Superfluid—Mott-insulator in lattice boson models: from RPA to functional renormalization group

Nicolas Dupuis

Laboratoire de Physique Théorique de la Matière Condensée Université Pierre et Marie Curie, CNRS, Paris

Bosons in an optical lattice

Superfluid to Mott insulator quantum phase transition

M. Greiner, O. Mandel, T. Esslinger, T.W. Hansch, and I. Bloch (Nature 2002)

[Picture: Quantum Optics Theory Group, Innsbruck university]

Outline

- Bose-Hubbard model
- Mean-field approximation and strong-coupling RPA
- Beyond RPA: functional renormalization group

Bosons in an optical lattice: Bose-Hubbard model

Phase diagram of the Bose-Hubbard model (hypercubic *d*-dimensional lattice)

Mott insulator for integer fillings

Standard approach to superfluidity: Bogoliubov theory (mean-field theory plus Gaussian fluctuations: $\hat{\psi}_i = \langle \hat{\psi}_i \rangle + \delta \hat{\psi}_i$) always predicts the ground state to be superfluid.

Modified (strong-coupling) mean-field theory (expansion about the local limit)

• Ising model

$$H = J \sum_{\langle i,j \rangle} \sigma_i \sigma_j - \sum_i h_i \sigma_i$$
$$H_{\rm MF} = J \sum_{\langle i,j \rangle} (\langle \sigma_i \rangle \sigma_j + \sigma_i \langle \sigma_j \rangle) - \sum_i h_i \sigma_i$$

single-site Hamiltonian

• Bose-Hubbard model

$$\begin{split} \hat{H} &= -t \sum_{\langle i,j \rangle} (\hat{\psi}_i^{\dagger} \hat{\psi}_j + \text{h.c.}) + \hat{H}_{\text{loc}} \\ \hat{H}_{\text{MF}} &= -t \sum_{\langle i,j \rangle} (\langle \hat{\psi}_i^{\dagger} \rangle \hat{\psi}_j + \hat{\psi}_i^{\dagger} \langle \hat{\psi}_j \rangle + \text{h.c.}) + \hat{H}_{\text{loc}} \quad \text{single-site Hamiltonian} \end{split}$$

$$E_0 = a_0 + a_2 |\langle \hat{\psi} \rangle|^2 + a_4 |\langle \hat{\psi} \rangle|^4$$
 Ginzburg-Landau

Phase diagram qualitatively reproduced

Beyond (strong-coupling) mean-field: RPA

• Ising model

$$Z = \sum_{\{\sigma\}} e^{-\frac{1}{2}\sum_{i,j}\sigma_i K_{ij}\sigma_j}$$

= $\sum_{\{\sigma\}} \int \prod_i d\varphi_i \ e^{-\frac{1}{2}\sum_{i,j}\varphi_i K_{ij}^{-1}\varphi_j + \sum_i \varphi_i \sigma_i}$ Hubbard-Stratonovich
= $\int \prod_i d\varphi_i \ e^{-\frac{1}{2}\sum_{i,j}\varphi_i K_{ij}^{-1}\varphi_j + \sum_i \ln 2 \cosh \varphi_i}$
= $\int \mathcal{D}[\varphi] \ e^{-\int d^d r \left\{ \frac{1}{2} (\nabla \varphi)^2 + r_0 \varphi^2 + u_0 \varphi^4 \right\}}$

• Bose Hubbard model

$$Z = \int \mathcal{D}[\psi^*, \psi] e^{-\int_0^\beta d\tau \left\{ \sum_i \psi_i^* \partial_\tau \psi_i + H[\psi^*, \psi] \right\}}$$

= $\int \mathcal{D}[\psi^*, \psi] e^{\int_0^\beta d\tau \sum_{i,j} \psi_i^* t_{ij} \psi_j - S_{\text{loc}}[\psi^*, \psi]}$
= $\int \mathcal{D}[\psi^*, \psi, \varphi^*, \varphi] e^{\int_0^\beta d\tau \left\{ \sum_{i,j} \varphi_i^* t_{ij}^{-1} \varphi_j + \sum_i (\varphi_i^* \psi_i + \text{c.c.}) \right\} - S_{\text{loc}}[\psi^*, \psi]}$ (Hub.-Strat.)
= $Z_{\text{loc}} \int \mathcal{D}[\varphi^*, \varphi] e^{\int_0^\beta d\tau \sum_{i,j} \varphi_i^* t_{ij}^{-1} \varphi_j} \langle e^{\int_0^\beta d\tau \sum_i (\varphi_i^* \psi_i + \text{c.c.})} \rangle_{\text{loc}}$ (integrate out ψ)

where
$$\langle \cdots \rangle_{\text{loc}} = \frac{1}{Z_{\text{loc}}} \int \mathcal{D}[\psi^*, \psi] \cdots e^{-S_{\text{loc}}[\psi^*, \psi]}$$

second-order cumulant expansion (t-expansion)

$$Z = \int \mathcal{D}[\varphi^*, \varphi] \ e^{-\sum_{\mathbf{q}, \omega_n} \varphi^*(\mathbf{q}, i\omega_n) [-t_{\mathbf{q}}^{-1} + G_{\text{loc}}(i\omega_n)]\varphi(\mathbf{q}, i\omega_n)}$$

