} \Gamma_{ki} + V_{ee} [N, \Gamma]$$

T. L. Gilbert, Phys. Rev. B 12, 2111 (1975); M. Levy, Proc. Natl. Acad. Sci. U.S.A. 76, 6062 (1979)

Density Matrix and Natural Orbital Functionals Singlet states: 2-RDM, Spin, N-representability, PNOF5 Minimization of the energy functional and Euler equations

Natural Orbital Functional

The 1-RDM can be diagonalized by a unitary transformation of the spin-orbitals $\{\phi_i(\mathbf{x})\}$:

$$\Gamma_{ki} = n_i \delta_{ki}, \quad \Gamma\left(\mathbf{x}_1' | \mathbf{x}_1\right) = \sum_i n_i \phi_i\left(\mathbf{x}_1'\right) \phi_i^*\left(\mathbf{x}_1\right)$$

 $\phi_i(\mathbf{x})$ is the natural spin-orbital with the corresponding occupation number n_i

$$E[N,\Gamma] \Rightarrow E[N,\{n_i,\phi_i\}] = \sum_i n_i H_{ii} + V_{ee}[N,\{n_i,\phi_i\}]$$

Density Matrix and Natural Orbital Functionals Singlet states: 2-RDM, Spin, N-representability, PNOF5 Minimization of the energy functional and Euler equations

Ansatz for singlet states $|S = 0\rangle$

Int. J. Quantum Chem. 106, 1093 (2006)

• Spin-blocks of the 2-RDM:

$$D_{pq,rt}^{\sigma\sigma,\sigma\sigma} = \frac{1}{2} \left(n_p n_q - \Delta_{pq} \right) \left(\delta_{pr} \delta_{qt} - \delta_{pt} \delta_{qr} \right) \quad (\sigma = \alpha, \beta)$$
$$D_{pq,rt}^{\alpha\beta,\alpha\beta} = \frac{1}{2} \left(n_p n_q - \Delta_{pq} \right) \delta_{pr} \delta_{qt} + \frac{\Pi_{pr}}{2} \delta_{pq} \delta_{rt}$$

$$\Delta \{n_p\}, \ \Pi \{n_p\}: real symmetric matrices$$

Sum Rule: $\sum_{q} {}'\Delta_{pq} = n_p (1 - n_p)$

- Conserving rule for $\hat{S}^2 \Rightarrow$ diagonal elements
- N-representability \Rightarrow inequalities for off-diagonal elements

Density Matrix and Natural Orbital Functionals Singlet states: 2-RDM, Spin, N-representability, PNOF5

PNOF5: Δ - and Π -matrices for singlet states $|S = 0\rangle$

$$\Delta_{pq} = n_p^2 \delta_{pq} + n_p n_{\tilde{p}} \delta_{\tilde{p}q}$$
$$\Pi_{pq} = n_p \delta_{pq} - \sqrt{n_p n_{\tilde{p}}} \delta_{\tilde{p}q}$$

 $n_{\tilde{p}} + n_{p} = 1$

$$E = 2 \sum_{p=1}^{N} n_p H_{pp} + \sum_{p,q=1}^{N} " n_q n_p (2J_{pq} - K_{pq})$$
$$+ \sum_{p=1}^{N} \left[n_p J_{pp} - \sqrt{n_{\tilde{p}} n_p} K_{p\tilde{p}} \right]$$

$$(\tilde{p} = N - p + 1; \quad \sum'' : q \neq p, \tilde{p})$$

J. Chem. Phys. 134, 164162, 2011 < ロ > < 同 > < 回 > < 回 > < 回 > <

3

Density Matrix and Natural Orbital Functionals Singlet states: 2-RDM, Spin, N-representability, PNOF5 Minimization of the energy functional and Euler equations

Minimization of the functional $E[N, \{n_p, \varphi_p\}]$

Constraints:

- **3** Löwdin's normalization: $2\sum_{p} n_{p} = N$ $(n_{\tilde{p}} + n_{p} = 1)$
- 2 N representability of the 1-RDM: $0 \le n_p \le 1$

 $\implies n_{
m p} = \cos^2 \gamma_{
m p}, \, n_{
m ilde{p}} = \sin^2 \gamma_{
m ilde{p}}$: Conjugate Gradient Method

③ Orthonormality of natural orbitals: $\langle \varphi_p | \varphi_q \rangle = \delta_{pq}$

$$\implies \text{ Method of Lagrangian multipliers}$$
$$\Omega = E - 2 \sum_{pq} \varepsilon_{qp} \left[\langle \varphi_p | \varphi_q \rangle - \delta_{pq} \right]$$

Density Matrix and Natural Orbital Functionals Singlet states: 2-RDM, Spin, N-representability, PNOF5 Minimization of the energy functional and Euler equations

Euler equations for the natural orbitals $\{\varphi_p(\mathbf{r})\}$

$$n_{p}\hat{V}_{p}|\varphi_{p}\rangle = \sum_{q}\varepsilon_{qp}|\varphi_{q}\rangle, \qquad \varepsilon_{qp} = n_{p}\langle\varphi_{q}|\hat{V}_{p}|\varphi_{p}\rangle$$

$$\hat{V}_{p}\left(1
ight)=\hat{H}\left(1
ight)+\hat{J}_{p}\left(1
ight)-\sqrt{rac{n_{\tilde{p}}}{n_{p}}}\hat{K}_{\tilde{p}}\left(1
ight)+\sum_{q=1}^{N}{}^{\prime\prime}{}^{\prime}{}_{n_{q}}\left[2\hat{J}_{q}\left(1
ight)-\hat{K}_{q}\left(1
ight)
ight]$$

 $[\Lambda,\Gamma] \neq 0 \Rightarrow \ \ \, \mbox{solution cannot be reduced to diagonalization of } \Lambda$

$$\Lambda = \{\varepsilon_{qp}\}, \quad \Gamma = \{n_p \delta_{pq}\}$$

Self-consistent iterative diagonalization procedure
 J. Comp. Chem. 30, 2078 (2009)

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N $_2$ and 14- e^- series Dissociation of transition metal dimers

Planar trimethylenemethane

Relative energy to its cyclic isomer (kcal/mol)

	тмм	IMA	ΟΧΑ
CAS(12,12)	34.4	34.0	26.2
PNOF5	40.8	37.2	26.5
CASPT2(12,12)	43.3	39.7	32.6

Occupation numbers of (quasi)degenerate orbitals

	тмм	IMA	ΟΧΑ	
PNOF4	1.07/0.97	1.36/0.71	1.57/0.50	
PNOF5	1.00/1.00	1.26/0.74	1.46/0.54	
CAS(12,12)	1.01/0.99	1.25/0.75	1.45/0.55	

ChemPhysChem 12, 1673, 2011

э

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N2 and 14- e^- series Dissociation of transition metal dimers

< □ > < 同

• • = • • = •

Ethylene Torsion

J. Chem. Phys 134, 164102, 2011

	E (Ha	$\Delta E(\text{kcal/mol})$		
	$Min(D_{2h})^{\dagger}$	TS $(D_{2d})^{\dagger}$		
CASPT2(12,12)	-78.342567	-78.238122	65.5	
PNOF5	-78.136524	-78.032063	65.6	
B3LYP [‡]	-78.591976	-78.490308	63.8	
PBE0‡	-78.485589	-78.388529	60.9	
M06-2X [‡]	-78.543689	-78.437072	66.9	

 \dagger cc-pVDZ Basis Set, \ddagger Broken symmetry energies for TS. $\left< \hat{S}^2 \right> = 1.01$

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N₂ and 14- e^- series Dissociation of transition metal dimers

cc-pVTZ dissociation curves for diatomic molecules

In all cases, dissociation limit implies an homolytic cleavage of the bond, high degree of near-degeneracy at the dissociation asymptote