Gaussian action

• Single-particle propagator

$$G(\mathbf{q},i\omega_n) = -\langle \psi(\mathbf{q},i\omega_n)\psi^*(\mathbf{q},i\omega_n) = \frac{G_{\text{loc}}(i\omega_n)}{1-t_{\mathbf{q}}G_{\text{loc}}(i\omega_n)}$$

RPA form (cf. Hubbard I)

• Local propagator

$$G_{\rm loc}(i\omega_n) = \frac{n_{\rm loc} + 1}{i\omega_n + \mu - Un_{\rm loc}} - \frac{n_{\rm loc}}{i\omega_n + \mu - U(n_{\rm loc} - 1)}$$

Two-pole structure (particle and hole excitations of a single site): cannot be reproduced from perturbation theory (or Bogoliubov theory) but crucial to describe SF-MI transition.

• Instability of the Mott insulator $1 - t_{q=0}G_{loc}(i\omega_n = 0) = 0$

agrees with mean-field theory

Strong-coupling RPA

- exact in the local limit *t*=0
- describes qualitatively the phase diagram but not quantitatively
- mean-field-like treatment of hopping term: does not capture critical behavior of the SF-MI transition

Non-perturbative functional renormalization group (NPRG)

- NPRG: Wetterich'93... (reviews: Berges et al., Phys. Rep. '02, Delamotte arXiv '07)
- Lattice models: T. Machado & ND, Phys. Rev. E 82, 041128 (2010)
- Bose-Hubbard model: A. Rançon & ND

Family of models indexed by momentum scale k

Follow Wilson's RG idea: integrate short-distance degrees of freedom first

Practical implementation of the NPRG

$$\Delta \hat{H}_k = \sum_{\mathbf{q}} \hat{\psi}^{\dagger}(\mathbf{q}) R_k(\mathbf{q}) \hat{\psi}(\mathbf{q})$$

Effective hopping amplitude: $t_{\mathbf{q}} + R_k(\mathbf{q}) \equiv -2t\cos(q) + R_k(q)$ (1D)

Solve RG equation

Which quantity do we calculate ?

• Effective action: (slightly modified) Legendre transform (Gibbs free energy)

$$Z_k[J^*, J] = \int \mathcal{D}[\psi^*, \psi] \ e^{-S[\psi^*, \psi] - \Delta S_k[\psi, \psi] + \int_0^\beta d\tau \sum_i (J_i^* \psi_i + \text{c.c.})}$$

$$\phi_i(\tau) = \langle \psi_i(\tau) \rangle$$

$$\Gamma_k[\phi^*, \phi] = -\ln Z_k[J^*, J] + \int_0^\beta d\tau \sum_i (J_i^* \phi_i + \text{c.c.}) - \Delta S_k[\phi^*, \phi]$$

• Initial condition of the RG flow

$$S + \Delta S_{\Lambda} = S_{\text{loc}}$$
 local limit
 $\Gamma_{\Lambda} = \Gamma_{\text{loc}} + \int_{0}^{\beta} d\tau \sum_{\mathbf{q}} \phi^{*}(\mathbf{q}) t_{\mathbf{q}} \phi(\mathbf{q})$ RPA

• Exact RG equation (Wetterich'93)

$$\partial_k \Gamma_k[\phi^*, \phi] = \frac{1}{2} \operatorname{Tr} \left[\partial_k R_k \left(\Gamma_k^{(2)}[\phi^*, \phi] + R_k \right)^{-1} \right] \dots \text{ can be solved approximately}$$

Phase diagram

[QMC: B. Capogrosso-Sansone et al., DMFT: P. Anders et al.]

Critical behavior of the SF-MI transition at constant density (2D):

	NPRG	3D XY (MC)	RPA
$\nu =$	0.699	0.671	0.5
$\eta =$	0.049	0.038	0

Functional RG and quantum phase transitions

- Thermodynamics of a Bose gas near the SF-MI transition [A. Rançon & ND, PRA 2012]
- Universal equation of state of a dilute 2D Bose gas
 [A. Rançon & ND, PRA 2012]
- Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions
 - [A. Rançon et al., PRE 2013]
- Higgs amplitude mode in the vicinity of a (2+1)-dimensional quantum critical point

[A. Rançon & ND, PRB 2014, F. Rose et al., PRA 2015]

Critical Casimir forces from the equation of state of quantum critical systems

[A. Rançon et al., PRB 2016]

• Nonperturbative functional renormalization-group approach to transport in the vicinity of a (2+1)-dimensional O(N)-symmetric quantum critical point

[F. Rose & ND, PRB 2017]

Thank you !