J. Chem. Phys. 134, 164102, 2011

イロト イ得ト イヨト イヨト

Homolytic Dissociations: 14-electron isoelectronic series

			N ₂				C	⊂N <i>−</i>		
	R _e	D _e	во	μ_{e}	٩N	Re	D _e	во	μ_{e}	٩N
PNOF5	1.099	229.9	2.87	0.000	7	1.180	247.6	2.89	0.900	7
CAS(10,8)	1.117	205.0	2.85	0.000	7	1.200	220.0	2.86	2.241	7
CAS(14,14)	1.115	210.4	2.85	0.000	7	1.196	235.4	2.86	2.360	7
Exptl.	1.098	225.1	-	0.000	7	1.177	-	-	0.630	7
			NO^+					со		
	R _e	De	во	μ_{e}	٩ <i>N</i> P	Re	De	во	μ_{e}	٩ <i>८</i>
PNOF5	1.059	228.2	2.87	0.337	6/7	1.130	221.0	2.92	0.209	6
CAS(10,8)	1.077	229.0	2.84	2.368	7	1.143	249.9	2.88	-0.259	6
CAS(14,14)	1.076	261.7	2.83	2.260	6	1.145	247.0	2.86	-0.059	6
Exptl.	1.066	-	-	-	7	1.128	256.2	-	0.112	6

 R_e in Å, D_e in kcal/mol and μ_e in Debyes

Phys. Chem. Chem. Phys. 13, 20129, 2011

Diradicals and Diradicaloids. Ethylene Torsion Homolytic Dissociations. N $_2$ and 14- e^- series Dissociation of transition metal dimers

Dissociation of transition metal dimers (ECP, 6s5p3d)

M. Piris, J. M. Matxain, X. Lopez, F. Ruipérez, J. Uranga,

The Molecular Orbitals in NOFT

Two orbital pictures in NOFT. Methane. Water Delocalization effects Carbon dimers vs Silicon dimers

▶ ∢ ≣ ▶

Molecular orbital representations

Natural Orbitals $\{\varphi_{p}(\mathbf{r})\}$

Orthonormality: $\langle \varphi_{p} | \varphi_{q} \rangle = \delta_{pq}$

$$\Omega = E - 2 \sum_{pq} \varepsilon_{qp} \left[\langle \varphi_p | \varphi_q \rangle - \delta_{pq} \right]$$

Euler Eqs.:

$$n_{p}\hat{V}_{p}|\varphi_{p}\rangle = \sum_{q}\varepsilon_{qp}|\varphi_{q}\rangle$$
$$\varepsilon_{qp} = n_{p}\langle\varphi_{q}|\hat{V}_{p}|\varphi_{p}\rangle$$

 $\Lambda = \{\varepsilon_{qp}\}, \quad \Gamma = \{n_p \delta_{pq}\}$

$$\begin{split} [\Lambda,\Gamma] \neq 0 \Rightarrow & \text{solution cannot be reduced} \\ & \text{to diagonalization of } \Lambda \end{split}$$

Self-consistent iterative diagonalization procedure: JCC 30, 2078 (2009)

Two orbital pictures in NOFT. Methane. Water Delocalization effects Carbon dimers vs Silicon dimers

Molecular orbital representations

Natural Orbitals $\{\varphi_{p}(\mathbf{r})\}$

Orthonormality: $\langle \varphi_{P} | \varphi_{q} \rangle = \delta_{Pq}$

$$\Omega = E - 2 \sum_{pq} \varepsilon_{qp} \left[\langle \varphi_p | \varphi_q \rangle - \delta_{pq} \right]$$

Euler Eqs.:

$$n_{p} \hat{V}_{p} |\varphi_{p}\rangle = \sum_{q} \varepsilon_{qp} |\varphi_{q}\rangle$$
$$\varepsilon_{qp} = n_{p} \langle \varphi_{q} | \hat{V}_{p} |\varphi_{p}\rangle$$

 $\Lambda = \{\varepsilon_{qp}\}, \quad \Gamma = \{n_p \delta_{pq}\}$

$$\begin{split} [\Lambda,\Gamma] \neq 0 \Rightarrow & \text{solution cannot be reduced} \\ & \text{to diagonalization of } \Lambda \end{split}$$

Self-consistent iterative diagonalization procedure: JCC 30, 2078 (2009)

Canonical Orbitals $\{\chi_{p}(\mathbf{r})\}$

$$\begin{split} E &= \sum_{p} \left[n_{p} H_{pp} + \varepsilon_{pp} \right] \\ \varepsilon_{pp} &= n_{p} \left\langle \varphi_{p} \right| \hat{V}_{p} \left| \varphi_{p} \right\rangle \neq \mathsf{IPs} \\ \mathsf{EKT:} \ \nu_{qp} &= -\frac{\varepsilon_{qp}}{\sqrt{n_{q} n_{p}}} \end{split}$$

$$E = \text{Tr} (\text{H}\Gamma + \Lambda), \Lambda = \{\varepsilon_{qp}\}$$
$$U : X' = U^{\dagger}XU, U^{\dagger} = U^{-1}$$
$$\text{Tr} (\text{H}\Gamma + \Lambda) = \text{Tr} (\text{H}'\Gamma' + \Lambda')$$

$$\Box \Lambda' = U^{\dagger} \Lambda U, \quad \Gamma' = U^{\dagger} \Gamma U$$
$$\Lambda' = \left\{ \varepsilon'_{p} \delta_{qp} \right\}, \quad \Gamma' = \left\{ n'_{qp} \right\}$$
$$\Rightarrow \Lambda' |\chi_{p}\rangle = \varepsilon'_{p} |\chi_{p}\rangle$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Two orbital pictures in NOFT. Methane. Water Delocalization effects Carbon dimers vs Silicon dimers

PNOF5 valence orbitals of methane (CH_4)

ChemPhysChem 2012, J. Chem. Theor. Comp. 2012

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Two orbital pictures in NOFT. Methane. Water Delocalization effects Carbon dimers vs Silicon dimers

Valence vertical ionization energies, in eV, for methane

	cc-p	VDZ
	T_2	A ₁
B3LYP	10.57	18.79
BLYP	9.13	16.66
BP86	9.33	16.93
M06-2X	12.22	21.20
M06L	9.56	17.76
M06	10.74	18.98
MPWPW91	9.27	16.87
O3LYP	9.98	18.06
Experiment	14.40	23.00

Chem. Phys. Lett. 531, 272, 2012.

Two orbital pictures in NOFT. Methane. Water Delocalization effects Carbon dimers vs Silicon dimers

PNOF5 valence orbitals of water (H_2O)

Canonical Orbital Representation

Two orbital pictures in NOFT. Methane. Water Delocalization effects Carbon dimers vs Silicon dimers

Valence orbitals of carbon dioxide (CO_2) . Banana Orbitals.

Two orbital pictures in NOFT. Methane. Water Delocalization effects Carbon dimers vs Silicon dimers

Aromaticity: PNOF5 valence orbitals of benzene (C_6H_6)

Two orbital pictures in NOFT. Methane. Water Delocalization effects Carbon dimers vs Silicon dimers

Valence orbitals of carbon dimer (C_2)

Two orbital pictures in NOFT. Methane. Water Delocalization effects Carbon dimers vs Silicon dimers

< A

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Valence orbitals of silicon dimer (Si_2)

Closing Remarks

- Two orbital pictures are possible: NOs and COs.
- The COs can be obtained only after solving the problem in the NO representation.
- PNOF5 NOs are localized orbitals that nicely agree with the chemical intuition of chemical bonding, VB and VSEPR bonding pictures.
- PNOF5 COs are symmetry-adapted delocalized orbitals similar to those obtained by molecular orbital theories.
- NO and CO representations are unique one-particle pictures of the same solution ergo complement each other in the description of the electronic structure.

Introduction to NOFT	Two orbital pictures in NOFT. Methane. Water
PNOF5 Results	Delocalization effects
PNOF5 Molecular Orbitals	Carbon dimers vs Silicon dimers

Acknowledgement

- Financial support comes from the Basque Government and the Spanish Office for Scientific Research.
- The SGI/IZO-SGIker UPV/EHU is greatfully acknowledged for generous allocation of computational resources.

Thank you for your attention !!!